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ABSTRACT

Accuracy of turbulence parameterization in representing planetary boundary layer (PBL) processes and surface–atmosphere interactions

in climate models is critical for predicting the initiation and development of clouds. This study 1) evaluates WRF Model–simulated spatial

patterns and vertical profiles of atmospheric variables at various spatial resolutions and with different PBL, surface layer, and shallow

convection schemes against measurements; 2) identifies model biases by examining the moisture tendency terms contributed by PBL and

convection processes through nudging experiments; and 3) investigates the main causes of these biases by analyzing the dependence of

modeled surface fluxes on PBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations

have surprisingly large impacts on precipitation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to

overpredict moisture in the PBL and free atmosphere and consequently result in larger moist static energy and precipitation. Moisture

nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces

the surface wind and latent heat (LH) flux biases, which suggests the positive feedback between precipitation and surface fluxes is re-

sponsible, at least in part, for the model drifts. The updated Kain–Fritsch cumulus potential (KF-CuP) shallow convection scheme tends to

suppress the deep convection, consequently decreasing precipitation. The Eta Model surface layer scheme predicts more reasonable LH

fluxes and LH–wind speed relationship than those for the MM5 scheme. The results help us identify sources of biases of current parame-

terization schemes in reproducing PBL processes, the initiation of convection, and intraseasonal variability of precipitation.

a Current affiliations: College of Atmospheric Science, Nanjing University of Information & Technology, Nanjing, China, and and

Pacific Northwest National Laboratory, Richland, Washington.

Corresponding author address: Dr. Yun Qian, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352.

E-mail: yun.qian@pnnl.gov

Denotes Open Access content.

15 NOVEMBER 2016 Q IAN ET AL . 8191

DOI: 10.1175/JCLI-D-16-0040.1

� 2016 American Meteorological Society

mailto:yun.qian@pnnl.gov


1. Introduction

While numerical models resolve the large-scale flow, pa-

rameterizations are required for representing the effect of

subgrid processes in the atmosphere such as radiation, con-

vection, and turbulence that cannot be explicitly resolved

by a numerical gridpoint model. While all physical parame-

terization packages play different roles in simulating the at-

mospheric processes, the turbulence parameterization is

especially important for accurate representation of the

planetary boundary layer (PBL) processes and predicting

boundary layer temperature, humidity, wind, and mixed-

layer depth, all of which are critical for predicting the initia-

tion and development of convective clouds, precipitation, air

quality, and land–atmosphere–cloud interactions (e.g., Cha

et al. 2008; Shin and Hong 2011; Hu et al. 2010, 2013; Xie

et al. 2012; Qian et al. 2013; Yang et al. 2013; Cohen et al.

2015). In addition, subgrid turbulence has a significant influ-

ence on the resolved scales owing to the complex nonlinear

nature of the atmosphere; hence, it is important to parame-

terize vertical turbulent fluxes and subgrid-scale condensa-

tion throughout the grid column in a realistic manner (Golaz

et al. 2002; Guo et al. 2014, 2015; Cheng and Xu 2015).

The importanceofPBLparameterizations inweather and

climate models has been extensively explored over the past

several decades. For example, several studies (e.g., Hong

and Pan 1996; Braun and Tao 2000; Li and Pu 2008) sug-

gested that the skill of weather-forecasting models is sensi-

tive to the vertical mixing formulation and that for accurate

hurricane simulations, PBL schemes are as important as

cloud microphysics schemes. Based on ensemble simula-

tions from the Weather Research and Forecasting (WRF)

Model using three cumulus schemes, three microphysics

schemes, and two PBL schemes, Jankov et al. (2005) found

that cumulus schemes had the largest effect on model per-

formance followed by PBL schemes. Many PBL parame-

terizations have been developed for representing the

turbulence process and its impacts in global or mesoscale

models of the atmosphere (e.g., Mellor and Yamada 1974,

1982; Zhang and Anthes 1982; Stull 1984; Wyngaard and

Brost 1984; Troen and Mahrt 1986; Janjić 1990; Pleim and

Chang 1992; Shafran et al. 2000). Meanwhile, many studies

have compared the impacts of different PBL schemes on

PBL characteristics and model performance (e.g., Mahfouf

et al. 1987; Pan et al. 1994; Braun and Tao 2000; Bright and

Mullen 2002; Berg and Zhong 2005; Shin and Hong 2011;

Hu et al. 2010, 2013; Huang et al. 2013; Xie et al. 2012).

However, these studies have generally focused on evalua-

tions againstmeasurements collectedover a single terrestrial

location and turbulence regime over land, with only limited

studies dedicated to comparisons between predicted and

observed turbulence statistics [e.g., the surface sensible heat

(SH) and latent heat (LH) fluxes; Betts et al. 1997], and

rigorous evaluationsof theperformanceofdifferent suites of

surface layer, PBL, and cumulus parameterizations are rare.

An ideal turbulence parameterization should skillfully

handle different turbulence regimes and show consistent

behavior over different underlying surfaces. In fact, land–

atmosphere–cloud interactions are constrained not only

by the surface energy balance but also by the moisture

availability at the land surface, where it is challenging to sort

out the relative roles of surface energy andwater budgets on

the thermodynamic state of the PBL and potentially the

initiation of clouds. In contrast, moisture is always abundant

over the ocean surface, making this an idealized regime for

identifying key factors that influence the surface–atmosphere

interaction and quantifying their impacts on the PBL struc-

ture given unlimited moisture supply. Therefore, it is of sci-

entific interest to investigate the performance of different

PBL, surface layer (SL), and shallow convection (SC)

schemes over an oceanic surface.

The WRF Model embeds multiple parameterization

options for many subgrid processes, including suites of

different PBL, convection, and SL schemes (Skamarock

et al. 2008). In convective environments it is important to

study the combined suite of parameterizations because

eachplays a role in the initiation of convective clouds. The

sensitivity of the model results to SL and SC parameter-

izations, both of which are tightly linked to the PBL pa-

rameterization, is also investigated to assess the relative

contributions of these parameterizations to typical fea-

tures of each PBL scheme. The observations collected

during the 2011 Atmospheric Radiation Measurement

Program (ARM) Madden–Julian oscillation (MJO)

Investigation Experiment (AMIE)/Dynamics of the

MJO (DYNAMO) field campaign (Yoneyama et al.

2013) over the Indian Ocean are used as benchmarks for

assessing model performance.

Our goal is to test a subset of the various parameteri-

zations that are available in the WRF Model and to

identify the sources of bias and errors in current PBL, SL,

and SC schemes, including errors related to the initiation

of convection and intraseasonal variability of pre-

cipitation, with the ultimate goal of developing improved

parameterizations. In this study, we have attempted to

address our goal in three ways: 1) evaluate and compare

the modeled spatial patterns of precipitation and surface

fluxes as well as vertical profiles of potential temperature,

humidity, moist static energy (MSE), and moisture ten-

dency terms using different horizontal resolutions, PBL,

SL, and SC schemes; 2) identify model biases by analyz-

ing moisture tendency terms contributed by PBL and

convection processes through a series of nudging exper-

iments; and 3) evaluate the dependence of modeled sur-

face latent heat fluxes to different PBL and SL schemes

over the tropical ocean.
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The WRF regional climate model—including the PBL,

SL, and SC schemes as well as simulation setup—and

observational datasets are described in section 2. Section 3

presents the model evaluation against the observations

and the details of the impact of PBL, SL, and SC schemes

on the surface fluxes, cloud development, and pre-

cipitation cycle. The diagnosis of the causes of model

biases that are identified are also presented in section 3.

Conclusions and discussion are provided in section 4.

2. Model and observations

a. WRF Model

The Advanced Research version of WRF, version 3.4

(Skamarock et al. 2008), is used in this study. WRF is a

fully compressible and nonhydrostatic model that uses a

terrain-following hydrostatic-pressure vertical coordinate

and an Arakawa C-grid staggering spatial discretization

for variables. The simulation domain covers 118S–118N
and 508–1028E of the tropical Indian Ocean (Fig. 1) with

two horizontal grid spacings: 10 and 50km, with 27 sigma

levels (with 4–6 levels in PBL) from the surface to 10hPa.

Wind, temperature, water vapor, pressure, and underlying

surface variables including sea surface temperature used to

generate initial and boundary conditions are derived from

the National Centers for Environmental Prediction

(NCEP) final analysis (FNL) 18 3 18 global data with

6-hourly time intervals. All simulations start on 15 Oc-

tober and end on 1 December 2011, and our analysis

focuses on November 2011.

To investigate the impact of PBL, SL, and SC param-

eterizations on the simulation of tropical convection,

a series of free-running simulations were completed using

10- and 50-km horizontal grid spacing. In each case, we

conducted simulations using three PBL schemes: Yonsei

University (YSU; Hong et al. 2006; Sterk et al. 2013),

Mellor–Yamada–Janjić (MYJ; Janjić 1994), and Uni-

versity of Washington (UW; Bretherton and Park

2009). In this study, we have utilized the Kain–Fritsch

(KF; Kain and Fritsch 1993; Kain 2004) convective

scheme. To quantify the relevant tendency and model

bias in water vapor, we conducted a second series of

simulations using 50-km resolution, where the water

vapor was nudged to values derived from the NCEP–

NCAR reanalysis with a nudging time scale of 12 h at

all levels. Because the YSU scheme only utilizes the

MM5 Monin–Obukhov similarity SL scheme and the

MYJ PBL scheme only adopts the Eta Model SL

scheme, respectively, we conducted simulations using

the UW PBL scheme with both MM5 and Eta Model

SL schemes to compare with the YSU and MYJ simu-

lations, respectively. The KF cumulus potential (KF-CuP)

convective scheme is a version of the KF scheme mod-

ified by Berg et al. (2013) to better account for shallow

clouds, which is used to compare with the standard KF

to study the impact of different convection schemes

on tropical convections. The Rapid Radiative Transfer

Model forGCMs (RRTMG) scheme (Barker et al. 2003;

Pincus et al. 2003), the WRF single-moment 6-class

microphysics scheme (WSM6; Hong and Lim 2006), and

the Noah land surface model (LSM; Chen and Dudhia

2001; Ek et al. 2003) are used in all simulations ex-

cept for the MYJ–CuP–Eta simulation, which is cur-

rently only coupled with the Community Atmosphere

Model (CAM) shortwave radiation scheme (CAM3.0;

Collins et al. 2004). A quick check suggests that the

impacts of the different radiation schemes used in the

FIG. 1. Model domain and measurement network. The model domain is marked by the red

rectangle and covers 118S–118N and 508–1028E of the tropical IndianOcean. AdduAtoll (0.68S,
73.18E), Gan Island, and the Maldives, where surface and sounding data are collected, are

marked by a red dot. R/V Roger Revelle shipborne measurement areas are highlighted by

a yellow rectangle. For more details on ship tracks, see Fig. 10.
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MYJ–CuP–Eta simulation on results presented in this

study are minor.

b. PBL schemes
PBL schemes are used to parameterize the unresolved

turbulent vertical fluxes of heat, momentum, and constit-

uents such as water vapor or pollutants within the plane-

tary boundary layer. Of the three PBL schemes tested in

this study (Table 1), the MYJ and UW schemes apply a

local turbulence kinetic energy (TKE)-based closure,

while one, the YSU scheme, is a first-order nonlocal clo-

sure model. Generally, a local scheme only accounts for

gradients within adjacent vertical levels in themodel, but a

nonlocal scheme accounts for vertical transport over a

deeper layer spanning multiple levels to better represent

mixing associated with thermals in the convective PBL.

The MYJ scheme determines the eddy diffusivity from a

prognostic treatment of TKE with local vertical mixing

(Mellor and Yamada 1982).

TheYSU scheme is a first-order nonlocal model, with a

countergradient term in the eddy-diffusion equation

designed to account for surface-driven nonlocal mixing

spanning the whole boundary layer and with an explicit

entrainment flux term to account for entrainment at the

top of the convective PBL (Hong et al. 2006). The YSU

scheme is modified for WRF, version 3.4, by Hong et al.

(2006) by increasing the critical bulk Richardson number

from 0 to 0.25 over land, thereby enhancing mixing in the

stable boundary layer (Hong and Kim 2008). The YSU

scheme has been widely used in WRF in meteorological

and atmospheric chemistry studies (Hong and Kim 2008;

Shin and Hong 2011). It generally captures the vertical

structure ofmeteorological and chemical variables during

unstable conditions (Storm et al. 2009; Hu et al. 2012),

and the change of bulk Richardson number is likely of

little consequence in the context of this study that is fo-

cused on conditions over the tropical ocean where very

few periods with stable conditions are identified.

The UW moist turbulence scheme, which combines a

1.5-order turbulent closure model with an entrainment

closure at the boundary layer top (Grenier andBretherton

2001), was originally designed to improve the simulation of

stratocumulus clouds. The parameterization has been mod-

ified to improve its numerical stability andperformancewith

long time steps typically used in climate models. In contrast

to the MYJ scheme, the UW scheme uses TKE as a di-

agnostic rather than a prognostic variable. TheUW scheme

also features components such as theuseofmoist-conserved

variables, explicit entrainment closure for convective layers,

improved formulation of TKE transport as a relaxation to

layer-mean TKE that is efficient with longer model time

steps, and unified treatment of all turbulent layers in each

atmospheric column (Bretherton and Park 2009).

c. Surface layer schemes

WithinWRF, surface schemes represent the effects of

underlying surface, for example, calculating surface

sensible and latent heat fluxes. More specifically, the SL

schemes compute friction velocity u* and other ex-

change coefficients that provide the basis to estimate

surface heat and moisture fluxes in the land surface

model and surface stress in the PBL scheme. Over water

surfaces, including that of ocean in this study, the surface

fluxes and other diagnostic fields are calculated in the SL

parameterizations themselves.

In this study, we tested two SL schemes—the MM5

(Zhang and Anthes 1982; Beljaars 1995) and Eta Model

SL schemes (Janjić 1994). Both schemes use Monin–

Obukhov similarity theory (Monin and Obukhov 1954)

and standard similarity functions. While the MM5 SL

scheme is based on Monin–Obukhov theory with a

Carlson–Boland viscous sublayer, the Eta Model scheme,

developed first in the Eta Model, is based on Monin–

Obukhov theory with Zilitinkevich thermal roughness

length. It should be noted that only a limited number of

combinations of PBL and SL schemes can be used in the

community version of WRF. The YSU PBL scheme can

only be used with the MM5-similarity SL scheme. The

MYJ PBL scheme can only be run with the Eta Model–

similarity SL scheme. TheUWPBL scheme canworkwith

bothMM5-similarity andEtaModel–similarity SL schemes.

It is appropriate to compare the impact of SL schemes

when the same PBL scheme is applied.

d. Shallow convection scheme

All of the simulations make use of the KF cumulus

parameterization (Kain and Fritsch 1993; Kain 2004).

While the parameterization is designed to account for

shallow cumulus, in practice they are significantly

TABLE 1. Experiments and corresponding SC, PBL, and SL schemes selected in this study.

Expt Grid spacing (km) SC scheme PBL scheme SL scheme Nudging Radiation scheme

MYJ–KF–Eta 10 and 50 KF MYJ Eta Model On and off RRTMG

UW–KF–Eta 10 and 50 KF UW Eta Model On and off RRTMG

UW–KF–MM5 10 and 50 KF UW MM5 On and off RRTMG

YSU–KF–MM5 10 and 50 KF YSU MM5 On and off RRTMG

MYJ–CuP–Eta 10 and 50 KF-CuP MYJ Eta Model On and off CAM
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underpredicted. To address this concern, Berg et al.

(2013) developed modified version of the KF scheme,

the KF-CuP scheme. To better account for the presence

of shallow clouds, they replaced the ad hoc trigger

function being used in the default KF scheme with a

trigger function related to the PDF of temperature and

humidity in the convective boundary layer (Berg and

Stull 2004, 2005). To implement CuP, a number of ad-

ditional modifications have been made to the standard

version of KF scheme inWRF (e.g., changing the trigger

function and changing the methodology used for the

computation for the cloud fraction based on the time

scales relevant for shallow cumuli). These changes ac-

count for subgrid variability within the convective

boundary layer in amore realistic way than is done in the

default application of the KF scheme. The results pre-

sented by Berg et al. (2013) show that the KF-CuP pa-

rameterization does a much better job simulating the

cloud onset time, and cloud macrophysical properties

(such as cloud fraction and cloud-base height) of shallow

cumulus for a continental location than was possible

using the standard KF parameterization.

e. Observations

The observational data used in this study are from the

AMIE/DYNAMO field campaign (Yoneyama et al.

2013). The ground-based radar rainfall estimates, at-

mospheric sounding data from Addu Atoll (0.68S,
73.18E) in the Maldives, and R/V Roger Revelle ship-

borne near-surface observations are used in this study.

Their locations are highlighted in Fig. 1. The National

Center for Atmospheric Research (NCAR) S-band

(10-cm wavelength) dual-polarization Doppler radar

(S-Pol) was deployed on the atoll from 1 October 2011

to 15 January 2012 during AMIE/DYNAMO. S-Pol

has a 0.98 beamwidth with a maximum range of 150 km.

During AMIE/DYNAMO, S-Pol was operated on a

15-min cycle that included 3608 azimuthal plan position

indicator (PPI) scans. A total of eight elevation angles

from 0.58 to 118 were performed for the PPI scans, and

data were recorded in 18 azimuthal resolution. More

details about the operating status and rainfall charac-

teristics observed by S-Pol during AMIE/DYNAMO

are provided by Zuluaga and Houze (2013) and Rowe

and Houze (2014).

The S-Pol data are gridded to a Cartesian grid with a

horizontal resolution of 2 km and a vertical resolution of

0.5 km using the NCAR Radx package (Mohr and

Vaughan 1979). S-Pol rainfall estimates from 1 to

30 November 2011 are used in this study to validate the

WRF-simulated rainfall. The rainfall estimate is pro-

duced using the ‘‘hybrid algorithm’’ (Ryzhkov et al.

2005), which is a combination of a simple reflectivity and

rainfall rate (Z–R) relationship and several more ad-

vanced polarimetric parameter–based methods (for

more details see the S-Pol rain-rate computation docu-

mentation; http://www.eol.ucar.edu/projects/dynamo/

spol/parameters/rain_rate/rain_rates.html). The grid-

ded S-Pol rain rate at 2.5-km height out to 150-km radius

is averaged for each 15-min scan and further averaged to

each hour to obtain the hourly domain mean rain rate.

To compare with the model-simulated rainfall at the

surface, the S-Pol hourly domainmean rain rate at 2.5-km

height is converted to 0.5-km height using the linear

function provided by Hagos et al. (2014, see their ap-

pendix A). The linear function is derived by comparing

the S-Pol domain mean convective and stratiform rain

rates between 2.5 and 0.5 km in height, respectively.

Only the total rain rate at 0.5 km (sum of convective and

stratiform rain) is used in this study. Although verifica-

tion of the AMIE/DYNAMO radar-based rainfall

product is an active research effort, a recent study by

Thompson et al. (2015) reported that the current Z–R

relationship used in the released version of the S-Pol

rainfall data product could have a bias of ;10%. We

used the released version of the S-Pol rainfall product

available to us at the time of this study and acknowl-

edged that future improvement and uncertainty re-

duction is possible.

The sounding data used in this study are from the

Atmospheric Radiation Measurement Program inter-

polated sonde value-added product (Troyan 2012) at the

Addu Atoll (Gan Island). The product uses a combi-

nation of observations from radiosondes (8 day21 during

AMIE/DYNAMO), surface meteorology, and micro-

wave radiometer with a sophisticated scaling and in-

terpolation scheme applied to the water vapor mixing

ratio to produce accurate profiles of the atmospheric

thermodynamic state at 1-min temporal resolution and a

total of 316 altitude levels.

Near-surface meteorology measurements made on

the R/V Roger Revelle, stationed around the equator

near 808E during AMIE/DYNAMO, are also used in

this study. Details of the measurements and associated

measurement systems can be found in de Szoeke et al.

(2015). Wind speed, temperature, and humidity mea-

surements were made from the bow of the ship at

heights ranging from approximately 15 to 20m above

the ocean surface. The bulk fluxes of sensible and latent

heat used in this study were derived using the COARE,

version 3.0, algorithm (Fairall et al. 1996, 2003) for

10-min time periods and are a standardAMIE/DYNAMO

data product.

Three different monthly precipitation datasets are

also used for model evaluations, including 1) the Global

Precipitation Climatology Project (GPCP) dataset
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(Huffman et al. 1997; Adler et al. 2003); 2) the Tropical

Rainfall Measuring Mission (TRMM; Kummerow et al.

1998) precipitation dataset; and 3) the Modern-Era

Retrospective Analysis for Research and Applications

(MERRA) dataset, which was conducted by the Na-

tional Aeronautics and Space Administration (NASA)

Goddard Space Flight Center (GSFC; Bosilovich 2008).

3. Results

a. Evaluation and comparison of precipitation

While the focus of this work is to quantify biases and

identify the weakness of current PBL, SL, and SC

schemes, an overview of the observed and modeled

mean precipitation is presented first. Figure 2 shows the

monthly mean precipitation in November 2011 from the

three sets of observations and the simulations completed

using theMYJ PBL andEtaModel SL schemes at 10-km

spatial resolution. The domain-average mean (maxi-

mum) precipitation rates are 8.27 (35.08), 7.21 (20.59),

7.46 (23.90), and 10.81 (64.44)mmday21 for the TRMM,

GPCP, MERRA, and WRF 10-km simulations, re-

spectively. Maximum precipitation rates of larger than

10mmday21 can be seen over the sea in the vicinity of

the Mascarene Islands and the northeastern portion of

the Indian Ocean as well as Sumatra and Malaysia. In

general, the spatial pattern of precipitation is consistent

among the three observations, except that TRMM pro-

vides larger spatial variability and values of maximum

rainfall, likely owing in part to its higher spatial resolu-

tion. The Indian Ocean dipole/zonal mode, which

develops in boreal summer and peaks in boreal fall when

the Pacific sea surface temperature (SST) anomalies are

large, together with the remote influence of El Niño–
Southern Oscillation (ENSO), contributes significantly

to rainfall and wind variability over the tropical Indian

Ocean in fall (Webster et al. 1999). During the 2011

AMIE/DYNAMO field campaign, the eastward prop-

agation of an MJO episode observed in late November

contributes to the maximum precipitation in the north-

eastern Indian Ocean. In contrast, the maximum pre-

cipitation in the southwestern portion of the ocean is

mainly contributed by convection associated with the

ITCZ. All simulations predict too much and too fre-

quent large amounts of precipitation (greater than

22mmday21) but too little light and moderate pre-

cipitation (less than 20mmday21) over the tropical

ocean. Among all our simulations the configuration with

the KF-CuP and Eta Model schemes best predicts the

precipitation PDF against the observations. The simu-

lated monthly precipitation clearly has a spatial pattern

similar to the observations in some key regards. The

model approximately captures the locations of maxi-

mum rainfall, although the 10-km simulations over-

predict precipitation over a majority of the domain. The

mechanisms responsible for the overprediction will be

discussed in section 3c.

The free-running simulations for November 2011 all

overpredict the precipitation over the model domain

(Fig. 3). The simulations using the MYJ PBL parame-

terization are in the best agreement with the observa-

tions and the mean bias is smaller than 1mmday21,

with the run with KF-CuP being better than the run

FIG. 2. Monthly mean precipitation (mmday21) in November 2011 for the simulation at 10-km spatial resolution with

theMYJPBLandEtaModel SL schemes and three sets of corresponded observations (GPCP, TRMM, andMERRA).
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with the standard KF parameterization (Figs. 3a,e and

Table 2). The run with the UW PBL parameteriza-

tion coupled with the Eta Model SL parameteriza-

tion simulates more precipitation (with mean bias of

4.78mmday21) than is found for the run with the MYJ

PBL parameterization (Figs. 3a,b). The UW PBL

scheme can be run with both the Eta Model and MM5

SL schemes, enabling investigation of the sensitivity to

the SL parameterization (Figs. 3b,c). The simulation

utilizing the MM5 SL parameterization has much

larger amounts of precipitation (with mean biases of

7.59mmday21 for UW–KF–MM5 and 8.21mmday21 for

YSU–KF–MM5) than is the case for the simulations with

the Eta Model SL parameterization. The systematic

differences in the behavior of the SL parameterization

will be explored further in section 3d. The only non-

local PBL parameterization used in the study simu-

lates the largest amounts of precipitation and could be

FIG. 3. Monthly mean precipitation (mmday21) in November 2011 for the simulation at 50-km spatial resolutions in

(a)–(e) free-running and (f)–(j) moisture-nudged experiments with different schemes as shown in Table 1.
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related to an overestimate in the vertical transport of

water vapor or a boundary layer that is too deep.

When nudging is applied, all of the model configura-

tions except for MYJ–CuP–Eta do a much better job

simulating the observed precipitation than the free-

running simulations. The mean bias and root-mean-

square error associated with the nudged simulations

are much smaller, and the spatial pattern correlation is

higher than that in free-running simulations (seeTable 2).

The motivation for using nudging in this application is

to help us diagnose sources of model biases rather than

to obtain a best model configuration for precipitation

simulations. Specifically, comparisons of the tendencies

associated with the nudging can be compared with the

tendencies with those from the WRF parameterizations

to help identify processes that are not accurately rep-

resented in the free-running simulations [see Hagos

et al. (2011) for an example of the strategy]. This point

will be further discussed in section 3c.

An analysis of the time series of daily precipitation

observed over the Addu Atoll and from a subset of the

simulations highlights the systemic bias in the pre-

cipitation (Fig. 4). In this case the free-running and

nudged simulations were run using the YSU PBL and

MM5 SL parameterizations. Model results with nudging

show that both the timing and magnitude of simulated

precipitation are greatly improved (please note a few

erroneous precipitation episodes in the free-running

simulations in the first few days of the month have

been removed in the nudged simulations).

b. Vertical profiles

To further investigate thermodynamic impacts of PBL

and SL schemes on convective clouds and precipitation,

vertical profiles of several key thermodynamic parame-

ters have been created using both observations from the

ARM radiosondes and model results averaged over No-

vember 2011 over the Maldives (Fig. 5). The overall

structure of the profiles is similar for both observation and

simulations, especially for potential temperature, with the

top of the well-mixed boundary layer located at approx-

imately 0.5km above sea level, with relatively good

FIG. 4. Time series of precipitation in November 2011 from S-Pol measurement over the Gan

site and free-running and moisture-nudged simulations with the YSU–KF–MM5 scheme.

TABLE 2. Statistics of model evaluation against TRMM. All simulations use 50-km horizontal resolution except for MYJ–KF–Eta-10,

which uses 10-km resolution. The numbers in parentheses are for corresponding nudging simulations (see Fig. 3).

Expt Mean bias (mmday21) RMSE Pattern correlation

MYJ–KF–Eta 0.84 (22.88) 6.47 (5.29) 0.82 (0.84)

UW–KF–Eta 4.78 (22.42) 10.83 (5.17) 0.80 (0.84)

UW–KF–MM5 7.59 (21.43) 14.34 (5.07) 0.79 (0.85)

YSU–KF–MM5 8.21 (21.25) 15.09 (5.04) 0.78 (0.85)

MYJ–CuP–Eta 0.31 (23.83) 6.71 (6.62) 0.80 (0.71)

MYJ–KF–Eta-10 2.52 6.83 0.87
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agreement in the simulated and observed PBL depth

(Figs. 5a,b). However, noticeable systematic biases can be

found in both the PBL and free troposphere for specific

humidity, moist static energy, and relative humidity in all

the free-running simulations.

The specific humidity is overpredicted by 8%–10% in

the PBL and upper levels in the troposphere in all free-

running simulations. Consistent with specific humidity,

the moist static energy in all simulations is also greater

than that observed within the low boundary layer and

upper levels, indicative of additional convection and

precipitation. The relative humidity increases with al-

titude from the surface and reaches a peak at the top of

the boundary layer and then gradually decreases in the

troposphere. The biases in specific humidity and moist

static energy are consistent with the wet and warm

biases in precipitation and temperature, respectively.

That is, excess simulated precipitation leads to the re-

lease of latent energy that warms the troposphere,

which is induced by the transport of moisture through

the top of the PBL.

Overall, the SL schemes simulate much stronger

evaporation (analyzed later in section 3d), bringing too

much water vapor into the boundary layer. Meanwhile,

PBL schemes vertically transport the overpredicted

water vapor from near surface to the upper layers of the

PBL, which leads to the wet bias in the free troposphere

due to the vertical transport of moisture out of the PBL

by shallow or deep convections. The lower troposphere

over the tropical ocean is close to quasi equilibrium

when averaged over a period of time. Therefore, the

MSE at the base of the free troposphere is coupled to

FIG. 5. Vertical profiles of virtual potential temperature (VPT), specific humidity, MSE, and RH averaged in November

2011 from observation over the Maldives and five free-running simulations with different PBL, SC, and SL schemes.
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that at the top of the PBL. In other words, the profiles

in the lower troposphere are more or less controlled by

what happens within the PBL, following the work of

Emanuel (2007). In simulations with the same PBL

scheme (UW), the MM5 SL scheme generates larger

moisture biases than that associated with the Eta

Model scheme in both the PBL and free troposphere

(as seen by comparing the pink and red lines in Figs. 5

and 6). In contrast, in simulations with the same SL

scheme (EtaModel), the UW scheme produces smaller

moisture biases than the MYJ scheme in PBL but has

larger biases in upper levels most likely because of the

stronger vertical mixing of air in the UW scheme that

can bring more water vapor to the PBL top, favoring

the initiation and development of convection (as seen

by comparing the red and green lines in Figs. 5 and 6).

With the same SL scheme (MM5), the UW scheme

generates larger moisture bias than the YSU scheme in

PBL but smaller biases in the free troposphere. This is

because the nonlocal YSU scheme simulates stronger

vertical mixing in unstable conditions (Shin and Hong

2011; Xie et al. 2012). With the same SL scheme (Eta

Model) and PBL scheme (MYJ), the CuP scheme tends

to suppress the development of deep convection and

evidently reduces the wet moisture bias in the free

troposphere, resulting in a large reduction in pre-

cipitation bias (Fig. 3j).

To quantify the possible impact of excessive latent

heat flux on the moist bias in the simulated PBL, we also

compare the vertical shape (gradient) of profiles by

normalizing by their respective values at the surface to

better understand the behavior of the PBL schemes

under similar surface forcing. Most of the differences

shown in Fig. 5 are found in the figure with the

FIG. 6. As in Fig. 5, but for heights ranging from 0 to 1 km.
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normalized profiles (not shown) as well. All the schemes

mix the PBLmore effectively than is observed, and they

deliver more moisture and MSE to the top of the PBL.

This suggests the excess moisture and precipitation bias

is likely related to problems in the PBL schemes in ad-

dition to the excess fluxes from the surface schemes.

c. Bias diagnosis based on nudging tendency analysis

A perfect SL and PBL scheme would provide correct

mean profiles and would accurately predict the vari-

ability. However, the results presented in section 3b

from free-running simulations show large moisture

biases among different schemes in both the PBL and

free troposphere. We conduct another set of simula-

tions with the same set of PBL, SL, and SC schemes but

nudge the water vapor to NCEP FNL data (tempera-

ture and wind are not nudged), with a nudging time

scale of 12h. Using YSU withMM5 as an example, Fig. 7

shows a comparison of vertical profiles in corresponding

simulations completed with or without moisture nudging.

It is not surprising that the moisture nudging only slightly

modifies the potential temperature profile but signifi-

cantly removes the overpredicted water vapor in both the

PBL and free troposphere found in the free-running

simulations. In the nudged simulation, the air tempera-

ture above an altitude of 3km is slightly lower than that in

the free run, mainly resulting from the suppressed deep

convection. Meanwhile, positive biases in MSE and rel-

ative humidity are also corrected in the moisture-nudging

simulations. Consequently, the overprediction of pre-

cipitation in the free-running simulation, including the

rainfall episode around 23 November, is dramatically

reduced when moisture nudging is applied in the simu-

lations (see Fig. 4).

FIG. 7. As in Fig. 5, but for simulations using the YSU–KF–MM5 scheme with and without moisture nudging.
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Diagnosing how the moisture-nudging process in-

fluences the model behavior helps identifying model

biases and yields better understanding of the moistening

process found in the free-running simulations. Figure 8

shows the time–height variation of perturbed moistening

tendencies (the rate of moisture increase) associated with

nudging to the observations, from the PBL scheme and

from the cumulus parameterization, respectively, during

November 2011. From Fig. 8 (center; PBL moisture

tendency) we see the moistening from the PBL scheme

takes place throughout the entire period in all three PBL

schemes. While the moistening is almost uniformly dis-

tributed vertically and confined below the PBL top

(;0.8km) in the MYJ scheme, maximum moistening

occurs near the top of the PBL in the UW and YSU

schemes. With the same PBL scheme (UW), moistening

FIG. 8. Time–height variation of perturbation moisture-nudging terms and moisture tendency (kgm22 day21) contributed by PBL and

convection processes, respectively, averaged over the Maldives in November 2011 for simulations with different schemes. The black

curves in the center are the simulated PBL heights based on the definition in different PBL schemes.
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is larger and extends deeper vertically when using the

MM5 rather than in the Eta Model SL scheme because

the MM5 scheme tends to bring more water vapor from

the sea surface to the bottom of the boundary layer

(Figs. 8g,h). The convective parameterization tends to

dry the atmosphere from the surface to the top of the

troposphere by transporting water vapor from the PBL

into the free troposphere and converting water vapor to

liquid water and precipitation, usually with maximum

drying near the PBL top. In contrast to the PBL moist-

ening throughout the entire period, Fig. 8 (right; con-

vection moisture tendency) shows two convection drying

episodes, corresponding to two deep convection events,

one around 7 November and another around 22 Novem-

ber, in which a strong moisture drying extends from the

surface to upper levels in the free troposphere. There are

no significant differences in convective moisture ten-

dency among the different PBL and SL schemes because

moisture fields have already been nudged to reanalysis

when a convection scheme is called in the model.

However, it is surprising that the second episode of strong

deep convection is missed in the simulations completed

with the CuP shallow convection scheme, even when the

nudging is applied, which is the main cause of the deg-

radation of the precipitation in the MYJ–CuP–Eta

nudging simulation. One likely explanation is that there

are sufficient shallow clouds to vent themoisture from the

PBL and limit the formation of the deep convection.

The nudging tendency term is proportional to the

difference between the model-simulated moisture and

that from reanalysis and works to reduce the deviation

of the former from the latter. The moisture nudging

artificially removes (adds) the overpredicted (under-

predicted) water vapor in the free-running simulations

so that the moisture distribution and profile after being

adjusted can match that in the reanalysis data. The

nudging moisture tendency could be used to quantify

the model moisture bias in the free runs. From Fig. 8

(left) we can see that the nudged moisture tendency is

negative within the PBL in all five simulations with

FIG. 9. Monthly mean difference of (left) LH flux, (center) wind speed, and (right) 2-m moisture between free and moisture-nudging

experiments with different schemes as shown in Table 1.
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different parameterization schemes, with maximum

values around 26–28 November, which indicates all

PBL schemes significantly overpredict moisture within

the PBL. Moisture nudging affects not only the avail-

ability and vertical distribution of water vapor but also

the evolution of diabetic heating, consequently modi-

fying the circulation, precipitation, and surface winds

and fluxes. Figure 8 also shows the large negative

moisture tendency due to the nudging process aloft in

the free troposphere around 7 November, which re-

moves water vapor and effectively reduces the wet

precipitation bias (Fig. 4) for this event by enhancing

the impact of dilution of the cumulus (Kain 2004).

The cause of the moisture bias in the free-running

simulation can be better understood by examining dif-

ferences in its results with the nudged simulations of

surface LH flux, wind speed, and moisture (Fig. 9). Re-

gardless of the model configuration, the nudging of the

free-tropospheric moisture reduces LH fluxes over much

of the domain and in particular the areas north and south

of the main region of precipitation [red areas in Fig. 9

(left)]. This difference in LH fluxes is more or less re-

flected in the differences in surface wind speed as well

(Fig. 9, center), both of which are overpredicted. The

amount of near-surface moisture (Fig. 9, right) in the

middle of the domain is also overpredicted in the free-

running simulations. Overall, the nudging is found to

reduce the precipitation, wind speed, and near-surface

moisture. Results are less clear-cut for the LH flux, where

there are large areas where the flux either increases or

decreases in the simulations. Within WRF surface layer

schemes, the surface LH flux is proportional to both the

saturation deficit near the surface and the wind speed

(Fairall et al. 1996). The fact that the nudging decreases

surface LH flux over some areas even when it is in-

creasing the saturation deficit (by decreasing the low-

level moisture) suggests that the excess surface fluxes are

related to the overestimate of surface wind speed. It is

important to note that the wind speed across the center of

the domain (within a few degrees of the equator) is

largely unchanged between the two sets of the simula-

tions. These areas are also associated with an increase in

the surface LH fluxes in the nudged simulations [blue

regions in Fig. 9 (left)]. In these areas, the overestimate of

near-surface moisture in the free runs likely leads to the

underprediction of surface LH flux in the center of the

domain. These results also suggest that the free runs

overestimate the low-level wind speed, and hence con-

vergence near the equator, which when coupled with the

excess near-surface moisture leads to the significant

overprediction of the precipitation across most of the simu-

lationsdomain.While these results are generally independent

of model configuration, the impact of the nudging shown in

Fig. 9 is smallest for the MYJ PBL parameterization as well

as the Eta Model SL parameterization.

d. Diagnosis of surface evaporation

Surface evaporation or latent heat flux is mainly

constrained by the wind speed, moisture exchange co-

efficient, and near-surface air humidity in this study

FIG. 10. Surface LHflux vs wind speed based on fourR/VRoger Revelle cruise tracksmarked in

four colors in inset.
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FIG. 11. Surface LH flux vs wind speed based on (a) MERRA data and (b)–(f) WRF simulations with different

schemes. Fitting curves for observation (black) and each simulation (magenta) are also included.
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because water is always abundant over the ocean surface

and SST is prescribed from reanalysis data. To diagnose

the source of bias in surface LH and its impact on the

vertical water vapor transport in different schemes, we

evaluated the simulated LH–wind speed relationships

against the observations from near-surface meteorology

measurements and surface LH fluxes estimates from the

R/V Roger Revelle during the AMIE/DYNAMO field

campaign. Figure 10 shows the relationship of LH flux

versus wind speed along four R/V Roger Revelle cruise

tracks (marked in four colors in the inset), and Fig. 11

shows the corresponding results from MERRA and our

WRF simulations, in which fitted curves from observa-

tions are included for comparison.

Our results indicate that the biases of LH flux in our

simulations are contributed by the bias ofmodel-predicted

wind speed and/or LH–wind speed relationship. Similar

bias in a high-resolution WRF simulation (500-m grid

spacing) in the same region is also reported by Feng et al.

(2015), where enhanced LH flux is observed during the

passage of precipitation-driven cold pools.When the same

COARE version 3.0 bulk flux algorithm used for the R/V

Roger Revelle data is applied to the model output, they

found that the simulated surface LH flux is reduced by

;42%compared to themodel output. These results suggest

that 1) the model bias can be partly related to variations in

the way that the fluxes were calculated and 2) model reso-

lution is not the primary cause of the LH flux bias seen in

our results. Here we provide a few highlights from the

comparisons as summarized in Table 3 and Fig. 11.

1) The LH–wind speed relationship in MERRA agrees

with in situ observations quite well. The averaged LH

flux as shown in Table 3 is underestimated by ap-

proximately 8% in MERRA, contributed by the

underestimated mean and skewness of the near-

surface wind speed, probably due to the coarse

spatial resolution in the reanalysis data.

2) With the same PBL (UW) and convection (KF)

scheme (Figs. 11c,d), the MM5 SL scheme over-

predicts the LH flux by more than 20% when com-

pared against measurements, even though the mean

wind speed is smaller than observed and the skewness

of wind speed is comparable. This is mainly due to its

oversimplified LH–wind speed relationship, resulting

in nearly 10% larger LH flux than that in the Eta

Model scheme. Weaker surface wind (i.e., larger

friction) and larger LH flux in the MM5 scheme in-

dicate stronger exchanges ofmomentumandmoisture

at the atmosphere–ocean interface.

3) With the same SL (Eta Model) and convection (KF)

scheme (Figs. 11b,d), the UWPBL scheme generates

larger LH flux than that in the MYJ PBL scheme by

more than 20%, because of both larger wind speed

and the steeper slope of the LH–wind speed re-

lationship in the UW scheme. The differences in the

LH–wind speed relationship can be traced, in part, to

differences in the vertical mixing in the PBL. Figure 8

indicates that the UW scheme produces larger ver-

tical mixing than the MYJ scheme, which favors

transporting air from aloft with large downward

momentum transport leading to larger surface wind

speeds (Table 3 and Fig. 11). Meanwhile, low-level

moisture is reduced because of stronger PBL mixing

in the UW scheme (Figs. 5 and 6), indicating a larger

ocean–air moisture contrast leading to enhanced

evaporation. With the same MM5 SL scheme, the

YSU PBL scheme, which shows the largest positive

bias (;40%) in LH flux, generates a larger LH flux

than that in UW PBL scheme by 15%, mainly be-

cause of the larger near-surface wind speed associ-

ated with stronger coupling between surface and air

aloft in the nonlocal YSU scheme.

4) With the same PBL and SL scheme (Figs. 11b,f), the

KF-CuP scheme simulates similar magnitude of wind

speed and LH flux as the original KF scheme, which

are slightly smaller than observations, resulting from

the underestimate of wind speed and underestimated

slope of LH flux versus wind speed.

In summary, the Eta Model surface layer scheme pre-

dicts more reasonable LH flux and better simulates the

relationship between the LH and wind speed than the

MM5 scheme, especially when it is coupled with theMYJ

TABLE 3. A summary of mean LH flux and 10-m wind speed from ship measurements and all simulations along the corresponding

ship tracks.

Expt Mean wind speed (m s21) Skewness of wind speed LH flux (Wm22)

Ship obs 4.56 1.54 108.00

MERRA 3.52 1.12 100.90

MYJ–KF–Eta 3.30 0.76 94.98

UW–KF–Eta 3.82 1.92 120.02

UW–KF–MM5 2.93 1.55 130.03

YSU–KF–MM5 4.14 2.34 149.50

MYJ–CuP–Eta 3.32 1.06 93.34
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scheme. When the Eta Model surface layer scheme is

applied, the MYJ PBL scheme predicts a more reason-

able LH–wind speed relationship than the UW scheme.

Shin and Hong (2011) and Xie et al. (2012) found that

the Eta Model SL scheme could produce larger land–air

exchange coefficients and stronger surface fluxes over

continental or coastal regionswhen compared to theMM5

scheme, opposite to the results shown here for conditions

over open ocean areas. This is because the formulas ap-

plied for the parameterization of SL processes are differ-

ent over ocean and land in both schemes. Over the ocean,

the surface roughness z0 (m) is calculated based on

u* (m s21) in the MM5 scheme as follows:

z
0
5

0:0185

9:8
u2

* 1 1:593 1025 . (1)

In the Eta Model scheme, z0 is calculated by the

following:

z
0
5max

�
0:018

9:8
u2

*, 1:593 1025

�
. (2)

The value of u* generally ranges from 0.1 to 0.2ms21

over ocean, whichmeans z0 is within the range from1.83
1025 to 73 1025m. As a result, the additional term (i.e.,

1.59 3 1025m) applied in Eq. (1) can cause a large dif-

ference of z0 even when u* is about the same in the two

schemes. Moreover, larger z0 in the MM5 scheme will

induce larger u* that can in turn produce larger z0 and

thus stronger LH but weaker surface winds as shown in

Fig. 11. This may be responsible for the overestimated

LH at a given wind speed when using the MM5 scheme

over the ocean. Under strong wind conditions, the addi-

tional term [i.e., 1.59 3 1025m in Eq. (1)] has a smaller

impact on z0 because of the larger value of u*. In this case

(e.g., wind speed .12ms21), other factors such as the

differences in the simulated u* values and/or vertical

moisture gradients between the two schemes play more

important roles on the simulated LH, and the Eta Model

scheme could produce larger values of LH than theMM5

scheme, similar to the results found over land (Shin and

Hong 2011; Xie et al. 2012). As a result of this im-

plementation, LH is more sensitive to wind speed when

using theEtaModel scheme than using theMM5 scheme.

4. Conclusions

Based on observations collected during the 2011

AMIE/DYNAMO field campaign and model simulation

results with different spatial resolutions and PBL, SL, and

convection schemes, we reviewed the performance of

various parameterizations that are available in WRF,

version 3.4, for the representation of turbulent mixing.

Comparison of the simulations with observations shows

weaknesses of the model in capturing the characteristics

of PBL processes, the initiation of convection, and intra-

seasonal variability of precipitation over the equatorial

Indian Ocean, and we identify the source of biases by

analyzing the dependence of these biases on PBL and

surface layer schemes.

The results show that PBL and SL parameterizations

have a surprisingly large impact on surface moisture flux,

convective initiation, and precipitation over tropical

oceans. All parameterizations tested tend to overpredict

moisture in the PBL and free atmosphere and conse-

quently produce larger moist static energy and surface

precipitation. The updated shallow convection scheme

KF-CuP tends to suppress the initiation and development

of deep convection and consequently decrease pre-

cipitation over the domain. Moisture nudging tends to

suppress the initiation of convection and reduces the

overprediction of precipitation and provides additional

insight in the behavior of the parameterizations. By an-

alyzing the water vapor nudging tendency and tendencies

from the PBL parameterization, we find that the vertical

transport of water vapor is too active in all of the PBL

schemes used in this study when applied over the ocean

surface where moisture is abundant. This excess moisture

and precipitation bias sustain each other through associ-

ated increased surface winds and LH fluxes. The Eta

Model surface layer scheme predicts more reasonable

LH fluxes and a more realistic LH–wind speed relation-

ship than theMM5 scheme, especially when coupledwith

the MYJ scheme. By reviewing various parameterization

schemes and their coupling in WRF, we identify the

source of bias and weaknesses of the current PBL, SL,

and SC schemes in capturing the characteristics of PBL

and surface layer processes, the initiation of convection, and

intraseasonal variability of precipitation, which could be

used for improving the current implementation of the var-

ious parameterizations.

Simulations and analyses presented in this study were

conducted over the ocean surface, where the moisture is

always abundant, and it features relatively homogenous

surface roughness, albedo, and surface water and energy

fluxes. Hence, this study provides a good opportunity

for better understanding the advantages and disadvan-

tages of the PBL and convection schemes in WRF under

‘‘idealized’’ conditions. However, land–atmosphere–

cloud interactions over land are much more complex

because of the high spatiotemporal variability in surface

water and energy fluxes as consequences of spatial het-

erogeneity in land cover, soil texture, topography, and

human perturbations (e.g., irrigation) and thus warrant

additional research to shed light on how to improve the
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PBL and convection schemes under different climate and

hydrologic regimes. In the near future, we will conduct

similar studies over midlatitude and tropical continental

regions to compare the model behavior with different

parameterizations to investigate the transferability of the

results from this study to other regions and to better

understand the role of land surface heterogeneity in

modulating PBL evolution and shallow convection as

well as the regulation of soil moisture status on surface

water and energy budgets and therefore land–atmosphere–

cloud interactions, with the ultimate goal of improving

land surface, boundary layer, and convection parame-

terizations in climate models.
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