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Abstract Several recent efforts to estimate Earth’s equilibrium climate sensitivity (ECS) focus on
identifying quantities in the current climate which are skillful predictors of ECS yet can be constrained by
observations. This study automates the search for observable predictors using data from phase 5 of the
Coupled Model Intercomparison Project. The primary focus of this paper is assessing statistical significance
of the resulting predictive relationships. Failure to account for dependence between models, variables,
locations, and seasons is shown to yield misleading results. A new technique for testing the field significance
of data-mined correlations which avoids these problems is presented. Using this new approach, all 41,741
relationships we tested were found to be explainable by chance. This leads us to conclude that data mining
is best used to identify potential relationships which are then validated or discarded using physically based
hypothesis testing.

1. Introduction

Humans have always been fascinated with predicting the future. Making accurate predictions can be
extremely difficult, but the payoffs for success can be huge. Predicting changes to Earth’s climate over the
next hundred years and identifying how humans can influence this future is perhaps the most important
prediction problem of our time. But as with most high stakes prediction exercises, understanding climate
change is not easy.

The main source of difficulty is that climate responds to complex interactions between weakly understood
nonlinear processes. To accommodate this complexity, climate predictions are typically made with global
climate models (GCMs) which distill our best understanding of climate processes into numerical models.
Unfortunately, independently developed GCMs yield substantially different predictions of future climate
[Flato et al., 2013]. This disagreement provides a lower bound on our uncertainty about the magnitude of
global warming. Additionally, spread in predictions by successive generations of GCMs does not seem to be
decreasing [Manabe and Wetherald, 1967; Andrews et al., 2012; Bony et al., 2013].

Because climate change is so important and GCM spread is still substantial, considerable effort has been
directed toward finding alternative methods for making climate predictions, particularly for equilibrium cli-
mate sensitivity (ECS, the change in global average equilibrium surface air temperature due to doubling
CO2). Empirical estimates of ECS have been obtained from a variety of sources, such as surface tempera-
ture changes over the instrumental thermometer record [Gillett et al., 2012], from temperature changes
over ice age timescales [Hoffert and Covey, 1992], and from temperature responses to large volcanic erup-
tions [Wigley et al., 2005; Knutti and Hegerl, 2008]. The uncertainties in such estimates are large, however,
and arise from the combined effects of uncertainties in both the instrumental/proxy data and in the mag-
nitude of key natural and anthropogenic external forcings (such as aerosol and solar insolation) over the
last few centuries. In addition, greenhouse gases induce different spatial and temporal feedback response
patterns than other forcings [Hansen et al., 1997], which complicate interpretation of ECS estimated from
previous climates. See Box 12.2 of Collins et al. [2013] for a more comprehensive discussion of techniques for
estimating ECS.

An increasingly popular approach is to identify emergent constraints—currently observable quantities which
serve as good predictors of GCM response to changes in CO2. This task is made easier by the availability of
output from a series of coupled model intercomparison projects (hereafter denoted CMIPn for generation
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number n). These projects provide researchers with access to data from dozens of climate models developed
by many different groups worldwide. Using such archives, strong correlation to ECS has been identified for
the seasonal cycle of near-surface temperature [Covey et al., 2000; Knutti et al., 2006], the gradient between
tropical and midlatitude mean cloud amount [Volodin, 2008], Southern Hemisphere radiation [Trenberth and
Fasullo, 2010], subtropical midtropospheric relative humidity [Fasullo and Trenberth, 2012], the lapse rate of
tropical humidity [Sherwood et al., 2014], and various other radiative quantities [Huber et al., 2011].

A natural extension to the above-mentioned studies is to automate the process of identifying current cli-
mate quantities with skill at predicting ECS. In this study, we correlate climate sensitivity from 28 CMIP5
models (calculated as described in the supporting information) against 41,741 vectors of current climate
data from CMIP5. As described in the supporting information, these vectors (hereafter known as fields)
sample the mean, interannual standard deviation, and seasonal amplitude of 48 variables over a range of
latitude bands, seasons, and vertical levels. This work expands upon Huber et al. [2011], which searched
through 1700 permutations of climate metrics and geographical regions in 28 CMIP3 radiation variables for
correlations with ECS. However, while the previous effort struggled to establish the statistical significance of
their results, our study focuses exclusively on identifying which (if any) correlations are significant.

Establishing the significance of data-mined relations is difficult because sampling unusual events becomes
likely as sample size increases. For example, if 100 independent tests are conducted at 5% significance
level, five of those tests are expected to appear significant by chance alone. In meteorology and climate
applications, significance tests for ensembles of statistical relationships are known as field significance tests
[Livezey and Chen, 1983]. Several methods have been proposed for establishing the significance of relation-
ships in portions of spatially and temporally varying arrays [von Storch, 1982; Livezey and Chen, 1983; Wilks,
2006; DelSole and Yang, 2011]. Searching the CMIP archive for correlations is different than analyzing the
spatial maps of previous studies because our fields are correlated not just across space and time but also
across variables and models. This makes computing the effective sample size or constructing analogous
bootstrapped data sets difficult. Additionally, the statistics in our ensemble are constructed from noninde-
pendent models, a feature shown in section 3 to play a central role in determining field significance. While
previous studies have noted the nonindependence of CMIP models [Knutti, 2010; Pennell and Reichler, 2011;
Knutti et al., 2013], ours is the first we know of which accounts for all of these complex dependencies in the
determination of field significance.

Section 2 provides a simple but flawed approach to analyzing data-mined correlations. It serves to intro-
duce the basic methodology used throughout the paper and to set the stage for section 3, which identifies
the problems with this initial approach. A more suitable methodology is presented in section 4. Section 5
summarizes the results and places them in a broader context.

2. A Naïve Approach to Field Significance Testing

Figure 1 shows the histogram of the magnitudes of correlations between intermodel differences in ECS
and each of the 41,741 current climate fields in our data set. Here and elsewhere, quantities have been
normalized by subtracting their intermodel mean value and dividing the result by their intermodel stan-
dard deviation. Blue bars depict correlations with ECS and red bars show correlations with independent,
uniformly distributed random data. We perform our null hypothesis calculation by replacing ECS rather
than the fields with random data in order to preserve the rich structure of correlations between fields and
across models. Replicating this structure is shown below to be essential to the formation of an appropriate
significance test.

In both the ECS and random data cases, weak correlations are prevalent and strong correlations are relatively
rare. This behavior is unsurprising but has a profound impact on the type of relationship which can be
identified via data mining. Weak but physically meaningful relationships are hidden under a mountain of
chance correlations, while strong correlations stand out because they are relatively rare. This leads us to
focus on the strongest correlations. However, deciding that a large correlation is real is equivalent to con-
cluding that a single aspect of current climate controls a dominant fraction of global warming. We consider
this unlikely given the incredible complexity of the climate system. Inability to identify weak but meaningful
correlations is a drawback to data mining.
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Figure 1. Histogram of {|corr(X, Y)|} for X ∈ CMIP5 fields and Y = ECS
(blue bars) or random data (red bars)}. For random data, error bounds
are 5 and 95 percentile values computed by drawing a new random
vector and recomputing the histogram 1000 times.

The key feature of Figure 1 is that the
number of correlations greater than 0.7
in absolute value (hereafter known as
the set of strongly correlated fields) in
the CMIP5 archive exceeds the 95th per-
centile value generated with randomized
ECS vectors. This suggests that several
of the largest correlations identified are
not just statistical artifacts but instead
reflect real, physically based relation-
ships between CMIP5 fields and ECS.
This result, however, is based on sev-
eral incorrect assumptions which are
described below.

3. Problems With the Naïve
Approach

One issue with the above approach is
that cross-field independence was not

considered in selecting which fields to correlate with ECS. As a result, the number of fields strongly cor-
related with ECS is highly dependent on arbitrary choices about how many fields in the archive express
a particular pattern of cross-model variability. For example, if intermodel variations in ECS and tropi-
cal free-tropospheric temperature (which is strongly related to many other tropical fields) were highly
correlated, the number of strong correlations would be very large. If ECS was instead strongly corre-
lated with surface sensible heat flux near the North Pole (a quantity less well correlated with other
fields), fewer strong correlations with ECS would be identified. The impact of removing closely related
fields is tested in Figure 2a by identifying the best correlated pair of fields and randomly removing
one of them, then iterating until the desired number of remaining fields is left. As fields are removed
there are fewer opportunities for large correlations, and as a result, the number of strong correlations
decreases monotonically. As in Figure 1, the number of strong correlations is significant at the 5% level
wherever the value for the CMIP results is not encompassed by the error bars. Decreasing redundancy
between fields is seen to affect the number of strongly correlated fields but does not (in this case)
impact significance.

Figure 2. Number of fields in the CMIP5 archive strongly correlated with ECS (defined as having |corr(X, ECS)| > 0.7)
as a function of (a) number of fields retained and (b) number of models retained. Error bars are 5–95% bounds on the
number of CMIP5 fields strongly correlated with a random data vector. The red line in Figure 2b shows the impact of
reducing model count to 20, then increasing model count by randomly adding copies of retained models. Numbering
above plots gives the maximum correlation between fields or models for given field or model count. See text for details.
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Figure 3. Number of meta-fields correlated with meta-ECS
at >0.7 in absolute value as a function of the number of
dimensions retained. The red line is the 95th percentile num-
ber of correlations expected by chance based on 1000 trials.
Numbering at the top of the figure gives the percent of the
variance in the intermodel correlation matrix explained by the
retained EOFs.

A more fundamental problem with the orig-
inal analysis is that it assumes CMIP5 models
are independent. Figure 2b illustrates the
impact of removing the most strongly related
models (following the same methodology as
used for Figure 2a). To minimize the impact
of randomly choosing which model of the
strongest-correlated pair is removed, model
reduction is performed 20 times and the results
displayed are the average over this sampling.
In general, using more models results in fewer
strong correlations. This reflects the simple
fact that the probability of matching a pat-
tern by chance decreases as the complexity
of the pattern increases. Artificially inflating
the model count by including some models
multiple times, however, does not change the
number of strong correlations. This is illustrated
by removing the eight strongest-correlated
models, then reinflating model count by ran-
domly adding copies of the retained models.

The red line in Figure 2b shows averages over 20 repetitions of this process. Lack of sensitivity to redun-
dant models is unsurprising: it is trivial to show that including all models multiple times has no effect on the
histogram of correlations. This insensitivity of the histogram of correlations to inclusion of redundant mod-
els explains why the number of strong correlations in the CMIP5 data (blue line in Figure 2b) is practically
unchanged when model count is reduced from 28 to 22 by removing the strongest-related models. The
number of strong correlations in our null distribution from section 2 does, however, continue to decrease
as the number of closely related models increases. This is because randomization replaces copied ECS val-
ues with independent data. In short, our null hypothesis implicitly assumed models were independent, so it
failed to reproduce the artificial increase in strong correlations with ECS caused by using related models.

4. A Better Approach to Field Significance Testing

A crude significance test correcting for related models can be made by noting that the number of strong
correlations in Figure 2b remains roughly constant until ≥4 models are removed, so there must be ∼24 inde-
pendent models (see supporting information for a more comprehensive discussion of this point). Using
24 models, the number of strong correlations from CMIP data is roughly equal to the 95th percentile for
random data.

A more suitable method of field significance testing is summarized below (and described in more detail in
the supporting information). The basic idea is to replace the original, related models with linearly indepen-
dent “meta-models” which are formed from linear combinations of the original models using the empirical
orthogonal functions (EOFs) of the matrix of correlations between models. We then reduce model dimen-
sionality to account for there being fewer than 28 independent models. Finally, ECS and field vectors for the
meta-models (hereafter meta-ECS and meta-fields) are constructed as linear combinations of the original
data. Analyzing correlations between meta-fields and meta-ECS is equivalent to performing the original sig-
nificance test using independent models and fields. Figure 3 shows the number of meta-fields correlated
strongly with meta-ECS as a function of the assumed number of independent models in the data set. Results
are shown for all reasonable independent model counts to avoid making somewhat arbitrary decisions
about which models are independent. The null hypothesis (that the number of fields strongly correlated
with ECS is commensurate with the number expected by chance) is tested by replacing meta-ECS with inde-
pendent, uniformly distributed random numbers. The number of strong correlations using the CMIP5 data
(blue line) is always less than the 95th percentile from 1000 tests using random data (red line), so we con-
clude that the number of strong correlations with ECS is not significant at the 5% level regardless of how
many independent models are assumed.
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5. Discussion and Conclusions

Because of the scientific and societal importance of reducing uncertainties in climate sensitivity estimates,
the widespread availability of simulation output from many dozens of climate models, and emerging tech-
niques for quickly sorting through massive data sets, archives such as CMIP5 are prime candidates for data
mining. Our study serves as a first foray into this realm. The major conclusion of this work is that credible
statistical significance testing of mined data requires careful consideration of relationships between sam-
ples. Our analysis shows that none of the 41,741 fields tested have skill at predicting ECS beyond what is
reasonably expected by chance.

In this context it is worth revisiting earlier attempts to link ECS with currently observable quantities. Our
work demonstrates that extremely large correlations are expected by chance in the CMIP archives, so simply
identifying a strong correlation is not sufficient proof that a real physical relationship exists. Instead, emer-
gent constraints require a convincing physical explanation to be credible. If that physical explanation is what
prompted the significance test, a simple t test is sufficient. If the relationship precedes the explanation (as in
data mining), the probability of getting unusual events by chance becomes large and the ability of statistics
to separate spurious and meaningful relationships drops. Previously identified emergent constraints which
lack a clear physical explanation should be treated with caution. A necessary but not sufficient condition for
their continued acceptance is that the suggested relationship should continue to hold in other ensembles of
models [Masson and Knutti, 2013; Klocke et al., 2011]. This criterion is not met in Fasullo and Trenberth [2012],
where subtropical and monsoon region relative humidity are found to be good predictors of ECS in CMIP3
but not in CMIP5 (see their Figure S4).

In light of the importance of a physical explanation, it may be easier to establish emergent constraints for
individual feedbacks than for ECS since the former are more closely connected to physical processes. Several
constraints of this type have already been proposed [Hall and Qu, 2006; Qu et al., 2013; Cox et al., 2013].

Although data mining was not found to be useful for identifying skillful predictors in CMIP5, we do not mean
to imply that no such relationships exist or that data mining has no place in climate science. Even though
statistical significance of correlations could not be established here using data mining, data mining does
give us a comprehensive list of strong correlations (see Table S2). This serves as a great starting point for
identifying real predictive relationships.
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