Surface Fluxes for Practitioners Global Ocean Data Assimilation

"OBSERVATIONS"

Accuracy, Global, Near real time, Specified error

W.G. Large National Center for Atmospheric Research Boulder, Colorado

OUTLINE : PART I

- Introduction
- The Ocean Surface Flux Problem
 - air-sea fluxes
 - ice-ocean fluxes
 - air-ice fluxes
- Measurements of Turbulent Air-Sea Fluxes
 - eddy covariance
 - inertial dissipation
- Bulk Aerodynamic Formulae
 - bulk flux estimates

OUTLINE PART II

- Satellite Flux Estimates
 - wind stress
 - radiation
 - precipitation
- A Merged Flux Climatology (NWP Re-analyses)
 - corrections
 - mean balances
- Variability of Ocean Surface Fluxes
 - annual cycle
 - interannual to decadal

1. Introduction

As with WGASF, primarily concerned with :

- Q, the net surface heat flux into the ocean
 - F, the net surface freshwater flux into the ocean

 $\tau = (\tau_{\lambda}, \tau_{\phi})$, the horizontal stress vector

WGASF: Intercomparison and validation of oceanatmosphere energy flux fields. Joint WCRP/SCOR Working Group on Air-Sea Fluxes, WCRP-112, WMO/TD-No. 1036, November 2000.

Other Ocean Surface Fluxes of Interest

- Gas fluxes (O₂, CO₂, CFCs,)
- Kinetic Energy = $\tau \cdot \mathbf{U}_{\mathbf{0}}$
- Buoyancy = $B_0 = g (\alpha Q + \beta F)$ [turbulence]
- Density = $D_o = -(\alpha Q + \beta F)$ with surface density \rightarrow water mass transformation

The Global Constraints (the good news)

- The climatological net heat flux into the global ocean is ~0 W/m², to within order 1 W/m².
- The corresponding net freshwater flux is also near zero, to within order 1 mg/m²/s. (1 mg/m²/s ~0.085mm/day ~.25mm/mo ~3cm/year) (1 mg/m²/s freshwater and 1 W/m² heat flux produce about the same density (buoyancy) flux.)

2.0 The Ocean Surface Flux Problem (the bad news)

- Uncertainty explodes at smaller scales
- Not directly Observed
- Must work at height above the surface
- High latitude sea-ice
- Proliferation of Data Sets

Horizontally homogeneous flow with U aligned downstream :

$$\rho \,\partial_t U = \partial_z \tau(z) - \partial_x P_o$$

Geostrophic winds aloft, U_g ρ f $U_g = \partial_n P_o$; $U_g = 1.3 U$ @ 16° rotation Steady Wind Percent error $\delta = -130$ h f sin(16°) ($\rho U / \tau_o$) $= -4s^{-1} h / U$ Falling Wind ?????? Rising Wind ??????

 $\{Q, F, \tau\}$

$4 \rightarrow 9$ fields

- $Q = f_0 Q_{as} + f_i Q_{io}$
- $F = f_0 F_{as} + f_i F_{io}$

- $\tau = f_o \tau_{as} + f_i \tau_{io}$
 - $f_0 = 1 f_i$

2.1 Air - Sea Fluxes : $2 \rightarrow 9$ fields $Q_{as} = Q_{s} + Q_{L} + Q_{E} + Q_{H} + Q_{P}$ $\downarrow \rightarrow -\Lambda_{f} P_{s}$ $\downarrow \rightarrow Q_{A} - \varepsilon \sigma (SST)^{4}$ $\downarrow \rightarrow Q_{I} [0.6 (1 - \alpha_{dr}) + 0.4 (1 - \alpha_{df})]$ $F_{as} = E + P$ $\downarrow \qquad \downarrow \qquad P_R + P_S$ $\rightarrow Q_E \Lambda^{-1}$

Ice - Ocean Fluxes :

$$Q_{\rm F} = -\Lambda_{\rm f} F_{\rm F} = \rho_{\rm o} c_{\rm p} (T_{\rm f} - SST) \Delta_1 / \Delta t$$

Other melt/freeze terms are ice modeling issues, including the physics that sea water freezes at lower temperature, T_{f} than it melts.

Ocean model numerics are known to produce spurious temperatures much lower than freezing,

Q	Q _{as}	Q _S	Q _I		SW↓
			α		albedo
		Q _L	QA		LW↓
			SST _S		SkinSST
		Q _E *		q	humidity
		Q _H *		θ	temp
τ	τ_{as}^{*}			U	wind
				SLP	pressure
				SST_B	BulkSST
F	F _{as}	Р	P _R		Rain
			P _S		Snow
			R		Runoff
		E*			Evap

3. Measuring Turbulent Air-Sea Fluxes

Monin - Obukhov Similarity Theory for turbulent flow in the atmospheric surface layer above the direct influence of the boundary and below where large scale synoptic features influence the flow. Over the ocean the layer is ($\sim 1m < z < \sim 100m$)

HYPOTHESIS : The turbulence knows only the surface fluxes and height, z.

Dimensional analysis \rightarrow the turbulent scales : $u^* u^* = |\tau| / \rho$ $u^* \theta^* = Q_H / (\rho C_p)$ $u^* q^* = E / \rho = Q_E / (\rho \Lambda)$

Dimensional analysis \rightarrow the turbulent scales : $u^* u^* = |\tau| / \rho$ $u^* \theta^* = Q_H / (\rho C_n)$ $u^* q^* = E / \rho = Q_E / (\rho \Lambda)$ $L = u^{*3} / (\kappa B_0)$ $B_{0} = g u^{*} [\theta^{*} / \theta_{v} + q^{*} / (q(z) + .608^{-1})]$ $\theta_{v} = \theta(z) (1 + .608 q(z))$ $\zeta = z/L$

$$\begin{aligned} \kappa \ z \ \partial_z U \ / u^* &= \phi_m(\zeta) : \phi_m(0) = 1; \ \kappa = 0.4 \\ \kappa \ z \ \partial_z \theta \ / \theta^* &= \phi_s(\zeta) : \phi_s(0) = 1 \\ \kappa \ z \ \partial_z q \ / q^* &= \phi_s(\zeta) \end{aligned}$$
$$\phi_m &= \phi_s \ \sim 1 + 5 \ \zeta \ ; \qquad \zeta > 0 \quad \text{stable} \\ \phi_m^4 &= \phi_s^2 \ \sim \ (1 - 16 \ \zeta)^{-1} \quad ; \quad -1 < \zeta < 0 \quad \text{unstable} \end{aligned}$$

"Logarithmic Profiles"

 $U(z) = SSU + u^{*}/\kappa \left[\ln(z/z_{0}) - \psi_{m}(\zeta) \right]$

- $\theta(z) = SST + \theta^*/\kappa [\ln(z/z_{\theta}) \psi_s(\zeta)]$
 - $q(z) = SSQ + q^*/\kappa \left[\ln(z/z_q) \psi_s(\zeta) \right]$

$$\psi(\zeta) = \int_{O}^{\zeta} [1-\phi(\xi)] \xi^{-1} d\xi$$

 $z \rightarrow 0$????? (ln (z+z_0)/z_0) ???

3.1 Eddy Covariance "semi direct" $x = \{u, \theta, q\}$

$$u^* x^* = \int_{k1}^{k2} \Phi_{wx}(k) \, dk = \int_{f1}^{f2} \Phi_{wx}(f) \, df$$

Issues - non-zero mean $\overline{W} \to \overline{W} \overline{X}$ contribution

3.1 Eddy Covariance "semi direct" $x = \{u, \theta, q\}$

$$u^* x^* = \int_{k1}^{k2} \Phi_{wx}(k) \, dk = \int_{f1}^{f2} \Phi_{wx}(f) \, df$$

Issues - non-zero mean $\overline{W} \to \overline{W} \overline{X}$ contribution
 $-\Phi_{wx}(f)$ are universal in f d/U space, because eddies
must fit within the distance, d, above the surface.

- f2 \geq 30U/d to capture all the covariance

- f1 \leq .0004U/d to capture the low frequency, which is highly scattered and can transcend flow regimes.

- fixed f1 and f2 \rightarrow

Universal Cospectra

3.2 Inertial Dissipation

TKE budget, dissipation = production - buoyancy $\epsilon = u^{*2} \partial_z U - B_o$ $u^{*3} = \kappa z \epsilon / [\phi_m(\zeta) - \zeta]$

3.2 Inertial Dissipation

TKE budget, dissipation = production - buoyancy $\epsilon = u^{*2} \partial_z U - B_o$

$$u^{*3} = \kappa z \varepsilon / [\phi_m(\zeta) - \zeta]$$

Similarly, the scalar variance budgets, for N_{θ} and N_{q} the dissipation of scalar fluctuations, give

$$\theta^{*2} u^* = \kappa z N_{\theta} / \phi_s(\zeta)$$

$$q^{*2} u^* = \kappa z N_q / \phi_s(\zeta)$$

Kolmogoroff Inertial (-5/3) Subrange

- Scales faster (smaller) than large scale energy sources, and slower (larger) than dissipation range.
- Measure spectra of scalar fluctuations and of downstream velocity, which in this range depend only on the eddy size (wavenumber, $k = 2\pi f / U$, byTaylor's frozen turbulence hypothesis), and the total dissipation, ε .

$$\begin{split} \Phi_{\rm u}({\rm f}) &= {\rm K}' \ \epsilon^{2/3} \ (2\pi/{\rm U})^{-2/3} \ {\rm f}^{-5/3} \\ \Phi_{\rm \theta}({\rm f}) &= \beta_{\rm \theta} \ {\rm N}_{\rm \theta} \ \epsilon^{-1/3} \ (2\pi/{\rm U})^{-2/3} \ {\rm f}^{-5/3} \\ \Phi_{\rm q}({\rm f}) &= \beta_{\rm q} \ {\rm N}_{\rm q} \ \epsilon^{-1/3} \ (2\pi/{\rm U})^{-2/3} \ {\rm f}^{-5/3} \\ \text{Empirically K}' &= 0.55, \ \beta_{\rm \theta} &= \beta_{\rm q} = 0.80 \\ .2 \ {\rm U} / z \ < \ {\rm f} \ < \ 20 {\rm H} z \\ 5 \ z \ > \ \lambda \end{split}$$

4. Bulk Aerodynamic Formulae

$$\begin{split} C_{\rm D} &= ({\rm u}^*/\Delta {\rm U})^2 & ; \ C_{\rm E} &= \sqrt{C_{\rm D}} \, q^*/\,\Delta q \\ &= (\kappa/[\ln(z/z_{\rm o})-\psi_{\rm m}])^2 & ; \ &= \sqrt{C_{\rm D}} \, \kappa/[\ln(z/z_{\rm q})-\psi_{\rm s}] \\ C_{\rm DN} &= (\kappa/\ln(10m/z_{\rm o}))^2 & ; \ C_{\rm EN} &= \sqrt{C_{\rm DN}} \, \kappa/\ln(z/z_{\rm q}) \end{split}$$

4. Bulk Aerodynamic Formulae

$$C_{\rm D} = (u^*/\Delta U)^2 \qquad ; \ C_{\rm E} = \sqrt{C_{\rm D}} \ q^*/\Delta q$$
$$= (\kappa/[\ln(z/z_{\rm o})-\psi_{\rm m}])^2 \quad ; \qquad = \sqrt{C_{\rm D}} \ \kappa/[\ln(z/z_{\rm q})-\psi_{\rm s}]$$
$$C_{\rm DN} = (\kappa/\ln(10m/z_{\rm o}))^2 \qquad ; \ C_{\rm EN} = \sqrt{C_{\rm DN}} \ \kappa/\ln(z/z_{\rm q})$$

Use profile equations to eliminate roughness lengths : Eg. $C_{DN} = C_D (1 + (\sqrt{C_D}/\kappa) [\ln(10m/z) + \psi_m])^{-2}$ $C_D = C_{DN} (1 - (\sqrt{C_{DN}}/\kappa) [\ln(10m/z) + \psi_m])^{-2}$

Formulating Bulk Transfer Coefficients

$$U_N^2 = u^{*2}/C_{DN} = (C_D/C_{DN}) \Delta U^2$$

$$\theta_N = u^* \theta^*/(C_{HN} U_N) = (C_D/C_{DN}) (\Delta U/U_N) \Delta \theta$$

$$q_N = u^* q^*/(C_{EN} U_N) = (C_D/C_{DN}) (\Delta U/U_N) \Delta q$$

A Multiple Regression Formulation

$$u^{*2} = a_0 + a_1 U_N + a_2 U_N^2 + a_3 U_N^3 + \dots$$

$$C_{DN} = a_1 / U_N + a_2 + a_3 U_N$$

$$a_1 = .00270;$$
 $a_2 = .000142;$ $a_3 = .0000764$

 $z_0 = 10m e^{-\kappa/\sqrt{CDN}}$

Roughness Length Formulations

Flow over Smooth surface :

$$z_0 u^* / v = \alpha_s = 0.11$$

Flow over waves governed solely by u* and gravity : $z_0 \ g \ / \ u^{*2} \ = \alpha_c = \ 0.0144$

???? Add
$$z_0 = \alpha_s v / u^* + \alpha_c u^{*2} / g$$

Versus $z_0 = 10m e^{-\kappa/\sqrt{CDN}}$

Stanton and Dalton Numbers

$$C_{\rm E} = \sqrt{C_{\rm D}} q^* / \Delta q$$
 ; $C_{\rm H} = \sqrt{C_{\rm D}} \theta^* / \Delta \theta$

$$C_{EN} = \sqrt{C_{DN} \kappa / \ln(z/z_q)}$$
; $C_{HN} = \sqrt{C_{DN} \kappa / \ln(z/z_\theta)}$

$$\kappa/\ln(z/z_q) = 0.0346$$

 $\kappa/\ln(z/z_\theta) = 0.0327$ unstable
 $= 0.0180$ stable

Linear regression of heat flux on $U_N \Delta \theta_N$

 $u^*\theta^*$

= 0.00075 U_N θ_N + 0.002 K W/m² stable = 0.00100 U_N θ_N + 0.003 K W/m² unstable

 $C_{HN} \rightarrow \infty$ as $U_N \theta_N \rightarrow 0$

Time Series

Fetch

Fetch (km)	Data hours	Mean	Sigma	Min	Max
(KIII) 10 20	200	1 1 /	10	75	2.02
10 - 20	200	1.14	.18	./3	2.03
20-100	54	1.10	.22	.73	1.87
100-200	85	1.13	.24	.64	1.76
∞	291	1.14	.21	.62	1.75
all	590	1.13	.21	.62	2.03

Traditional : $F_G = U_G (\alpha_G P_G(z) - G_o)$

Surface saturation : $G_o = \alpha_G P_G(z)$

Empirical Piston Velocity : $U_G = v_G / \Delta Z$ a function of gas, wind speed, bubbles Traditional : $F_G = U_G (\alpha_G P_G(z) - G_o)$

Surface saturation : $G_o = \alpha_G P_G(z)$

Empirical Piston Velocity : $U_G = v_G / \Delta Z$ a function of gas, wind speed, bubbles

Atmospheric turbulence :

 $F_G = \kappa \sqrt{C_D} [\ln(z/z_G) - \psi_s]^{-1} U(z) (G(z) - \alpha_G P_G(z))$

Empirical z_G , but U(z) and $\sqrt{C_D}$ already account for first and second order wind speed dependencies.

4.1 Bulk Flux Estimates $X = \{\theta, q\}$

- Given : $\mathbf{U}(\mathbf{h}_{u}), \Delta \mathbf{U} = |\mathbf{U} \mathbf{U}_{o}|; \ \theta(\mathbf{h}_{\theta}), \ q(\mathbf{h}_{q}), \ \text{SST},$ $\Delta X, \ \text{SSQ} = 765638 \ e^{(-5107\text{K/SST})}$
- ISSUE !!!! SST (U_o)

assimilate observations ????

take from model ?????

ignore ?????

4.1 Bulk Flux Estimates $X = \{\theta, q\}$

Given : $U(h_u)$, $\Delta U = |U - U_o|$; $\theta(h_\theta)$, $q(h_q)$, SST, ΔX , SSQ= 765638 e^(-5107K/SST)

Initialize: $\theta_v = \theta(h_\theta) (1 + .608q(h_q))$

U_N =|Δ**U**|; ζ=0; h = z_q C_D=C_{DN}(U_N); C_H=.0327 √C_D; C_E=.0346 √C_D

$$u^* = \sqrt{C_D U_N}$$
; $x^* = (C_X / \sqrt{C_D}) \Delta X$;

Iteration loop

1. Stability : $\zeta_x = g h_x u^{*-2} [\theta^*/\theta_v + q^*/(q(h) + .608^{-1})]$

2. Height shifts :

 $U_{\rm N} = |\Delta \mathbf{U}| \{1 + (\sqrt{C_{\rm D}}/\kappa) [\ln(z/10m) - \psi_{\rm m}(\zeta_{\rm u})] \}^{-1}$

 $X(z_u) = X(z_x) - (x^*/\kappa) \left[\ln(z_x/z_u) + \psi_x(\zeta_u) - \psi_x(\zeta_x) \right]$

Iteration loop

- 1. Stability : $\zeta_x = g h_x u^{*-2} [\theta^*/\theta_v + q^*/(q(h) + .608^{-1})]$
- 2. Height shifts :
 - $U_{\rm N} = |\Delta \mathbf{U}| \{1 + (\sqrt{C_{\rm D}}/\kappa) [\ln(z/10m) \psi_{\rm m}(\zeta_{\rm u})] \}^{-1}$
 - $X(z_u) = X(z_x) (x^*/\kappa) \left[\ln(z_x/z_u) + \psi_x(\zeta_u) \psi_x(\zeta_x) \right]$
- 3. Coefficient update : $C_{DN}(U_N)$; $C_{XN}(C_{DN}, \zeta_u)$ $C_D(z_u, \zeta_u) = C_{DN} \{1 + [\ln(z_u/10m) - \psi_m(\zeta_u)]\}^{-2}$ $C_X(z_u, \zeta_u) = C_{XN} (\sqrt{C_D}/\sqrt{C_{DN}}) \{1 + [\ln(z_u/10m) - \psi_m(\zeta_u)]\}^{-1}$

Iteration loop

- 1. Stability : $\zeta_x = g h_x u^{*-2} [\theta^*/\theta_v + q^*/(q(h) + .608^{-1})]$
- 2. Height shifts :
 - $U_{\rm N} = |\Delta \mathbf{U}| \{1 + (\sqrt{C_{\rm D}}/\kappa) [\ln(z/10m) \psi_{\rm m}(\zeta_{\rm u})] \}^{-1}$
 - $X(z_u) = X(z_x) (x^*/\kappa) \left[\ln(z_x/z_u) + \psi_x(\zeta_u) \psi_x(\zeta_x) \right]$
- 3. Coefficient update : $C_{DN}(U_N)$; $C_{XN}(C_{DN}, \zeta_u)$ $C_D(z_u, \zeta_u) = C_{DN} \{1 + [\ln(z_u/10m) - \psi_m(\zeta_u)]\}^{-2}$ $C_X(z_u, \zeta_u) = C_{XN} (\sqrt{C_D}/\sqrt{C_{DN}}) \{1 + [\ln(z_u/10m) - \psi_m(\zeta_u)]\}^{-1}$ 4. Update scales : $u^* = \sqrt{C_D} |\Delta \mathbf{U}|$; $x^* = (C_X/\sqrt{C_D}) \Delta X$
- 5. Loop (twice) to 1, with $h = h_x = h_u$

Compute Bulk Fluxes :

$$\tau = \rho \ u^{*2} \ (\Delta \mathbf{U} \ / |\Delta \mathbf{U}|)$$
$$Q_{\mathrm{H}} = \rho \ C_{\mathrm{p}} u^{*} \theta^{*}$$
$$Q_{\mathrm{E}} = \Lambda \mathbf{E} = \rho \ \Lambda u^{*} q^{*}$$
$$K\mathbf{E} = \tau \cdot \mathbf{U} \neq m_{0} u^{*3}$$

End of Part I

Linear regression : $3 < U_N < 10 \text{ m/s}; 10^3 \text{ C}_{DN} \sim 1.15$ $10 < U_N < 25 \text{ m/s}; 10^3 \text{ C}_{DN} = .5 + .065 \text{ U}_N$ $2 < U_N < 25 \text{ m/s}; \text{ larger offset, smaller slope}$

depending on the data distribution.

FLUXES		Components		Bulk	
Q					Net Surface Heat Flux
	Q_{as}				Air-Sea Heat Flux
		Q_S			Net Solar Radiation
			Q_I		Solar Insolation
			a		Solar Albedo
		Q_L			Net Longwave Radiation
			Q_A		Downwelling Longwave
			SST,		Skin SST
		Q_E^*			Latent Heat Flux
		Q_H^*			Sensible Heat FLux
F					Net Surface Freshwater Flux
	F_{as}				Air-Sea Freshwater Flux
		Р			Total Precipitation
			P_R		Rainfall
			P_{S}		Snowfall
		E^*			Evaportation
		R			Continental Runoff
$\vec{\tau}$					Surface Wind Stress
	$\tau_{as}^{\rightarrow *}$				Air-Sea Wind Stress
				$U(\vec{h})$	Wind Vector
				$t_a(h)$	Air Temperature
				$q_a(h)$	Air Specific Humidity
				P,	Atmospheric Pressure
				SST_b	Bulk SST
				รรีบ	Sea Surface Current

Table 1: Poliferation of air-sea flux fields.