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Emergent constraints are quantities which are observable from current mea-

surements and have skill predicting future climate. This study explores 19

previously-proposed emergent constraints related to equilibrium climate sen-

sitivity (ECS, the global-average equilibrium surface temperature response to

CO2 doubling). Several constraints are shown to be closely related, empha-

sizing the importance for careful understanding of proposed constraints. A

new method is presented for decomposing correlation between an emergent

constraint and ECS into terms related to physical processes and geographical

regions. Using this decomposition, one can determine whether the processes

and regions explaining correlation with ECS correspond to the physical ex-

planation offered for the constraint. Shortwave cloud feedback is generally

found to be the dominant contributor to correlations with ECS because it is

the largest source of inter-model spread in ECS. In all cases, correlation results

from interaction between a variety of terms, reflecting the complex nature of

ECS and the fact that feedback terms and forcing are themselves correlated

with each other. For 4 of the 19 constraints, the originally-proposed explana-

tion for correlation is borne out by our analysis. These 4 constraints all pre-

dict relatively high climate sensitivity. The credibility of 6 other constraints

is called into question due to correlation with ECS coming mainly from un-

expected sources and/or lack of robustness to changes in ensembles. Another

6 constraints lack a testable explanation and hence cannot be confirmed. The

fact that this study casts doubt upon more constraints than it confirms high-

lights the need for caution when identifying emergent constraints from small

ensembles.
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1. Introduction31

How much will our greenhouse-gas emissions warm our planet? This is a defining question32

of our time. The magnitude of this warming is usually characterized in terms of the equilibrium33

climate sensitivity (ECS), which is the global-average surface temperature response to doubling34

CO2 from pre-industrial conditions and letting the planet return to equilibrium. Because the plan-35

etary response to future changes in atmospheric composition is difficult to determine based on36

observations of past and current climate (Collins et al. 2013), ECS is often estimated using global37

climate models (GCMs). Despite its importance, predictions of ECS from different GCMs vary by38

a factor of 2 (Flato et al. 2013) and inter-model spread in ECS has not decreased substantially over39

time (Charney and Coauthors 1979; Knutti and Hegerl 2008; Andrews et al. 2012; Knutti et al.40

2017). Unsurprisingly, this continued uncertainty has led to a desire to identify models which are41

more trustworthy. A natural way to do this is to assume that models which more accurately repro-42

duce the current climate are more likely to capture its changes correctly. Unfortunately, models43

which perform well for some metrics may perform poorly for others (Gleckler et al. 2008), cli-44

mate predictions from skillful models do not always agree (Waugh and Eyring 2008), and ability45

to reproduce current climate does not necessarily imply predictive skill. Thus another popular46

approach (which is the focus of this paper) is to identify quantities in the current climate which47

have skill at predicting future changes in GCMs. Strength of correlation between predictor and48

predictand across an ensemble of GCMs is typically used to measure the explanatory power of a49

potential relationship. Observed values of current-climate predictors can then be used to choose50

which GCM predictions are most credible. These current-climate predictors are commonly called51

emergent constraints.52
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One problem with emergent constraints is that large inter-model correlations between current-53

climate and future-climate quantities are expected by chance in multi-model databases (Masson54

and Knutti 2013; Caldwell et al. 2014). As a result, emergent constraints without a solid physical55

basis should be viewed with skepticism. Unfortunately, most emergent constraints in the published56

literature lack a satisfying physical explanation. This is understandable because the climate system57

is complex and difficult to distill into simple physical relationships. Identifying these potential58

emergent constraints is an important and natural first step towards uncovering real constraints.59

Since the majority of recently-proposed emergent constraints imply more severe sensitivity to60

greenhouse gases (Klein and Hall 2015), evaluating the credibility of predictions from emergent61

constraints has significant societal importance.62

The goal of this paper is to evaluate the credibility and independence of previously-published63

emergent constraints. Our sources of data are described in Sect. 2 and the constraints we test are64

introduced in Sect. 3. Sect. 4 provides a short primer on statistical significance of correlations65

before the independence of these emergent constraints is investigated in Sect. 5. In Sect. 6, a new66

method for decomposing correlation between ECS and an emergent constraint is introduced and67

used to understand the physical mechanisms underpinning the success of each tested constraint.68

Discussion and conclusions follow in Sect. 7.69

2. Data70

Model output used in this paper comes from Phase 3 and 5 of the Coupled Model Intercompar-71

ison Project (hereafter CMIP3 and CMIP5). These intercomparisons have been instrumental in72

making output from a variety of world-class GCMs readily available to the public (Meehl et al.73

2007; Taylor et al. 2012). Effective radiative forcing values (which include not just the direct74

effect of CO2 doubling, but also the impact of all responses on timescales faster than the global-75
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average surface temperature response) for CMIP3 models are taken from Table 1 of Dufresne and76

Bony (2008). CMIP3 process-level feedback values are taken from Table 1 of Soden and Held77

(2006). For CMIP 5 models, both forcing and feedback information are taken from Table 1 of78

Caldwell et al. (2016). ECS is then calculated from forcing F and net feedback values λ using the79

equilibrated top-of-atmosphere (TOA) response to a radiative forcing perturbation:80

ECS =
−F
λ

. (1)

Cloud feedbacks in the tables used for CMIP3 and CMIP5 models were computed using the81

adjusted cloud radiative forcing technique (Soden et al. 2004, 2008; Shell et al. 2008). Feedback82

terms unrelated to clouds were computed by converting the relevant physical quantities into TOA83

radiative perturbations using radiative kernels (Held and Soden 2000; Soden et al. 2008; Shell84

et al. 2008). For CMIP3, kernels were simply multiplied by the net change in the relevant physical85

quantity from Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios86

(SRES) A1B simulations and normalized by global-average surface warming to obtain feedback87

values. For CMIP5 data, Soden et al. (2008) kernels were used to compute radiative perturba-88

tions (with respect to contemporaneous pre-industrial control climatologies) for each year of the89

150 year long abrupt4xCO2 simulations. These values were then linearly regressed against cor-90

responding global-averaged changes in surface temperature ∆Ts and feedback values are taken as91

the best-fit slope. This linear regression method was pioneered by Gregory et al. (2004). Forcing92

for CMIP5 models is computed by applying the Gregory method to net TOA radiative imbal-93

ances. CMIP3 forcings are computed following the method of Forster and Taylor (2006), which94

involved computing net feedback from simulations where only CO2 was changed using the Gre-95

gory method, then using this information in conjunction with ∆Ts and TOA radiative imbalance to96

derive effective forcing in SRES A1B simulations.97
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For both CMIP3 and CMIP5 ensembles, the data used in this study are computed without run-98

ning experiments to equilibrium. Armour et al. (2013) and Rose et al. (2014) showed that the99

strength of the net feedback depends on the background climate state. In particular, ECS estimates100

tend to increase as model runs are extended (Williams et al. 2008; Winton et al. 2010; Andrews101

et al. 2012; Andrews et al. 2015). In Supplementary Figure 1 we test the impact of temporal vari-102

ation in net feedback by repeating some of our analysis using just the first 20 years of each 4xCO2103

run, by using just years 21-150, and by using all years between 1 and 150. This figure shows104

that changes in simulation period have little effect on our results. Because net feedback is likely105

to continue changing beyond the 150 years evaluated here, our ECS estimates are probably best106

described as ’effective climate sensitivities’ which are underestimates of the true ECS. In spite of107

the approximate nature of these values, the difference between equilibrium and effective climate108

sensitivity is probably a second-order effect (as suggested by Fig. 2 from Andrews et al. 2015)109

and simulations that would allow us to compute something more akin to ’true’ ECS (e.g. coupled110

2xCO2 simulations extending thousands of years) are not available for most CMIP5 models.111

ECS values from CMIP3 simulations run to equilibrium with fixed deep-ocean heat transports112

and a shallow ’slab’ ocean layer are available from Table 8.2 of Randall et al. (2007); these slab113

ocean ECS values are somewhat different (correlation between slab and SRES A1B ECS values114

is 0.63) but switching datasets does not change any of our conclusions. We use SRES A1B values115

for F and ECS to maintain consistency with process-level feedback values, which are not available116

for slab runs.117

CMIP3 and CMIP5 data differ in several important ways. First, water vapor-feedback for CMIP3118

data was computed as the TOA radiative impact of change in specific humidity while for CMIP5119

data water-vapor feedback was computed as the TOA radiative impact of relative humidity (RH)120

change (as advocated by Held and Shell 2012). This change in definition requires compensatory121
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changes in Planck and lapse-rate feedbacks. Using fixed-RH feedbacks has little impact on inter-122

model differences of the Planck feedback (which are small regardless of how they are calculated)123

but reduces the strong anti-correlation between water vapor and lapse rate found in earlier studies.124

Additionally, CMIP3 calculations are done on runs where both greenhouse gases and aerosols are125

varying in time, while CMIP5 simulations test only the impact of greenhouse gas changes. These126

differences in treatment of CMIP3 and CMIP5 model output force us to consider CMIP3 and127

CMIP5 models separately in our decomposition. For further details about how feedbacks, forcing,128

and ECS are calculated for each ensemble, consult the original data sources cited above.129

3. Survey of Potential Emergent Constraints Studied130

In this section we provide a short overview of each of the 19 proposed emergent constraints131

analyzed in this paper. For each constraint, we provide:132

1. a description of the constraint (also summarized in Table 1 for quick reference)133

2. the proposed explanation for why this constraint is a good predictor of ECS134

3. an a priori expectation of the sign and magnitude of correlation between the predictor and135

ECS136

4. an initial evaluation of each constraint based on previous literature and correlations computed137

for this study (summarized in Table 2)138

Throughout the paper, each constraint is identified by the last name of the first author on the first139

study proposing it and constraints are described below in the order they were published.140

Most constraint data used here come directly from the studies introducing that constraint. Be-141

cause not all models used in these previous studies provide information necessary for our de-142

composition, we also provide correlations in Table 2 computed using the subset of models which143
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provide all data we need. Correlation with a subset of models provides a weak sense of the robust-144

ness of our conclusions; testing on new ensembles would provide a more rigorous test. Because145

the first 5 studies we consider were published before CMIP5 data was available, we are able to test146

them against data they weren’t trained on by computing these constraints ourselves. Constraints147

that persist across ensembles are unlikely to occur by random chance, though it is worth mention-148

ing that models used in CMIP5 are modified versions of models used in earlier intercomparisons149

(Pennell and Reichler 2011; Knutti 2010; Knutti et al. 2013, and references therein), so succes-150

sive CMIP ensembles are not themselves completely independent. It is also worth noting that a151

real constraint may be present in one ensemble but not in another if the models used in those two152

ensembles were structurally different. For example, an emergent constraint might be detected in153

CMIP5 but not CMIP3 if it resulted from a process which was added for the first time in CMIP5154

models. Alternatively, a constraint might appear in CMIP3 but not CMIP5 if all developers worked155

to make sure their models satisfied a constraint identified in CMIP3, thus getting rid of all spread156

in that predictor in CMIP5. While both of these scenarios are possible in theory, it is hard to157

imagine how model changes between CMIP3 and CMIP5 would affect any of the 19 constraints158

considered. As a result, we use reproducibility of a constraint across ensembles as a measure of159

their credibility.160

This study gathers together more previously-proposed constraints than any single previous study,161

but it is not itself exhaustive. Other studies were omitted because we weren’t aware of them162

while writing this paper, because they have already been shown to not be robust to changes in163

ensemble (e.g. Klocke et al. 2011), because they propose more constraints than our analysis can164

handle (Huber et al. 2011), or because computing them for CMIP5 models was too technically165

challenging given our available time (Shukla et al. 2006; Webb et al. 2015). Our scope is also166

limited by our focus on ECS, which precludes studies focused on other aspects of the climate167
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system (e.g. Hall and Qu 2006; Cox et al. 2013). Defining emergent constraints relative to specific168

feedbacks rather than to a more integrative quantity like ECS would perhaps be preferable because169

it makes articulating a clear physical explanation for emergent relationships easier (Klein and Hall170

2015). Furthermore, because the climate system is so complex, it is hard to believe that a single171

physical mechanism exists which can explain most of the inter-model spread in climate sensitivity172

(and therefore have very large correlation with ECS). Nonetheless, constraints on ECS are worth173

pursuing because they have the most value at reducing climate change uncertainty. Constraints on174

an individual feedback may be easier to find, but their practical utility is limited if that feedback175

does not project strongly onto ECS. We include Qu et al. (2013) in our study even though it wasn’t176

previously tested on ECS because its mechanism (tropical low clouds) is known to be important for177

ECS. We also tested the constraints proposed in Gordon and Klein (2014) and McCoy et al. (2016),178

which both target high-latitude clouds, but ultimately omitted them from this study because they179

were poorly correlated with ECS; we take this to mean that only constraints on tropical clouds180

have a strong impact on ECS.181

a. Covey182

Covey et al. (2000) and Knutti et al. (2006) suggest that the strength of the hemisphere-averaged183

seasonal cycle of surface temperature may be a good proxy for the sensitivity of the planet to184

greenhouse gas changes because both are climate responses to radiative forcing changes. Models185

with a larger seasonal cycle are therefore theorized to respond have a stronger response to CO2186

increase. Because surface air temperature is controlled by many factors, some (like ocean circula-187

tion) occurring on timescales longer than a single season, this constraint is likely to be relatively188

weak.189
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Because Covey et al. (2000) used data from the CMIP1 archive and Knutti et al. (2006) used data190

from an ensemble of simulations using a single GCM with perturbed tuning parameters, we com-191

pute our own Covey values for CMIP3 and CMIP5 ensembles. For each model, we compute the192

Covey value by taking the northern-hemisphere average of the climatological surface temperature193

difference between January and July minus a similar quantity defined over the southern hemi-194

sphere. Climatological averages are computed using all available data from 20c3m and historical195

simulations (for CMIP3 and CMIP5 models, respectively). As in Covey et al. (2000), no attempt196

was made to correct for drift. As in all computations performed for this paper, computed values197

are the average over all available ensemble members. Sufficient data (including information to198

compute surface temperature, ECS, and F and λ components for our decomposition) was avail-199

able for 12 CMIP3 models and 27 CMIP5 models. Covey et al. (2000) found a correlation of +0.4200

between ECS and their constraint for 17 CMIP1 models; we find correlations of -0.36 and +0.35201

for CMIP3 and CMIP5 data (respectively). Lack of consistency between ensembles suggests that202

the Covey constraint may not be robust, but the size of each sample is small (a problem with all203

statistical studies based on the CMIP archive) and the correlation we are seeking is weak, so false204

negatives are possible. As noted in Fasullo et al. (2015), perturbed physics ensembles (which205

typically have many more samples) may be more appropriate for teasing out small correlations206

like this. Unfortunately, relationships from perturbed physics ensembles often do not generalize207

to other collections of models (Sanderson 2011; Klocke et al. 2011; Masson and Knutti 2013).208

b. Volodin209

Volodin (2008) found a strong correlation in CMIP3 models between ECS and the gradient in210

total cloudiness between the tropics (taken to be between 28◦N to 28◦S latitude) and southern211

midlatitudes (between 36◦S to 56◦S) for years 1980-2000. He hypothesized that cloud response212
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to climate change may be governed by the same mechanisms that cause cloud fraction to decrease213

with increasing sea surface temperature (SST) as one moves equatorward. This means that models214

with stronger (more negative) latitudinal cloudiness gradients will have higher ECS. Volodin’s215

logic seems dubious because latitudinal variations in cloudiness are affected not only by local216

SST but also by the large-scale circulation. Nonetheless, when we compute Volodin values for217

the CMIP5 archive, we find that strong negative correlation is maintained (Table 2). Because218

the Volodin constraint wasn’t trained on the CMIP5 dataset, this is a strong test of constraint219

robustness. A modern variant on the Volodin approach is described in the Siler section below.220

c. Trenberth221

The southern-hemisphere averaged TOA energy balance between 1990-2000 was found to be222

correlated with ECS in CMIP3 models by Trenberth and Fasullo (2010). Their explanation is that223

models tend to predict increased cloudiness (negative cloud feedback) over the southern ocean224

in a warmer climate, but that is only possible because these models strongly underpredict the225

extremely high observed cloud fraction in this area. Models with more realistic clouds (and hence226

less positive TOA radiative imbalance) are expected to have less cloud increase in this area and227

correspondingly higher ECS. When we calculate Trenberth values for CMIP5 data and compute228

the resulting correlation with ECS, we get a negligibly small value. Grise et al. (2015) performed229

a similar calculation and arrived at the same conclusion. Upon further investigation, Grise and230

coauthors found that correlation between southern-hemisphere TOA radiation and ECS in CMIP3231

models came as much from subtropical stratocumulus/trade-cumulus areas as from the southern232

ocean. Further, connection between the southern ocean and ECS was found to only occur in233

models with excessively-reflective present-day subtropical clouds (which includes most CMIP3234

models but only half of the CMIP5 models). Connection between southern-ocean and subtropical235
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clouds seems to be an artifact of tuning (Grise et al. 2015; Kay et al. 2016; McCoy et al. 2016).236

Because southern-ocean TOA radiation biases were not found to be well-correlated with ECS in237

the full set of CMIP5 models and because the physical explanation for such a correlation is unclear,238

Grise et al. (2015) conclude that southern-ocean TOA biases are not a valid emergent constraint.239

They conclude instead that southern-hemisphere TOA radiation is correlated with ECS primarily240

through stratocumulus-to-trade-cumulus transition regions, which have greater scope for cloud241

reduction when they are more extensive in the current-climate.242

d. Fasullo M and D243

In Fasullo and Trenberth (2012), the authors correlated May-Aug. zonal-mean present-day RH244

from 1980-2000 against ECS for CMIP3 models and identified the two regions of largest correla-245

tion. One of these regions (denoted D) lies in the sub-tropical mid-tropospheric dry zone between246

approximately 20◦S to 8.5◦S and 440 to 350 mb. The other region (denoted M) lies in the moist247

convective region between 1.5◦S and 10◦N latitude and 740 mb to 570 mb. The physical mecha-248

nisms governing these correlations are unclear, so it is impossible to make an a priori prediction249

of the sign or magnitude of these correlations. Because correlation with ECS was only computed250

for CMIP3 models in the Fasullo paper, we compute our own values of the Fasullo metrics for251

the 9 CMIP3 models and 23 CMIP5 models with sufficient data. Our correlations of M and D252

with ECS are also very similar to Fasullo and Trenberth (2012) values for CMIP3 data but have253

very weak magnitude when applied to CMIP5 data. This surprising result can be confirmed and254

understood by comparing Fig. 3 and Fig. S4 from Fasullo and Trenberth (2012). These figures255

show the correlation between ECS-like quantities and climatological- and zonal-average RH as a256

function of latitude and height for CMIP3 and CMIP5 models, respectively. While it is true that257

the general structure of these plots look similar, the M zone of positive correlation has completely258
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disappeared in the CMIP5 plot and the region of negative correlation in the subtropics has shifted259

towards the surface and has weakened relative to Fasullo’s D region. Correlations in Fasullo and260

Trenberth (2012) Fig. S4 over the M and D boxes as defined in that paper are consistent with the261

values reported in our Table 2. Thus while patterns of RH over the entire tropics (as advocated by262

Su et al. 2014, which is described later) may end up being a useful predictor of climate change,263

the specific regions identified by Fasullo are almost certainly spurious.264

e. Qu265

Qu et al. (2013) show that global-warming induced changes in low cloud cover (LCC) in sub-266

tropical stratocumulus regions can be predicted according to267

∆LCC =
∂LCC
∂SST

∆SST+
∂LCC
∂EIS

∆EIS (2)

where EIS is estimated inversion strength, ∆ is the climate change signal, and ∂LCC/∂SST and268

∂LCC/∂EIS are computed from current-climate interannual variability using bivariate linear re-269

gression. This can be related to ECS by dropping the second term in Eq. 2 (because Qu et al.270

(2013) found it to be less important) and dividing through by SST:271

∆LCC
∆SST

≈ ∂LCC
∂SST

(3)

If ∆SST in stratocumulus regions is taken as a proxy for ∆TS, ∆LCC is used as a proxy for cloud272

feedback, and cloud feedback is itself used as a proxy for ECS, ∂LCC/∂SST from current-climate273

variability could be a good emergent constraint for ECS. Each link in our chain of logic is imper-274

fect, but subtropical stratocumulus are known to be a key factors for climate sensitivity (Bony275

and Dufresne 2005) so we consider this potential constraint worth testing. We do this using276

∂LCC/∂SST values for CMIP3 and CMIP5 taken directly from Qu et al. (2013). Because more277
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positive ∂LCC/∂SST means more shortwave reflection to space and hence smaller climate sensi-278

tivity, we expect (and find in Table 2) that ECS is negatively correlated with the Qu constraint.279

Bretherton and Blossey (2014) provide a physical explanation for the Qu result based on large-280

eddy simulations (LES): warmer temperatures increase BL cloud-layer humidity fluxes for a given281

liquid water path, which increases cloud-top entrainment drying and hence reduces BL cloud mass282

and fraction. Because this mechanism operates on timescales much shorter than the variability283

sampled by Qu et al. (2013), short- and long-term behavior should be identical where this mech-284

anism is dominant. Proving that the LES-based Bretherton and Blossey mechanism also explains285

the timescale invariance found in much coarser/cruder GCM simulations analyzed by Qu et al.286

(2013) is important future work.287

f. Klein TCA and ctp-tau288

Klein et al. (2013) provide metrics of model skill at reproducing present-day total cloud amount289

(TCA) and combined cloud top pressure and optical depth (ctp-tau) which are strongly correlated290

with cloud feedback λCld and particularly shortwave cloud feedback λSWCld in Cloud Feedback291

Model Intercomparison Project (CFMIP) phases 1 and 2 models (which correspond roughly to292

CMIP3 and CMIP5 models, respectively). Strangely, while correlations with cloud feedback are293

high for CFMIP1 and CFMIP2 ensembles individually, combining ensembles results in much294

worse correlation. Although not mentioned in Klein et al. (2013), Klein TCA and ctp-tau mea-295

sures were found to be strongly correlated with ECS in CFMIP2 models but not CFMIP1 models.296

Inconsistent results in different ensembles suggest these constraints may be spurious (as noted by297

Klein et al. 2013). Klein constraints are only available for CFMIP models because they require298

cloud simulator output. We only have data from 9 CMIP5 models for these constraints because299

not only are we limited to CFMIP models, but we are further limited to models which provided300
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sufficient data for computing feedback and forcing terms to the CMIP archives. Small sample301

size limits the reliability of results using the Klein constraints. Since no physical explanation for302

predictive skill by this constraint has been provided, we have no a priori guess as to the sign of303

this correlation. For the models available, both Klein metrics are among the strongest emergent304

constraints on ECS tested.305

g. Su306

Su et al. (2014) shows that changes in tropical clouds can be predicted by changes in the Hadley307

circulation in which they are embedded. They find that the quality of a model’s representation of308

the present-day Hadley circulation is a good predictor of its ECS value. While it makes sense that309

cloud (and hence ECS) changes would follow Hadley cell changes, the linkage between a model’s310

representation of the present-day Hadley circulation and its future change is unclear. In partic-311

ular, Fig. 1 of Su et al. (2014) suggests that the relationship between the mean state and future312

changes in the Hadley cycle is complicated. This missing piece precludes an a priori prediction313

for the strength or sign of the Su constraint. The Su constraint is computed by calculating zonal314

average profiles from the surface to 100 mb of cloud fraction and RH between 45◦S to 40◦N for315

both model output and observations, then calculating measures of model quality by either taking316

the slope of the regression between modeled and observed profiles for each latitude and averag-317

ing over latitudes or by computing the spatial correlation between modeled and observed values.318

Metrics defined with respect to RH or cloud fraction and using the slope or spatial correlation319

to calculate error provide similar skill and emergent constraint decomposition information, so we320

use the regression slope of the RH metric (chosen because it has greatest skill) for the remainder321

of this paper. Despite the fact that Su et al. (2014) only reports results for CMIP5 data, we do322
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not compute this constraint for CMIP3 data because the calculation is complicated and requires323

observational data which we do not have readily available.324

The Su constraint is very similar to an earlier proposal in Volodin (2008), who noted that the325

error in zonally-averaged RH over certain regions in the tropical mid-troposphere and BL is well326

correlated with ECS in CMIP3 models. We do not analyze the Volodin RH constraint here because327

its methodology is unclear and it involves observational datasets we don’t have available. If the328

region of calculation for the Volodin constraint is functionally equivalent to that used by Su and329

the observations used in both studies are compatible, then the Volodin and Su studies may be taken330

together as evidence that the Su constraint is valid in both CMIP3 and CMIP5 datasets.331

h. Sherwood D, S, and LTMI332

Sherwood et al. (2014) provide 3 indices of lower-tropospheric mixing in the current climate333

which are correlated with ECS. Because direct measures of lower-tropospheric mixing are not334

available for most models in the CMIP archive, these indices are somewhat indirect. The first335

index (called S) is meant to measure mixing between the BL and the lower troposphere in the336

convective parameterizations active in the ascending branch of the tropical overturning circula-337

tion. It is calculated as the average of the vertical gradients between 700 and 850 mb of RH and338

temperature (normalized to receive equal weight and signed so smaller gradients make S more339

positive) averaged over the West Pacific warm pool. Because temperature and moisture typically340

decrease with height and mixing moves heat and moisture upward in this region, S becomes more341

positive as mixing between the BL and lower free troposphere increases. The second index (called342

D) is framed in terms of vertical differences in resolved-scale vertical velocity with height, so it343

captures resolved-scale mixing. It measures the fraction of BL air in ascending columns in the344

tropical east Pacific and tropical Atlantic that leaves the column in the mid-troposphere rather than345
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in the upper-troposphere. The third index, called the Lower-Tropospheric Mixing Index (LTMI) is346

simply the sum of S and D.347

There are several pieces to the physical explanation for correlation between ECS and S, D, or348

LTMI. First, global-average precipitation and evaporation must be equal on multi-year timescales349

(because the atmosphere’s ability to stockpile moisture is very limited) and are expected to in-350

crease by about 2% for each degree C of TS warming (Held and Soden 2006). Next, most of this351

precipitation comes from deep convection (taken here to mean both parameterized and resolved-352

scale events which reach from the BL to the upper troposphere), while shallow circulations (such353

as those captured by S, D, and LTMI) tend to contribute little to surface precipitation. As a re-354

sult, deep convective precipitation is constrained by the global water and energy budget to bal-355

ance surface latent heat flux changes, but shallow convection is not. BL ventilation by shallow356

convection can be computed as the product of the shallow-convective ventilation rate and the357

BL specific humidity. BL specific humidity is expected to increase at ∼7-8%/K following the358

Clausius-Clapeyron relationship, so if the shallow convective mixing rate stays constant as the359

climate warms (which remains to be proven), BL ventilation will increase in the future with cor-360

responding reductions in BL clouds. In this case, models with larger S, D, and LTMI should have361

stronger reductions in future BL cloudiness and correspondingly larger ECS. This yields an a priori362

expectation that the correlation between the Sherwood constraints and ECS is positive. Sherwood363

values in Table 2 match this expectation. Kamae et al. (2016) found that LTMI explained low364

cloud feedback but not ECS in a perturbed physics ensemble. This provides some suggestion that365

the Sherwood constraints may not be robust to change in ensemble.366
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i. Brient Cloud Shallowness367

Brient et al. (2015) builds upon Sherwood et al. (2014) by noting that while strengthening of368

shallow convective drying acts to decrease BL clouds as the planet warms, reductions in BL turbu-369

lent moisture flux are also important. Brient and coauthors argue that inter-model spread in both of370

these quantities are needed to fully explain future changes in shallow convective cloudiness. They371

use the fraction of clouds below 850 mb which are also below 950 mb in current-climate tropical372

(30◦S to 30◦N) weakly-subsiding (pressure velocity between 10-30 mb day−1) ocean regions as a373

proxy for these effects. Models with higher values of this shallowness index in the current climate374

have stronger influence by convective drying relative to turbulent moistening and are thus expected375

to have larger reductions in future clouds. While Brient et al. (2015) provides a more complete376

explanation for cloud changes in shallow-convective areas, it explains about half as much ECS377

variance as Sherwood LTMI in our study (0.38 vs 0.65, see Table 2).378

j. Zhai379

Zhai et al. (2015) found that the seasonal response of boundary layer cloud fraction to sea sur-380

face temperature (SST) in subsidence regions over the ocean between 20◦and 40◦latitude in both381

hemispheres is a strong predictor of ECS in a combination of CMIP3 and CMIP5 models. This382

constraint is very similar to that of Qu et al. (2013), but uses regions less focused on stratocu-383

mulus and generally further poleward, targets seasonal instead of interannual variability, and does384

not remove the component of cloud response due to EIS changes before computing ∂LCC/∂SST.385

Nonetheless, the physical explanation for this mechanism is identical to that for Qu so we ex-386

pect the Zhai constraint to be negatively correlated with ECS. Of the 27 models included in Zhai387

et al. (2015), 24 have sufficient feedback and forcing information for our analysis. Correlations388
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using our subsets of models and separating CMIP3 and CMIP5 yield correlations similar to those389

reported in Zhai et al. (2015) (see Table 2).390

k. Tian391

Tian (2015) found the amplitude of erroneous convergence and deep convection in the south-392

east Pacific (the so-called ’double-ITCZ’ bias common in GCMs) to be correlated with ECS in a393

combination of CMIP3 and CMIP5 models. Formally, the Tian constraint is defined as the annual394

mean precipitation averaged over the box from 0-20◦S and 100-150◦W. This relationship lacks a395

solid explanation. The authors do note that Hwang and Frierson (2013) found that models with396

stronger southern ocean cloud biases tended to have a stronger double ITCZ (though Kay et al.397

2016, find this relationship to only hold in models with fixed SST); combining Hwang and Frier-398

son (2013)’s result with the Trenberth constraint, one might predict that a stronger double ITCZ399

and stronger cloud increases over the southern ocean in the future (and correspondingly weaker400

ECS) may both be symptoms of underprediction in southern hemisphere clouds. If this was the401

case, ECS should be negatively correlated with the strength of the double ITCZ across models.402

Tian also cites Hirota and Takayabu (2012) as finding that slowdown of the Hadley circulation is403

stronger in models with weaker double ITCZ bias. If this is the case, we might expect the Tian404

and Su constraints to be related. Tian data is already available for a wide variety of CMIP3 and405

CMIP5 models so we do not calculate our own values. Unsurprisingly, our correlations between406

ECS and the Tian constraint are similar to the value from his paper.407

l. Brient Cloud Albedo408

Brient and Schneider (2016) find that deseasonalized current-climate shortwave cloud albedo409

response to SST variations in tropical oceanic low clouds regions (defined as the 25% of ocean410
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grid cells between 30◦N and 30◦S with driest 500 mb relative humidity) is negatively correlated411

with ECS in CMIP5 models. This is essentially a variant on the Qu et al. (2013) mechanism using412

a different region and measure of cloudiness, so we expect it to be correlated with Qu and Zhai413

constraints. That correlation is shown in Sect. 5 to be strong.414

m. Lipat415

Lipat et al. (2017) find that the present-day latitude of the southern edge of the Hadley cell416

in austral summer is a good predictor of ECS in CMIP5 models. Their argument is based on417

shortwave cloud radiative effect changes in the lower mid-latitudes (roughly between 28◦and 48◦S418

latitude). Models whose Hadley cell does not extend far into this region experience a large decrease419

in shortwave cloud radiative effect as the Hadley cell expands, replacing very cloudy midlatitude420

conditions with a less cloudy subtropical regime. Models whose Hadley cell already extends421

far into the lower mid-latitudes see less change because most of the radiatively-sensitive area is422

already filled with subtropics-type clouds. As a result, we expect Hadley-cell edge latitude (signed423

so further south is more positive) to be negatively correlated with ECS. This is borne out in Table424

2. Because both Lipat and Su constraints are both related to Hadley-cell representation in models,425

one might expect them to be related.426

n. Siler427

Siler et al. (2017) generalizes upon the Volodin (2008) finding that inter-model differences in428

ECS are well-predicted by the latitudinal gradient of present-day cloudiness by showing that λcld is429

negatively correlated with cloud albedo in regions of SST>27◦C and is positively correlated with430

cloud albedo in regions with SST<14◦C, with correlation blending smoothly between positive431

and negative values in the intervening SST range. Regions of positive and negative correlation432
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are hypothesized to be tied together by the need to tune global-average cloud albedo to match433

observations, which means that models with little cloud in warm regions are forced to compensate434

by also having too much cloud in cold regions. Like Volodin (2008), Siler and coauthors argue435

that if cloud albedo depends on SST in a climate-invariant way and the region of warm SST436

expands in the future, present-day cloudiness could inform future changes. Further justification437

for positive correlation in cold-SST regions is provided by McCoy et al. (2015), who notes that438

models whose clouds glaciate at higher temperatures in the current climate tend to have more439

negative cloud feedback because warming increases cloud liquid, which is brighter and more long-440

lived. Justification for negative correlation in warm-SST regions is taken from Zhao (2014), who441

use convective precipitation efficiency to understand present-day cloudiness and its changes in442

the future. This constraint is claimed to be independent of other constraints for subtropical low443

clouds because it operates in both ascending and descending regions and operates at all levels in444

the troposphere.445

Siler et al. (2017) distill their geographic pattern of correlations into a single number for each446

model by taking the magnitude of the projection of that model’s cloud albedo map onto the map447

of multi-model correlation between cloud albedo and λcld. Models with smaller present-day cloud448

albedo in warm-SST regions and larger cloud albedo in cold regions have larger values of this449

index. Larger index also means greater λcld and hence larger ECS.450

Because almost all models used in Siler et al. (2017) have the output needed for our study, our451

correlations in Table 2 are almost identical to Siler’s. Interestingly, even though the Siler constraint452

is more sophisticated than Volodin, it does not produce stronger correlation.453
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o. Cox454

Cox et al. (2018) use a simple differential equation for surface temperature response to white-455

noise radiative forcing in the presence of climate feedbacks to motivate an emergent constraint456

related to the strength and autocorrelation of global-averaged surface temperature variations. Mod-457

els with larger temperature variations and stronger year-to-year autocorrelation tend to have larger458

ECS. Unlike other constraints, application of the historical temperature record to the Cox con-459

straint implies ECS values which are somewhat weaker than the CMIP5 multi-model mean.460

The Cox constraint is an interesting fit for our study because its proposed mechanism is related461

to fluctuation dissipation rather than a particular feedback process. As a result, our decomposition462

cannot be used to assess the validity of the Cox constraint. We include the Cox study in our analysis463

because it is currently the subject of great community interest and because our decomposition464

illuminates the physical mechanisms controlling the temperature response investigated by Cox465

et al. (2018).466

4. Statistical Significance467

Most of the potential constraints described above provide some mention that their correlations468

are significant but provide few details about how this was tested. Significance of correlations469

can be easily tested either by noting that r
√

(N−2)/(1− r2) follows a t-distribution (if ECS470

and emergent constraint values are normally distributed) or by using bootstrapping (constructing471

randomized samples by shuffling the model associated with each ECS or emergent-constraint value472

repeatedly to build up an empirical distribution for the null hypothesis). Both of these approaches473

typically assume that each model is an independent sample, but Sanderson et al. (2015) note that474

a quarter to a half of the CMIP5 models they analyzed were functionally redundant. This means475

that the appropriate number of degrees of freedom for these tests is significantly lower than the476
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number of models evaluated. This is important because large correlations occur by chance more477

frequently when the number of degrees of freedom is greater.478

Low sample size makes it very difficult to say anything definitive at all about relationships in479

the CMIP archives. One manifestation of this is the likelihood that some previously-proposed480

constraints are spurious. Identifying such constraints is the main goal of this paper. Unfortunately,481

small sample size also works against the goal of identifying bad constraints in the sense that482

a constraint may fail the tests in this paper not because it is incorrect, but instead because of483

unlucky alignment of available models. An anecdote puts this danger in context. Initially we484

followed Caldwell et al. (2016) by only using CMIP5 models which had less than 15% error in485

their clear-sky radiative kernel calculations. Eventually we decided to include all models in our486

analysis because the increase in sample size was deemed worth the the potential for increased487

sampling error, particularly because cloud feedbacks are the dominant source of correlation with488

ECS and their calculation is relatively accurate and only weakly affected by kernel errors. In 17489

of the 19 constraints tested here, this change in ensemble composition had little effect. For the Qu490

constraint, however, correlation dropped from -0.63 to -0.29 when all models were used. Using491

all models had the opposite effect on Brient Shal - its correlation grew from 0.05 to 0.38. Scatter492

plots for each of these relationships are presented in Fig. 1. In both cases, correlation changed493

because models that failed the clear-sky linearity test had systematically different behavior than494

the rest of the ensemble. Does this mean that Qu is more credible than indicated by the rest of this495

study? Is Brient Shal less credible? We interpret these findings as an indication of the uncertainty496

in any correlation obtained from CMIP data. If our results are any indication, results are robust497

17/19≈90% of the time and are misleading or ambiguous the other 10% of the time.498

Another issue is that the search for emergent constraints naturally lends itself to trying relation-499

ships until a strong correlation is found. This is problematic because if one tries n relationships500
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for significance at the S% level there is a 1− (S/100)n probability of getting at least one false501

positive relationship, and this probability approaches 1 as n→ ∞. As an example, if you find502

one relationship out of 5 that is significant at the 95% level, the probability of this relationship503

occurring by chance is actually 23%. And while this sort of data-mining can be done purposefully,504

it can also occur unconsciously within a community. In particular, scientists are likely to notice505

and report strong correlations while keeping silent about their negative results. As a result, even506

if researchers are conscientious about the significance of their results on an individual level, the507

publication process will overstate the significance of their work by neglecting to account for un-508

successful attempts to find relationships. Because it is difficult or impossible to honestly say how509

many attempts were made to find a strong correlation before achieving success, Caldwell et al.510

(2014) and Klein and Hall (2015) advocate giving up on formal significance testing and instead511

relying on an undeniable physical explanation as proof of meaningful correlation. That is not to512

say that strong correlations should be ignored - finding these relationships is the first step to un-513

derstanding them - but one should retain a healthy skepticism of relationships until they are fully514

understood. In order to identify obviously insignificant results, relationships that pass a t-test at515

90% probability assuming independence between models are printed in bold in Table 2. Note that516

this test is not meant as a measure of statistical significance, but instead is used to identify con-517

straints that are definitely not significant. All constraints except Covey pass this test when using518

their original data; Covey et al. (2000) themselves note that their metric is not quite significant at519

90%. With the exception of constraints being confronted with CMIP5 data for the first time, this520

weak form of significance is maintained when ensembles are subset to the models with sufficient521

data to compute feedback and forcing.522
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5. Are Emergent Constraints Independent?523

In this section we focus on the question of whether previously-proposed constraints are truly524

independent, or whether they are merely different manifestations of the same underlying phe-525

nomenon. This is important because as identifying emergent constraints becomes more popular,526

researchers need to be careful that new constraints are not merely repackaged versions of older527

constraints. We are in a unique position to answer this question by virtue of the large collection of528

previously-proposed constraints we have gathered.529

Fig. 2 shows correlation coefficients for all combinations of emergent constraints considered.530

Diagonal values are always 1 because a constraint is perfectly correlated with itself. Cells above531

the diagonal are redundant because corr(x,y) = corr(y,x) for any x and y and therefore has been532

omitted. Constraints which are negatively correlated with ECS in Table 2 are multiplied by −1533

to aid comparison. To maximize sample sizes, correlations are computed using data from all534

available models rather than only those for which we have feedback decomposition information.535

The number of models used in each correlation is included in parentheses within each cell of536

Fig. 2. Pooling CMIP3 and CMIP5 data for these correlations is reasonable because we are537

only interested in cross-model relationships between constraints. CMIP3 and CMIP5 models are538

considered separately in Sect. 6 because their decompositions differ.539

Correlations which are significant at 90% using a 2-tailed t-test are shown in color, with darker540

colors indicating stronger correlations. As noted in Sect. 4, the probability that at least one of the541

152 correlations below the diagonal of Fig. 2 passes our significance test by chance is 1−0.9152 ≈542

100%. The expected number of significant correlations by chance alone can be computed by543

noting that significance of correlation between a given pair of constraints is a Bernoulli trial with544

a 0.1 probability of success and the probability of a given number of successful Bernoulli trials545
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follows a binomial distribution. This yields an expected value of 0.1× 152 ≈ 15, which is much546

smaller than the 64 significant correlations actually found. One purely mathematical reason to547

expect correlation between constraints is that all constraints were chosen for their high correlation548

with ECS, and if they all look like ECS then they must look like each other as well. This is549

probably why almost all correlations in Fig. 2 are positive (reddish). If similarity to ECS was550

the only reason for correlation between constraints, however, we might expect the constraints best551

correlated with ECS to be more strongly correlated with each other. With the exception of Covey,552

which is the most independent constraint and the worst-correlated with ECS, this does not seem to553

be the case. Fig. 3 shows that strong correlation with ECS does not imply significant correlation554

with more or better constraints. In other words, mathematics alone cannot explain the large number555

of significantly correlated constraints in Fig. 2, leading us to turn now to exploration of physical556

explanations for these relationships.557

Overlapping groups of constraints for which we might expect a relationship based on physical558

grounds are indicated by colored lines and corresponding numbers in Fig. 2. The first grouping559

involves Lipat, Trenberth, and Volodin, which are all related to present-day southern hemisphere560

cloudiness. Siler is also included in this group because its definition is so similar to Volodin’s; Fig.561

2 shows that Volodin and Siler are correlated at 0.8. All constraints in this group are correlated at562

≥ 0.5, suggesting that they may all be part of a single southern-hemisphere mechanism.563

The constraints in group 2 are related to mean-state clouds and related indicators over564

geographically-broad areas. Surprisingly, while Siler is well correlated with all constraints in565

this group, the other constraints are not that well correlated with each other. It seems natural that566

if Siler is similar to two other constraints, those constraints should be similar to each other. Such567

behavior is known in math as the triangle inequality, and obeying this constraint is a requirement568

for all measures of distance. Our correlation matrix does not satisfy the triangle inequality be-569
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cause each correlation is based on a different ensemble of models. Using a single set of models570

for all constraints would solve this problem but is untenable here because we would be left with571

7 models. There are also real reasons to expect mean-state constraints to be uncorrelated. Klein572

TCA and ctp-tau focus on cloud fraction and optical depth, for example, and these two quantities573

can change independently.574

Group 3 contains constraints based on mean-state RH. If the locations picked by Fasullo are575

particularly important, one may expect them to show up in the Su constraint. This does not seem576

to be the case. Group 4 consists of Tian and Fasullo D, which both target convection-related577

variables in largely overlapped regions. Unsurprisingly, they are correlated at 0.6. Group 5 consists578

of constraints based on the ability of convection to remove moisture from the tropical boundary579

layer. Sherwood D and S are uncorrelated, which explains why LTMI=D+S explains a much larger580

fraction of ECS than D or S in isolation. Brient Shal, which was based on Sherwood’s concepts,581

seems to be an unrelated constraint.582

The last group focuses on current-climate response of low clouds to variations in SST. Zhai583

and Brient Alb do seem to be related to each other, but they are only weakly related to Qu. This584

could be due to unlucky sampling, but it could also be due to differences in constraint design,585

including differences in geographical region, sampling time periods, or the fact that Qu removes586

the component of cloud change coincident with EIS. It is also interesting to note that Volodin587

and Siler are strongly correlated with Brient Alb at 0.7. Volodin/Siler and Zhai/Brient Alb are588

similar in that both assume cloud changes track SST in a climate-invariant way, so perhaps this is589

unsurprising. The fact that Zhai/Brient use temporal variations as their present-day measure while590

Volodin/Siler use geographic variations raises interesting questions about cloud feedback.591

Because Tian cites Trenberth and Fasullo (2010) for support, it is worth noting that the correla-592

tion between Tian and Trenberth is 0.5. Tian also makes reference to the strength of the Hadley593
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circulation. Su and Lipat both measure aspects of the Hadley cell, but Su and Lipat are not signif-594

icantly correlated with Tian or with each other.595

Perhaps more interesting than the blocks of expected relationships in Fig. 2 is the region of596

unexpected correlations. With the exception of the Covey constraint - which is poorly correlated597

not only with most other constraints, but also with ECS - these unexpected correlations have simi-598

lar magnitude to those found in the expected-relationship blocks. Several unexpected correlations599

are over 0.7 in magnitude! Of particular interest is the Cox constraint. The Cox constraint is600

designed to measure the response properties of global-average surface temperature to forcing, but601

the feedback process governing that response is unclear. Cox is very strongly correlated with Zhai602

and Klein TCA, and is significantly correlated with Brient Alb, Sherwood LTMI, and Tian. All603

of these clouds are related to clouds, suggesting that clouds are the main mechanism controlling604

surface temperature variations. This hypothesis will be further explored in Sect. 6.605

Given the number of unexpected yet apparently significant connections between constraints, an606

empirical method for identifying groups of related constraints seems warranted. We tried a variety607

of clustering algorithms, but failure of the triangle equality makes the results very sensitive to the608

definition of distance between clusters and makes the results difficult to interpret. For example,609

should Volodin and Klein TCA be considered synonymous with Siler because both are correlated610

with Siler at 0.8? Or is Klein TCA a separate mechanism because it’s correlation with Volodin is611

only 0.3? Larger model ensembles and/or mechanistic understanding of potential relationships is612

needed to decide. In the meantime, we simply state that pairs of constraints with large correlation613

in Fig. 2 are probably related, and that understanding why is important future work. Central to614

this goal is the need to understand why each constraint has skill in predicting ECS. Doing so is the615

focus of the remainder of this paper.616
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6. Decomposing Correlations617

So far we have described each of the 19 constraints and tested them against new data where618

possible. We have also looked for relationships between emergent constraints. In this section619

we describe a method for decomposing correlation between ECS and an emergent constraint into620

components associated with individual feedback and forcing processes and into contributions from621

different geographical regions. In some sense the decomposition described here provides a bridge622

between predictors of ECS and predictors of individual climate processes by identifying the pro-623

cesses and regions which contribute to correlation with ECS and by clarifying how correlation624

with a particular process contributes (or is unimportant for) correlation with ECS.625

a. Global-Average Decomposition626

The first step in this decomposition is to write the net feedback λ as a sum of individual feedback627

terms λi such that λ = ∑i∈P λi. For the purposes of this paper, feedback mechanisms in the set628

P will consist of albedo feedback (Alb), lapse-rate feedback (LR), water vapor feedback (WV),629

Planck feedback (Pl), shortwave cloud feedback (SW Cld), and longwave cloud feedback (LW630

Cld). See Bony et al. (2006) for a primer on these feedback mechanisms.631

The next step in our decomposition is to approximate ECS by replacing 1/λ in Eq. 1 with its632

first-order Taylor expansion around the multi-model mean λ as described in Caldwell et al. (2016):633

ECS =−F

λ
− F ′

λ
+

F

λ
2 ∑

i∈P
λ
′
i +Ekernel +ETaylor (4)

where overbar indicates the multi-model average and primes indicate deviations from this average.634

Ekernel and ETaylor are errors due to nonlinearity in radiative kernel calculations (computed as the635

difference between ECS calculated using −F/λ versus −F/∑i∈P λi) and error due to the 1/λ636

Taylor expansion (computed as the residual in Eq. 4 after accounting for Ekernel). Both error terms637
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are shown later to be small. In addition to causing discrepancies between ECS and−F/λ
2

∑i∈P λ ′i638

(as captured by ETaylor), the Taylor approximation will result in misleading partitioning between639

feedback processes unless λ ′i << λ . As discussed in Caldwell et al. (2016), this condition is640

overwhelmingly met for all λi except cloud feedback. Nonlinearity related to cloud feedback was641

shown in Caldwell et al. (2016) to have a predictable and minor role on intermodel spread in ECS.642

The term on the right-hand side of Eq. 4 corresponding to a given j in the set A = P ∪643

{F,const,Ekernel,ETaylor} will be denoted by Tj. Using this shorthand, we can partition correlation644

between ECS and an arbitrary emergent constraint X into correlations with individual feedback645

and forcing terms:646

corr(X ,ECS) =
cov(X ,∑ j∈A Tj)

σ(X)σ(ECS)

= ∑
j∈A

cov(X ,Tj)

σ(X)σ(ECS)
σ(Tj)

σ(Tj)

= ∑
j∈A

σ(Tj)

σ(ECS)
corr(X ,Tj) (5)

where σ(·) is the standard deviation operator, corr(·, ·) is the Pearson correlation coefficient, and647

cov(·, ·) is the covariance. The second line uses the identity cov(X ,∑N
j=1Yj) = ∑

N
j=1 cov(X ,Yj).648

In words, this equation says that correlation between an emergent constraint and ECS can be649

interpreted as the sum of correlations with each Tj term scaled by the relative importance of that650

term to ECS variations. This means that correlation with ECS is best achieved by being correlated651

with Tj terms which contribute most strongly to var(ECS).652

Decomposition of correlation between ECS and each emergent constraint following Eq. 5 are653

provided in Fig. 4. As noted in Sect. 2, CMIP3 data (in panel a) and CMIP5 data (in panel b)654

differ in the following ways:655
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1. Only net Cld is shown in panel a) because separate SW and LW Cld components are not656

available for CMIP3.657

2. For CMIP3, λCld is computed as the residual between the net feedback and the sum of non-658

cloud feedbacks. As a result, Ekernel is absorbed into λCld in panel a).659

3. Pl, WV, and LR are computed relative to fixed specific humidity in panel a), whereas panel b660

uses fixed RH.661

Note that contributions from Ekernel and ETaylor are generally small, indicating that our decompo-662

sition is appropriate.663

Cloud feedback is the main source of strong correlation with ECS for most emergent constraints,664

particularly in the CMIP3 ensemble. This can be understood by noting that the correlation of a665

particular Tj term in Eq. 5 is modulated by that term’s contribution to var(ECS). The magnitude of666

these weighting factors is presented in Table 3. Because λCld dominates inter-model spread in ECS667

(Dufresne and Bony 2008; Caldwell et al. 2016), it receives by far the largest weighting in Table 3.668

Put simply, inter-model variations in TCld are so big that they leave a strong imprint in inter-model669

variations in ECS. This means that fields which are strongly correlated with ECS are probably670

correlated with TCld (and vice versa). Emergent constraints which are more weakly correlated671

with ECS have more latitude to obtain that correlation from other terms. This is reflected in the672

fact that the constraints with little contribution from clouds (e.g. Covey and Sherwood S from673

CMIP5) also have relatively low correlation with ECS. The practical implication of this finding674

is that the search for emergent constraints for ECS should target mechanisms related to cloud675

feedback. Note in particular that the Cox constraint, which was not proposed as being related to676

clouds at all, is strongly dominated by SW cloud feedback.677
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One odd feature of Table 3 is that the Cld term has weight greater than 1. This seems to imply678

that strong correlations with TCld could cause corr(X ,ECS) to exceed 1. This is not the case679

because having a weight greater than 1 is only possible due to anti-correlation with other Tj terms.680

These anti-correlated terms can be relied on to prevent correlations with ECS from exceeding their681

allowable bounds. Similarly, while it may at first appear that weights imply certain relationships682

between ECS and Tj (e.g. one might assume that corr(X ,ECS) is always greater than corr(X ,TCld)683

because the weight for Cld is greater than 1), the potential for anti-correlation between Tj terms684

means that no such relationship exists.685

This anti-correlation between Tj terms was documented in Caldwell et al. (2016). Its effect here686

is to make it impossible for any potential constraint to be correlated with ECS due to only one687

feedback or forcing mechanism. For example, λCld is opposed by λLR for almost all constraints in688

Fig. 4. Correlation between processes means that Klein and Hall (2015)’s ’no multiple influences’689

requirement is probably unworkable. In light of this finding, a better criterion for a promising690

emergent constraint is that correlation with ECS should come primarily from a single Tj. The691

logic of this criterion is that it is much easier to imagine a physical explanation involving one or692

at most a pair of feedback mechanisms, while a mechanism comprised of a complex mixture of693

feedbacks is hard to imagine. We will use the criterion that the dominant constraint should be694

twice as large as any other term unless there’s a good physical reason to expect otherwise as a way695

to screen for constraints arising from unlikely mixtures of processes. Covey and Fasullo M fail696

this criterion for both CMIP3 and CMIP5, while Sherwood S, Trenberth, Fasullo D, Lipat, and Qu697

fail for CMIP5.698

Influence from multiple sources seems to be more pronounced in CMIP5 ensembles. Some of699

this comes from the fact that SW and LW Cld components are included separately for CMIP5700

data but not for CMIP3 (because of lack of available data), but CMIP5 data is more complex701
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even when SW and LW cloud feedback is combined. One reason for this is probably due to702

increasing model complexity with time. The fact that CMIP3 values are computed from runs703

which include transient aerosol changes while CMIP5 data don’t also complicates interpretation.704

Similarity between decompositions computed using independent ensembles would be a useful705

indicator of the credibility of an emergent constraint, but cannot be evaluated in this study because706

of differences in the experimental design of CMIP3 and CMIP5. One aspect of the CMIP5 results707

which is simpler is the partitioning between LR and WV: in CMIP3 these quantities oppose each708

other and are of roughly equal size. When computed relative to fixed RH in CMIP5, however, the709

importance of WV fades and LR is shown to be the dominant source of correlation with ECS.710

Fig. 4 can be used to test whether a constraint’s correlation with ECS is due to its proposed711

physical explanation or not. This is only possible for constraints with well-defined physical mech-712

anisms; constraints without an explanation cannot be tested and therefore can never be moved713

beyond the ’potential constraint’ status. Sherwood D and LTMI and Brient Shal and alb pass714

this test for both CMIP3 and CMIP5 data - they are proposed to operate through changes in low715

clouds and their correlation with ECS comes primarily through shortwave cloud feedback. Sher-716

wood S and Qu are also meant to operate through shortwave cloud feedback but gain correlation717

mainly through other terms for CMIP5 data. Non-robustness between ensembles suggests these718

constraints may be spurious. Further decomposition of the SW cloud feedback term into amount719

and scattering components (not shown) reveals that Qu - which was originally framed in terms of720

low cloud amount changes - is operating as intended in the sense that SW cloud amount feedback721

in stratocumulus regions does actually contribute to negative correlation with ECS but its effect is722

canceled out by opposing contributions from SW cloud scattering feedback.723
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b. Regional Decomposition724

Eq. 5 can be further dissected to include geographical information. This is useful to test pro-725

posed constraints which are meant to target a process specific to a particular region. To do this, we726

note that for each term in Eq. 5,727

σ(Tj)

σ(ECS)
corr(X ,Tj) =

σ(Tj)

σ(ECS)
cov(X ,∑N

k=1 wkTjk)

σ(X)σ(Tj)

=
N

∑
k=1

wkσ(Tjk)

σ(ECS)
corr(X ,Tjk) (6)

In the first line of this equation, we write the correlation as a covariance and rewrite global-average728

Tj as an area-weighted average over spatial dimension k, where wk is the area weighting for grid729

cell k. The second line follows logic similar to that used to derive Eq. 5. In Eq. 6, the contribution730

from grid cell k is given by that particular location’s correlation with X weighted by the contri-731

bution of that cell’s area to the global total and the relative importance of process i at location k732

to var(ECS). Combining Equations 5 and 6 allows us to plot the contribution of each feedback in733

each grid cell of the model to corr(X ,ECS).734

This geographical decomposition is applied to selected constraints in Fig. 5. These constraints735

were chosen because they are relatively independent of each other, they target different regions,736

and they are of contemporary interest. Similar figures including SW and LW cloud feedbacks737

separately are available in the supporting material for all constraints. In these plots, ECS is broken738

into terms due to net Cld and F , with all other terms combined into a single plot because their739

spatial variations are unimportant.740

One striking feature of Fig. 5 is that the correlation contributions for a particular Tj tend to741

come from the same geographic regions for all constraints. Analogous to the way that λSWCld742

dominates the global-average contribution to ECS because it contributes most to ECS variations,743

these geographic locations are most important because their variations are the main source of744
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differences in the global-average of the Tj in question. An example of the geographic scaling745

factor wkσ(Tjk)/σ(ECS) is presented in Fig. 6 for each term in our decomposition. These maps746

differ slightly depending on the set of models used for each constraint, but the patterns are quite747

similar for all constraints. Ability to predict cloud feedback and forcing variations in the tropical748

Pacific is most important for getting ECS right. Polar regions in the bottom row of Fig. 6 also749

show up as important due to snow albedo feedback.750

Another interesting feature of Fig. 5 is the fact that the spatial distribution of F contribution751

for each constraint is almost perfectly opposed in the tropics by the net cloud contribution. Anti-752

correlation between F and λ for simulations without aerosol changes was previously noted for753

global averages by Ringer et al. (2014). This relationship may be an artifact of the fact that we754

follow Gregory et al. (2004) in computing feedback and forcing as the slope and y-intercept of the755

same data. This hypothesis could be tested by getting F from runs with 4xCO2 and present-day756

SST, but such analysis is outside the scope of this paper.757

While similarities in geographic structure between constraints is interesting, the main goal of758

Fig. 5 is to test proposed mechanisms. The Lipat constraint is related to cloud changes in the759

Southern hemisphere at the border between the subtropics and midlatitudes. Geographic decom-760

position of the cloud contribution from Lipat does show more amplitude in this latitude band than761

other constraints, but this region is still not the main source of correlation with ECS. Without762

understanding how Hadley cell extent could affect future changes in tropical cloudiness, this con-763

straint remains unconfirmed. Sherwood D predicts tropical low cloud changes due to BL drying by764

convection. It is computed using data from the tropical Atlantic and East Pacific, though it is un-765

clear whether this is the region where cloud changes are expected. It does have large correlation in766

the tropical East Pacific and Atlantic, but its correlation with cloud feedback in the West Pacific is767

even bigger. Brient Alb is related to low clouds in subsiding (eastern subtropical) oceanic regions.768
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Magnitude of correlation in the subtropical eastern oceans is greater than for other constraints, but769

equatorial ascent-region clouds again play an unexpectedly large role. Geographic decomposition770

is also illuminating for the other constraints, but is relegated to Supplementary Material because771

validity of the corresponding constraint can already be assessed from the other information in this772

paper.773

7. Discussion and Conclusions774

This study provides several methods for evaluating the credibility of a proposed emergent con-775

straint. We hope this work triggers an effort to evaluate new and existing emergent constraints,776

discarding unreliable constraints and developing consensus and trust around confirmed predictors.777

To that end, we ask which of the 19 emergent constraints tested here are trustworthy. Our assess-778

ment is provided in Table 4. Six constraints (Covey, Trenberth, Fasullo D and M, Sherwood S,779

and Sherwood LTMI) do not appear to be credible because they are either not robust to change780

of ensemble or their correlation with ECS is not due to their proposed physical mechanism. The781

credibility of 3 constraints - Lipat, Qu, and Cox - is ambiguous. Lipat gains correlation with ECS782

from the expected region and mechanism but gains more correlation from unexpected sources.783

Similarly, Qu also gains correlation from the expected mechanism and region but fails to have a784

large correlation with ECS for the models used in this study because of unexpected compensation785

from other terms. Additionally, while Qu fails to be robust to all changes in ensemble, it does have786

a large correlation with ECS in CMIP3 and in a subset of CMIP5 models and it is conceptually787

related to the Zhai and Brient Alb constraints, which do seem to be robust. The Cox constraint has788

a physical explanation which is unrelated to particular feedbacks and regions and hence cannot be789

tested in our framework. An additional 6 constraints (Volodin, Siler, Klein ctp-tau and TCA, Su,790

and Tian) cannot be tested because they lack clear physical mechanisms. These constraints should791
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not be considered credible until they are fully understood. Decomposition of these constraints’ cor-792

relation with ECS may prove useful in uncovering the physical explanations for their skill (if any793

exist). In this context it is interesting to note that Klein TCA is predominantly related to tropical794

LW cloud feedback, while Klein ctptau and Tian are related to SW cloud feedback over a broad795

variety of regions and Su is tied to cloud feedback mainly over the tropics (see Supplementary796

Figures 3 and 4).797

The remaining 4 constraints (Sherwood D, Brient Shal, Zhai, and Brient Alb) pass all tests in798

this study and thus seem credible. Worryingly, all of the studies introducing these constraints799

note that their constraint implies higher climate sensitivity than predicted by giving each CMIP5800

model equal weight. The Sherwood D constraint in particular is only satisfied by models with801

ECS greater than 3.4 K, while the Sherwood S and LTMI metrics - which themselves predict802

relatively high climate sensitivity - are much closer to the centroid of CMIP model values. While803

the tendency for emergent constraints to predict higher climate sensitivity has been noted in the804

past (e.g. Tian 2015; Qu et al. 2018), the validity of this finding has been unclear because it was805

based on potential rather than credible constraints.806

So what does it mean that 4 credible emergent constraint studies all predict warming at the upper807

end of community expectation? One interpretation is that these studies reinforce each other’s808

conclusions - if all agree, they must be right. This is an appropriate interpretation if all constraints809

are flawed samples of the same underlying underlying distribution/physical process. In this case,810

the more we sample the underlying distribution, the better we will understand it. If each constraint811

is instead targeting a different physical process which contributes to ECS, the constraints will812

contribute additively towards determining ECS. In this latter case, having one constraint predict813

high sensitivity and another predict low sensitivity does not invalidate the constraints - they may814

simply constrain different drivers of climate sensitivity. The credible constraints identified in this815
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study are all related to tropical low clouds and all except Brient Shal are shown in Fig. 2 to816

be significantly correlated with each other. Zhai and Brient Alb even share a common physical817

mechanism. Thus it is tempting to view all constraints as reinforcing each other. It is, however,818

unsurprising that the best emergent constraints would be related to tropical low clouds because819

(as noted above) λSWCld has largest impact on ECS and incident SW radiation is strongest in the820

tropics. There are also many processes contributing to tropical low cloud changes, so the credible821

constraints identified here could very well be capturing different mechanisms governing tropical822

cloud change. Understanding how these constraints relate to each other is important future work.823

Developing a numerical estimate of ECS by combining constraints would be very useful, but such824

an estimate will only be possible once we understand clearly how the constituent constraints are825

related. As noted by Klein and Hall (2015), a complete picture of ECS will only emerge once we826

are able to constrain every important feedback component in each important climate regime. It is827

therefore desirable to focus research efforts on developing constraints for individual processes and828

on identifying the appropriate infrastructure for combining these constraints into a coherent story.829

Sect. 5 provides a first step towards identifying related constraints. By comparing constraint830

definitions and explanations as well as correlations between pairs of constraints, we conclude that831

Siler and Volodin describe the same physical mechanism, as do Zhai and Brient Alb. Beyond832

these pairs, we had trouble identifying groups of similar constraints because one constraint would833

frequently be correlated with two others which weren’t themselves correlated with one another.834

This breakdown of the triangle inequality results from the fact that the models available for each835

constraint differ coupled with the the extremely-small sample size of the CMIP archives. While836

the 19 constraints considered here are definitely much more similar to each other than expected837

by chance, lack of empirical methods for grouping forces us to fall back on physical reasoning838
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to identify related constraints. This is difficult when the mechanisms responsible for potential839

constraints are not well understood.840

It is important to stress that all conclusions in Table 4 should be considered tentative because the841

number of models used in each correlation calculation is so small. As discussed in Sect. 4, insuf-842

ficient sample size is underscored by the fact that correlation for 2 of the 19 constraints changed843

radically when we switched from using only models which passed the clear-sky linearity test to844

using all models. This is a problem not just with our methodology, but with all studies attempting845

to identify emergent constraints from the relatively small ensembles available from CMIP. This846

conclusion is supported by the fact that strong correlation with ECS disappeared in 4 of the 5 con-847

straints in this study confronted with new ensembles. It is interesting to note, however, that several848

of these failing constraints are strongly correlated with newer constraints which do show strong849

correlations with CMIP5 data. Perhaps these original studies do have some value, but were over-850

tuned to their training dataset. It is also worth noting that while our criteria of robustness across851

successive CMIP generations and correlation coming mainly from a single feedback mechanism852

seem like reasonable rules of thumb, there may be situations where real constraints do not satisfy853

these criteria. In these cases, the need for an exception should be obvious from the purported phys-854

ical mechanism. Grounds for such an exception are not clear for any of the constraints evaluated855

here. Another important caveat to this study is that it focuses entirely on correlations, which only856

capture linear relationships while climate response may be nonlinearly related to a present-day857

predictor (see Appendix 2 of Covey et al. 2000, for an example). Compositing a predictor into an858

average over models with low ECS and a separate average over models with high ECS (as done by859

Su et al. 2014) and Brient et al. (2015) may be better for identifying nonlinear emergent constraints860

but is not conducive to our decomposition approach.861
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TABLE 1. Short description of each emergent constraint tested in this paper.

Name Description

Covey Amplitude of seasonal cycle of surface temperature

Volodin Difference between tropical and southern-hemisphere midlatitude total cloud fraction

Trenberth Net TOA radiation averaged over the southern hemisphere

Fasullo D Southern hemisphere zonal-average mid-tropospheric RH in dry-zone between 8.5◦-20◦S

Fasullo M Tropical zonal-average lower-tropospheric RH in moist-convective region

Qu BL cloud amount response to SST variations in subtropical stratocumulus regions (after removing EIS contribution)

Klein ctp-tau Error in the distribution of cloud-top pressure and optical thickness for regions between 60◦N and S

Klein TCA Error in total cloud amount for regions between 60◦N and S

Su Error in vertically-resolved tropospheric zonal-average RH between 40◦N and 45◦S

Sherwood D Strength of resolved-scale mixing between BL and lower troposphere in tropical E Pacific and Atlantic

Sherwood S Strength of mixing between BL and lower troposphere in tropical convective regions

Sherwood LTMI Sum of Sherwood S and D constraints

Brient Shal Fraction of tropical clouds with tops below 850 mb whose tops are also below 950 mb

Zhai Seasonal response of BL cloud amount to SST variations in oceanic subsidence regions between 20-40◦latitude

Tian Strength of double-ITCZ bias

Brient Alb Sensitivity of cloud albedo in tropical oceanic low-cloud regions to present-day SST variations

Lipat Latitude of the southern edge of the Hadley cell in austral summer

Siler Extent to which cloud albedo is small in warm-SST regions and large in cold-SST regions

Cox Strength of global-average surface temperature variations and temporal autocorrelation
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TABLE 2. Correlations between emergent constraints as reported in their original papers and as computed

using the subsets of models for which we have constraint information as well as forcing and feedback compo-

nents. Except for reported values from Covey (which used CMIP1 data), columns 2 and 3 report a single number

if the study combined CMIP3 and CMIP5 models and otherwise reports individual CMIP3 and CMIP5 values

separated by a ’/’. Values in bold are significant at 90% confidence using a t-test assuming independent models

(which is an overly-permissive test, see text for details). An asterisk is used where no data is available.

1095

1096

1097

1098

1099

1100

Reported Reported # CMIP3 CMIP3 # CMIP5 CMIP5

# Models Values Models Values Models Values

Covey 17 0.40 12 -0.36 27 0.35

Volodin 18 / * -0.82 / * 12 -0.42 27 -0.60

Trenberth 13 / * -0.73 / * 12 -0.56 27 -0.22

Fasullo D 16 / * -0.81 / * 9 -0.78 23 -0.26

Fasullo M 16 / * 0.65 / * 9 0.74 23 0.15

Qu 18 / 18 * / * 11 -0.61 16 -0.29

Klein ctp-tau 6 / 9 * / * * * 9 -0.74

Klein TCA 6 / 9 * / * * * 9 -0.71

Su * / 14 * / * * * 13 0.58

Sherwood D 43 0.46 11 0.47 26 0.40

Sherwood S 43 0.50 11 0.64 26 0.37

Sherwood LTMI 43 0.68 11 0.62 26 0.65

Brient Shal * / 21 * / * * * 21 0.38

Zhai 27 -0.64 9 -0.80 15 -0.73

Tian 44 -0.64 11 -0.52 25 -0.60

Brient Alb * / 29 * / -0.67 * * 28 -0.71

Lipat * / 21 * / -0.48 * * 21 -0.46

Siler * / 20 * / 0.54 * * 19 0.54

Cox * / 16 * / * * * 22 0.63
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TABLE 3. Values of σ(Tj)/σ(ECS) for each j ∈ A. Weights differ for each constraint depending on the

models available. Values given are means over all constraints±1σ . No value is given for CMIP3 Ekernel because

closure error for CMIP3 was absorbed into ECS values.

1101

1102

1103

Pl WV+LR Alb Cld F Ekernel ETaylor

CMIP3 0.10±0.00 0.32±0.04 0.18±0.01 1.16±0.01 0.21±0.02 0.18±0.01

CMIP5 0.12±0.02 0.43±0.05 0.32±0.06 1.22±0.06 0.62±0.04 0.45±0.05 0.25±0.02
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TABLE 4. Assessment of proposed constraints.

Name Credible? Why?

Covey no not robust to change in ensembles

Volodin/Siler unclear no testable mechanism

Trenberth no not robust to change in ensembles, proposed mechanism is not the main source of correlation

Fasullo D no not robust to change in ensembles, no testable mechanism

Fasullo M no not robust to change in ensembles, no testable mechanism

Qu uncertain not robust to change in ensembles, CMIP5 correlation not due to proposed mechanism

Klein ctp-tau unclear no proposed mechanism

Klein TCA unclear no proposed mechanism

Su unclear no testable mechanism

Sherwood D yes correlation is due to proposed mechanism and region

Sherwood S no CMIP5 correlation is not due to the proposed mechanism

Sherwood LTMI no combination of credible and non-credible mechanisms

Brient Shal yes correlation is mainly due to proposed mechanism and region

Tian unclear mechanism isn’t clear enough to test

Zhai/Brient Alb yes correlation is due to proposed mechanism and region

Lipat uncertain proposed region is important, but isn’t the dominant source of correlation

Cox uncertain proposed mechanism is unrelated to individual feedbacks and regions
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FIG. 2. Correlation between pairs of emergent constraints. Boxes with correlations significant at 90% using

a 2-tailed t-test are colored, with insignificant correlations in gray. Darker shades indicate larger correlation.

Positive correlations are reddish and negative correlations are blueish. In each cell, the first number is the

correlation between quantities listed on the x and y axes. The number in parentheses is the number of models

used in this calculation. Dark boxes (high correlation) have white text and light boxes (low correlation) have

black text. The sign of emergent constraints expected to be negatively correlated with ECS has been reversed so

positive values in this plot indicate both constraints have the same effect on ECS. Each correlation is calculated

using data from all available CMIP3 and CMIP5 models. Colored lines and accompanying numbers reflect

groups of constraints which are discussed in the text.
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FIG. 3. Left: number of constraints a given constraint is significantly correlated with (y axis) as a function of

that constraint’s correlation with ECS (x axis). Right: Average correlation with ECS of all constraints signifi-

cantly correlated with a given constraint (y axis) as a function of that constraint’s correlation with ECS (x axis).

The Covey constraint was omitted from both plots because it was an outlier.
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components due to forcing and feedback terms (identified in the legend). Constraints negatively correlated with

ECS in their original paper are multiplied by -1 for easy comparison with other constraints. The correlation with

ECS is the sum of positive and negative terms and is indicated for each emergent constraint as a white dot.
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FIG. 5. Decomposition of selected emergent constraints (columns) into dominant terms (rows). Titles in bold

at the top of each column list the constraint tested and the correlation of that constraint with ECS computed as

the sum of all panels in that column. Sums in the title for each panel give the global sum of the geographic

decomposition of that term following Eq. 6, which is comparable to the global-average contribution to that term

as plotted in Fig. 4.
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FIG. 6. Weighting function σ(Tjk)/σ(ECS) from Eq. 6. Weighting maps differ slightly for different con-

straints because of changes in available models; these maps are for Sherwood D. Cell-area wk is omitted from

this plot since the plot geometry already gives less space to smaller cells.
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