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Analytical expressions for entrainment and detrainment
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Analytical expressions for entrainment and detrainment are derived based on general
total water specific humidity and mass budget equations. From these expressions,
containing a small-scale turbulent and a larger-scale organized term, a physical
picture emerges for a shallow cumulus cloud ensemble in which the individual
clouds have a massive entrainment at the bottom, lateral turbulent mixing with
constant mass flux between bottom and top, and massive detrainment at the top.
Combining these results with the general budget equation for vertical velocity,
new formulae for entrainment and detrainment rates can be expressed in terms of
buoyancy, vertical velocity and cloud fraction. For a variety of shallow convection
cases, results from large-eddy simulations show a good correspondence of these new
formulae with more traditional methods to diagnose entrainment and detrainment
rates. Moreover, the formulae give insight into the behaviour and the physical
nature of the mixing coefficients. They explain the observed large variability of the
detrainment. The formulae cannot be directly applied as a parametrization. However,
it is demonstrated how they can be used to evaluate existing parametrization
approaches and as a sound physical base for future parametrization developments.
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1. Introduction

Lateral mixing between convective clouds and their
environment represented by entrainment and detrainment
are key processes in atmospheric moist convection and
the uncertainty of its strength is still a main source in
climate model uncertainty (Murphy et al., 2004; Rougier
et al., 2009). The strong positive impact of new entrainment
and detrainment representation on the predictive skill of
numerical weather prediction (NWP) models (Bechtold
et al., 2008) shows both the importance and the relative
infancy of our knowledge of these processes.

The concept and relevance of entrainment of environ-
mental quiescent air into convective cumulus updraughts
was first pointed out by Stommel (1947) and were followed

by numerous observational studies of cumulus clouds with
aircrafts (e.g. Warner, 1955). In these studies entrainment
strength could be determined through the ratio between
the measured liquid water in clouds and its adiabatic value.
The first quantitative descriptions of entrainment originated
from laboratory experiments of thermal plumes (Morton
et al., 1956; Turner, 1963) describing an increasing mass flux
M with height

1

M

∂M

∂z
= ε � 0.2

R
, (1)

where R is the radius of the rising plume andε is the fractional
entrainment coefficient. Many of the early cloud models
have adopted this entraining plume model. A distinction
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between entrainment due to turbulent mixing at the cloud
edge and organized inflow of environmental air induced by
the increase of the vertical velocity due to buoyancy was
first pointed out by Houghton and Cramer (1951) and its
relevance has been recently re-emphasized by Holloway and
Neelin (2009)

1

M

∂M

∂z
= εdyn + εturb . (2)

Since the dynamical (organized) and turbulent fractional
entrainment rates are by definition positive, they cause the
mass flux to increase with height. This is in agreement with
dry plumes where entrained air from the environment
becomes part of the plume after the mixing process.
However, cloudy updraughts can actually also exhibit a
decreasing mass flux with height, for instance due to mixing
of dry environmental air. The evaporative cooling can
actually reduce the updraught area and/or the updraught
velocity so that the mass flux can also decrease with height.
This so-called detrainment process is, in many respects, the
mirror image of entrainment and can also be subdivided
into a dynamical and a turbulent part:

1

M

∂M

∂z
= εdyn + εturb − δdyn − δturb . (3)

Mass flux parametrizations of cumulus convection in NWP
and climate models have to take into account the effect of a
whole ensemble of clouds rather than a single cloud element.
With the exception of the seminal work of Arakawa and
Schubert (1974), most mass flux parametrizations employ a
so-called bulk approach in which all active cloud elements
are represented in one steady-state updraught representing
the whole cloud ensemble.

Numerous entrainment and detrainment parametriza-
tions have been proposed for such mass flux bulk schemes.
Popular formulations proposed by Tiedtke (1989), Bechtold
et al. (2008), Nordeng (1994) and Gregory and Rowntree
(1990) can be ordered in terms of the right-hand side of
(3). Tiedtke (1989) and Nordeng (1994) assume that εturb

and δturb are equal and given by (1), while in Bechtold et al.
(2008) εturb depends on the saturation specific humidity.
Gregory and Rowntree (1990) also propose (1) for εturb but
utilize a systematic smaller δturb. Dynamical entrainment
εdyn is based on moisture convergence in Tiedtke (1989),
on momentum convergence in Nordeng (1994), on relative
humidity in Bechtold et al. (2008), and absent in Gregory
and Rowntree (1990). Organized detrainment is in general
formulated as a massive lateral outflow of mass around the
neutral buoyancy level although the precise details differ in
the cited parametrizations. In the above-cited parametriza-
tions typically a fixed value of R � 500 m for shallow clouds
and R � 2000 m for deep convection is used.

Another class of entrainment/detrainment parametriza-
tions, that does not distinguish between dynamical and
turbulent mixing, is based on the ‘buoyancy sorting’ concept
introduced by Raymond and Blyth (1986). This buoy-
ancy sorting concept is transformed into a operational
parametrization by Kain and Fritsch (1990). In Kain and
Fritsch (1990) an ensemble of mixtures of cloudy and
environmental air is formed, where each ensemble mem-
ber has a different concentration of environmental air.
If resulting mixtures are positively buoyant, they remain

in the updraught and are part of the entrainment pro-
cess while negatively buoyant mixtures are rejected from
the updraught and are part of the detrainment process. A
number of recently proposed shallow cumulus convection
schemes (Bretherton et al., 2004; de Rooy and Siebesma,
2008; Neggers et al., 2009) are based on this buoyancy sort-
ing concept. Finally a large number of parametrizations for
ε and (sometimes) δ have been published that are directly
or indirectly inspired on large-eddy simulation (LES) results
of shallow cumulus convection (e.g. Siebesma, 1998; Grant
and Brown, 1999; Neggers et al., 2002; Gregory et al., 2000;
Lappen and Randall, 2001).

The objectives of this paper are twofold. Firstly, to
create some order in all the proposed parametrizations,
general expressions for the dynamical and turbulent
entrainment and detrainment rates will be derived. Based
on these expressions, a physical picture emerges that
resembles Arakawa and Schubert (1974) and Nordeng
(1994). Furthermore, through combining budget equations
of mass, total water specific humidity and vertical velocity,
we will derive analytical expressions for ε and δ that
can be evaluated using LES. The latter expressions show
that the entrainment formulations proposed by Nordeng
(1994) and Gregory (2001) can be viewed as special cases.
The analytical expressions for ε and δ cannot be used
directly as parametrizations as no closure assumptions
have been imposed. Secondly, in section 3 we use LES
results for different shallow cumulus cases to critically
evaluate these analytical expressions. With the help of the
expressions, different aspects of ε and δ can be explained,
e.g. the large variability of the detrainment coefficient.
Moreover, the expressions are used to evaluate existing
parametrization approaches and it is demonstrated how they
can serve as a sound physical base for future parametrization
developments.

2. Derivation of the lateral mixing expressions

2.1. Basics

A convenient starting point is the conservation law for an
arbitrary variable φ:

∂φ

∂t
+ ∇ · vφ = F , (4)

where v denotes the three-dimensional velocity vector and
where all possible sources and sinks of φ are collected in
F. For the sake of simplicity, we assume a Boussinesq flow,
implying that the density in (4) is constant. We consider a
domain with a horizontal area A and we are interested
in the lateral mixing between a cloudy area Ac and a
complementary environmental area Ae at a given height
z, such as sketched schematically in Figure 1. At this point
we do not need to be more specific on the precise definition
of cloudy area, but it should be noted that it may consist of
many different ‘blobs’ (or clouds) that can change in shape
and size as a function of time and height.

By integrating (4) horizontally over the cloudy area
Ac(z, t) and applying Leibniz integral rule and Gauss
divergence theorem, a transparent conservation equation
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A

Ac

Ae

Lb

Figure 1. Schematic diagram showing an ensemble of clouds at a certain
height. A, Ac, and Ae represent the total horizontal domain area (Ac + Ae),
the cloudy area (white), and the environmental area (grey), respectively.
The interface between the cloudy area and the environment is plotted as a
dashed line and has a total length Lb.

of the cloudy area for φ can be deduced (Siebesma, 1998):

∂acφc

∂t
+ 1

A

∮
interfacê

n · (u − ui) φ dl

+ ∂acwφ
c

∂z
= acFc ,

(5)

where ac = Ac/A is the fractional cloud cover, n̂ is an
outward-pointing unit vector perpendicular to the interface,
u is the full 3D velocity vector at the interface, ui is the
velocity of the interface and w is the vertical component of
the velocity field. Overbars and variables annotated with c
denote averages over the cloudy part, i.e.

φ
c ≡ φc ≡ 1

Ac

∫∫
cloudy area

φ dxdy . (6)

In the special case φ = 1 and Fc = 0, we recover the
continuity equation

∂ac

∂t
+ 1

A

∮
interfacê

n · (u − ui) dl + ∂acwc

∂z
= 0 . (7)

As we are interested in the fluxes over the cloud boundary,
we also define averages over the interface as

ub ≡ ub ≡ 1

Lb

∮
interfacê

n · (u − ui) dl , (8)

φ
b ≡ φb ≡ 1

Lb

∮
interface

φ dl , (9)

where ub is the net mean velocity through the cloud
boundaries, φb is the mean of property φ along the cloud
boundaries, and Lb is the total length of the interface.
For both the interface and the cloudy area, we employ a
decomposition of the fluxes into a mean and a fluctuating
part:

uφ
b ≡ ubφb + u′φ′b , (10)

wφ
c ≡ wcφc + w′φ′c , (11)

where the primes denote deviations with respect to the
cloudy part or the interface dependent on the used average.

The advantage of the decomposition of the flux on the
interface is that it provides a natural distinction between the

small-scale diffusive, turbulent mixing (u′φ′b) and advective
transport caused by organized motions across the interface
(ubφb).

We assume that A is large enough to contain a large
cumulus ensemble, so that Eqs. 5 and 7 can be assumed to
be time-independent (Siebesma and Cuijpers, 1995). The
resulting stationary form of Eqs. 5 and 7, together with
Eqs. 8, 9, 10 and 11 can be written as

Lb

Ac

(
u′φ′b + ubφb

)
+ 1

ac

∂acwcφc

∂z

+ 1

ac

∂acw′φ′c

∂z
= Fc , (12)

Lbub

Ac
+ 1

ac

∂acwc

∂z
= 0 . (13)

In most previous theoretical studies on cumulus clouds and
lateral mixing (e.g. Asai and Kasahara, 1967; Randall and
Huffman, 1982; Cotton, 1975), it has been assumed that
the cloud fraction does not change with height. In that case
there is a direct relationship between ub and the divergence
of the vertical velocity field. While constant cloud fraction
might be a reasonable assumption for individual clouds,
we will release this restriction in the present case where
we are interested in the lateral mixing process between a
whole shallow cumulus ensemble and its environment. In
that case many LES studies showed that the cloud fraction
varies strongly with height (e.g. Siebesma and Cuijpers,
1995; Stevens et al., 2001; Brown et al., 2002).

The turbulent flux across the cloud interface can be well
approximated by an eddy diffusivity approach (Asai and
Kasahara, 1967; Kuo, 1962):

u′φ′b � K(�)
(φc − φe)

�

� η� | �w(�) | (φc − φe)

�

� η | wc | (φc − φe) . (14)

In the first step, the horizontal gradient of the field φ is
evaluated at a scale � which is of the order of the typical
radius of a cloudy updraught. The eddy diffusivity K in the
second step is expressed as the product of a length-scale, a
velocity difference over that length-scale and a dimensionless
constant η . Obviously we have taken the same length-scale
that is used to estimate the horizontal gradient. In the
last step, we used the fact that the vertical velocity in the
environment is much smaller than in the cloud. From here
on, the modulo signs for wc are omitted because we only
consider updraughts.

For the advective transport term across the interface,
ubφb, we use, following Asai and Kasahara (1967), an upwind
approximation

φb = φc if ub > 0, ∂M/∂z < 0 (divergence), (15)

φb = φe if ub < 0, ∂M/∂z > 0 (convergence). (16)

Note that the sign of ub is directly determined by the
vertical gradient of the mass flux M ≡ acwc (13). Using
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(14), (15), and (16) in (12) and eliminating the interface
velocity ub by using the continuity equation 13 finally gives

H(−ub)

(
1

ac

∂acwc

∂z

)
(φc−φe)+ Lb

Ac
η wc(φc−φe)

+ wc
∂φc

∂z
+ 1

ac

∂acw′φ′c

∂z
= Fc ,

(17)

where H denotes the Heaviside function. The first term
in (17) represents the organized transport across the
cloud interface. Note that this term only has a non-zero
contribution in the case of convergence. In the case of
divergence, the organized term will show up in the equation
for the environment which will not be considered in this
paper. The second term represents the turbulent lateral
mixing, the third term the vertical advection and the fourth
term represents the subplume contributions to the vertical
transport.

2.2. Budget equation for moist conserved variables

So far we have not specified φ. For the ultimate expressions
for entrainment and detrainment we will need budget equa-
tions for wc (section 2.3) and a moist conserved variable.
The cloudy area is often defined in such a way that the con-
tribution of the subplume vertical fluxes of moist conserved
variables is minimized (Siebesma and Cuijpers, 1995). In
the validation section, we will use a definition for the cloudy
area as that part of the horizontal domain A that contains
non-zero amounts of condensed water and that is also pos-
itively buoyant, known as the cloud core sampling method
(e.g. Siebesma and Cuijpers, 1995). This latter condition is
added to make sure that passive cloud elements that do not
contribute to the vertical transport are excluded. With such
a definition, the subplume covariance contribution for a
moist conserved variable can usually be ignored (Siebesma
and Cuijpers, 1995). Furthermore, for moist conserved vari-
ables such as the total water specific humidity qt, there are
in the absence of precipitation no sources and sinks, i.e.
Fc,qt = 0. For (heavy) precipitating convection Fc,qt should
be taken into account, but here we will only investigate
(almost) non-precipitating shallow convection cases. Ignor-
ing the source/sink and the subplume term allows us to
rewrite (17) with φ = qt in a more familiar form:

∂qt,c

∂z
= −

{
H(−ub)

(
1

M

∂M

∂z

)
+ η

Lb

Ac

}
(qt,c − qt,e) , (18)

where we recognize the entraining plume form of Betts
(1975):

∂qt,c

∂z
= −εqt(qt,c − qt,e) , (19)

in which the so-called fractional entrainment rate ε

appears. Note that thus far we have not introduced ε in
our derivation. This is in contrast with other studies (e.g.
Gregory, 2001) where ε is already introduced at an earlier
stage. Here we accept (19) as the definition of the fractional
lateral entrainment ε because this equation describes how
ε is used in parametrization schemes as well as how ε

is diagnosed from LES. Taking (19) as the definition

of ε allows us to write the following expression for the
entrainment based on the budget equation 18 for qt:

ε = εturb + εdyn = ηLb

Ac
+ H(−ub)

1

M

∂M

∂z
, (20)

where we made an explicit distinction between turbulent,
εturb, and dynamical, εdyn, entrainment as introduced by
Houghton and Cramer (1951). It is natural to identify the
first term on the RHS of (20) with εturb and the second term
on the RHS with εdyn. Likewise we can derive an expression
for the fractional detrainment rate if we rewrite the steady
state continuity equation 13 in a more familiar form:

1

M

∂M

∂z
= (ε − δ) , (21)

and use this simply as a definition of the fractional detrain-
ment rate δ. In that case we find a similar expression for δ:

δ = δturb + δdyn = ηLb

Ac
− H(ub)

1

M

∂M

∂z
. (22)

Again it is natural to identify the first term on the RHS of
(22) with δturb and the second term on the RHS with δdyn.

So for divergent conditions (ub > 0 or ∂M/∂z < 0)
εdyn = 0, whereas for convergent conditions (ub < 0 or
∂M/∂z > 0) δdyn = 0. In shallow convection cases, the
mass flux in the cloud layer will usually decrease (e.g.
Siebesma and Cuijpers, 1995; de Rooy and Siebesma, 2008).
Consequently, Eqs. 20 and 22 suggest a picture in line
with Arakawa and Schubert (1974) and Nordeng (1994) of
an ensemble of clouds where every individual cloud has a
massive entrainment at the bottom, lateral turbulent mixing
with constant mass flux in the cloud between bottom and
top, and massive detrainment at the top (Figure 2). As a
result of different cloud sizes in the ensemble, the massive
detrainment of the various clouds shows up as a dynamical
detrainment term. Different from Arakawa and Schubert
(1974) is the appearance of a detrainment term in the
turbulent lateral mixing, δturb. Figure 2 reveals that it is
only the massive detrainment that regulates the shape of the
cloud layer mass flux profile and consequently determines
primarily where the updraught properties are deposited in
the environment. This picture is consistent with de Rooy and
Siebesma (2008) who use only the detrainment to describe
variations in the shape of the shallow convection mass flux
profile.

2.3. Budget equation for vertical velocity

For the vertical velocity equation, there are sinks and sources
due to buoyancy and pressure perturbations

Fc,w = B − ∂p′

∂z

c

(23)

with

B = g
θ v,c − θ v

θ v
, (24)

where B is the buoyancy, p′ in the second term on the RHS
of (23) refers to pressure fluctuations with respect to the
hydrostatic pressure, g is the acceleration due to gravity,
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εturb

δturb

δdyn

δdyn

δdyn

δdyn

εdyn εdyn
εdynεdyn

ztop

zbot

Figure 2. Schematic diagram of a cloud ensemble with massive entrainment,
εdyn, at cloud base (zbot) and massive detrainment, δdyn, at the top
of individual clouds. From cloud base to the top of individual clouds,
turbulent lateral mixing takes place, presented by εturb and δturb. For
individual clouds the mass flux is constant with height. The deepest cloud
reaches height ztop, the top of the cloud layer. This picture is valid for
divergent conditions, i.e. ∂M/∂z < 0, which is usually the case for shallow
convection.

and θ v is the virtual potential temperature. As already
mentioned by List and Lozowski (1970) and Holton (1973),
the inclusion of the pressure pertubation term (second
term on the RHS of (23)) can be important, certainly for
heavy precipitating cumulus. Most recent studies, but in
contrast to our approach, consider the effect of the pressure
perturbation term within the context of a simplified vertical
velocity equation, in which ε is already introduced. In some
studies (e.g. Siebesma et al., 2003) the pressure perturbation
term was then scaled with the entrainment term and
sometimes with the buoyancy term as well (Bretherton
et al., 2004). Uncommon was the approach of Gregory
(2001), who used the detrainment coefficient to scale the
pressure perturbation term. However, in the original work
of Simpson and Wiggert (1969), and based on the work of
Turner (1963), the effect of pressure perturbations was taken
into account with a virtual mass coefficient which reduced
the buoyancy term.

Another approximation we have to make concerns the
subplume (variance) term in the budget equation 17 for wc.
In contrast to the budget equation for qt, the subplume
term cannot be ignored for vertical velocity. Recently,
sophisticated parametrizations have been developed within
a mass flux framework (Lappen and Randall, 2001) to
represent these subplume-scale fluxes. In a more simple
and often applied approach, the effect of this subplume
turbulence term is scaled with the buoyancy and taken into
account by a buoyancy reduction factor, α (e.g. Simpson
and Wiggert, 1969; Gregory, 2001; Siebesma et al., 2003).
Formally the scaling of both the subplume term for vertical
velocity and the pressure fluctuation term with the buoyancy
can be written as

B − ∂p′

∂z

c

− 1

ac

∂acw′w′c

∂z
≈ αB . (25)

Preferably an adequate scaling of the pressure pertur-
bation and subplume variance term should be determined
from directly diagnosed vertical velocity budget terms in LES
for different shallow convection cases. Such LES experiments
are outside the scope of this paper, but recent LES results
(Voogd, 2009) addressing exactly this problem support the
scaling of both the subplume and the pressure perturbation
term with the buoyancy (as in Simpson and Wiggert, 1969,
and (25)) using an optimal reduction factor α of ≈ 0.6.
Note that, based on laboratory experiments, Simpson and
Wiggert (1969) found a similar value for α, namely 2/3.
Because the choice of a proper α is important, we will return
to this issue in the results section.

If we apply the above-mentioned assumptions for the
forcing terms and subplume turbulence and taking the usual
approximation in mass flux schemes we << wc, (17) with
φ = w results in the following vertical velocity equation:

H(−ub)

(
1

M

∂M

∂z

)
+ η

Lb

Ac
= αB

w2
c

− 1

wc

∂wc

∂z
. (26)

2.4. Analytical expressions for entrainment and detrainment

A direct comparison of (26) with (18) allows new expressions
of ε and δ in terms of buoyancy, vertical velocity and cloud
fraction:

εw = αB

w2
c

− 1

wc

∂wc

∂z
, (27)

δw = αB

w2
c

− 2

wc

∂wc

∂z
− 1

ac

∂ac

∂z
, (28)

where subscript w is used to distinguish these expressions
from ε diagnosed using (19), denoted as εqt, and δ diagnosed
from (21) and (19), denoted as δqt. So by using (26) we have
eliminated the net exchange coefficient, η, as well as the
Heaviside function in front of the dynamical mixing terms.
As a consequence of the latter elimination, the analytical
expressions (27) and (28) are now valid for both divergent
and convergent conditions. Note that (27) and (28) cannot
be used (directly) as a parametrization because wc and the
buoyancy themselves depend on ε, nor is it straightforward
to approximate (1/ac)∂acz. Validation of the expressions
(27) and (28) as well as a discussion on the behaviour of the
separate terms will be presented in the validation section.

3. Analysis and validation with LES

3.1. Validation set-up

To investigate the analytical expressions for ε and δ in more
detail and to assess the validity, we use LES of the Dutch
Atmospheric LES model (DALES; Cuijpers and Duynkerke,
1993) for three shallow convection cases. Two of the cases
are more or less steady state shallow convection cases over
tropical oceans designed from the field campaigns BOMEX
(Barbados Oceanographic and Meteorological Experiment;
Siebesma and Cuijpers, 1995) and RICO (Rain in Tropical
Cumulus over the Ocean; Rauber et al., 2007). For RICO
we use the 24 h composite run. (More information about
this case and the experimental set-up of the composite run
can be found online at www.knmi.nl/samenw/rico.) The
main differences between these two cases concern the cloud
depth (∼ 1000 m for BOMEX and ∼ 1700 m for RICO) and
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the mass flux profiles (more variable in RICO). The third
case is based on an idealization of observations made at
the Southern Great Plains ARM (Atmospheric Radiation
Measurement Program) site on 21 June 1997 (Brown et al.,
2002). The ARM case describes the development of daytime
shallow cumulus convection over land. After approximately
5 h of simulation, at 1130 LT (local time), clouds start to
develop at the top of an initially clear convective boundary
layer. From this moment on, the cloud layer grows to a
maximum depth of 1500 m at 1630 LT, after which it starts
to decrease. Finally, at the end of the day at 1930 LT, all
clouds collapse. For the ARM case we solely present results
for the cloudy period. Because the ARM case is non-steady, it
is pre-eminently suited as a thorough test of our expressions.

For all cases, precipitation is turned off in the LES model
(only RICO observations show some light rain) and cloud
base level is defined as the height where the mass flux is at
its maximum (de Rooy and Siebesma, 2008). For BOMEX
and RICO the first hour is excluded for spin-up reasons.

All presented LES results are hourly averaged and based
on the cloud core sampling, i.e. all LES gridpoints that
contain liquid water and are positively buoyant (θ v,c > θ v)
are considered to be part of the cloudy updraught. Note that
recently a sampling method based on passive tracers has
been developed (Couvreux et al., 2010) giving comparably
good estimates of the total turbulent transport of moist
conserved variables in the cloud layer. In principle such a
sampling method could be used as an alternative for the core
sampling to evaluate the analytical expressions.

Applying the cloud core sampling to determine the
updraught properties, the entraining plume model (19) can
be used to infer εqt from LES (Siebesma and Cuijpers, 1995).
Subsequently, this εqt together with M as diagnosed with
the LES cloud core sampling can be substituted in (21) to
determine δ (referred to as δqt). So εqt and δqt are the lateral
mixing coefficients as often diagnosed from LES (Siebesma
et al., 2003) and they will be considered here as the reference.
Concerning the validation, it is important to mention that
δqt is a function of M which via M = acwc is related to
(1/ac)∂ac/∂z and this term is part of δw. Nonetheless, this
dependence has no serious impact on the conclusions.

As mentioned by Siebesma et al. (2003), the plume model
breaks down near the inversion because a simple bulk
approach with a single positive entrainment rate is not
able to represent the behaviour of the core fields. It is
therefore justifiable to exclude the top 15% of the cloudy
layer (where the cloud layer is defined as the layer where
ac > 0). Also negative εqt and/or δqt values indicate that
the bulk approach breaks down and these situations are
therefore excluded from our evaluation. However, when an
expression or parametrization of ε or δ results in a negative
value, it is cut off to zero, as would be done in practice. Note
that this cut-off (instead of maintaining the negative value)
has no significant impact on the results.

3.2. Results

Before we show the results of the analytical expressions
against LES, the sensitivity of Eqs. (27) and (28) for α is
investigated. This is done by varying α and showing in
Figure 3, for all three investigated cases together, the overall
performance of Eqs. (27) and (28) in terms of the RMSE
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Figure 3. The Root Mean Square Error (RMSE) of εGregory (31) as a function
of γ , and εw (27) and δw (28) as functions of α for the ARM, BOMEX
and RICO cases together. The RMSE for optimal α (0.62) and γ (0.31) are
mentioned in Table I. Note that Gregory (2001) found γ = 12−1.

defined as

RMSE =
√

1

N

∑
i=1,N

(Xw,i − Xqt,i)2 , (29)

where X ∈ {ε, δ} and i is an index over all presented
(N = 1009) results. Figure 3 reveals that the optimal α for εw

and δw (0.62) coincides and this value is also quite close to the
values found by the aforementioned LES experiments (0.6,
Voogd, 2009; 0.67, Simpson and Wiggert, 1969). Hereafter
all presented results are based on α = 0.62.

We start with the non-steady state ARM case, showing
in Figures 4(a, b) scatterplots with εw and δw against εqt

and δqt, respectively. Apart from the positive bias for εw,
the correspondence between the analytical expressions and
the mixing coefficients as diagnosed from LES is generally
good, especially considering the complicated, non-steady-
state nature of this case. On the other hand, Figure 4(a) still
reveals relatively large overestimations during the beginning
(until 1430 LT) and at the last hour (1930 LT) of the cloudy
period. Note that at 1930 LT clouds start to collapse and
the maximum cloud cover (at cloud base) for this hour is
only 0.006, which can be interpreted as an indication that
the results for this hour suffer from noise generated by a
too small ensemble. In the discussion of the next figures, we
will return to the above-mentioned overestimations of the
entrainment.

The generally good correspondence of the expressions
with the reference lateral mixing coefficients, including
the correct height dependence, is confirmed by Figure 5.
For clarity reasons, only some selected hours are plotted.
Figure 5(a) reveals that the relatively large overestimations
in the entrainment at 1330 LT (Figure 4(a)) occur near
cloud base. This is also the case for 1230 and 1430 LT (not
plotted). However, the aforementioned overestimations of
the entrainment at 1930 LT show a much different height
dependence with a maximum error at 1800 m, in the
middle of the cloud layer (Figure 5(c)). Noteworthy in
the detrainment profile plots (Figures 5(b, d)) is the large
variation in time. (Note the different x-axis scale for ε and
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Figure 4. Comparison of (a) εw with εqt and (b) δw with δqt for different hours during the ARM case.
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Figure 5. Profiles of εqt (closed symbols) and εw (open symbols) during the ARM case for hours (a) 1330 and 1530 LT and (c) 1730 and 1930 LT. (b)
and (d) are as (a) and (c) but now for δ. Note the different x-axis scale for the entrainment and detrainment plots. Profiles can be discontinuous due to
negative εqt and/or δqt values (see text).

δ.) As explained by de Rooy and Siebesma (2008), the large δ

values as observed during the first cloudy hours of the ARM
case (Figures 5(b) and 4(b)) are for an important part caused
by the relative shallowness of the cloud layers. In a bulk
sense (averaged over the cloud layer depth), shallower layers
inevitably lead to larger (1/M)∂M/∂z and (1/ac)∂ac/∂z
terms ((1/M)∂M/∂z ∼ (1/M)�M/�z ∼ (1/�z)). Under
the usual divergent conditions, these terms only affect

the detrainment ((22) and (28)), explaining the large δ

values observed during the first cloudy hours of ARM.
Besides the depth of the cloud layer, the shape of the
mass flux profile, and therewith δ, is also influenced by
environmental conditions (e.g. Derbyshire et al., 2004) as
well as properties of the updraught itself (de Rooy and
Siebesma, 2008). The above-mentioned arguments support
the approach of de Rooy and Siebesma (2008) to describe
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Figure 6. For different hours during the ARM case, profiles of (a, c) εw and (b, d) δw including the terms which build up the corresponding expressions,
that is (αBw−2

c ) and (−w−1
c ∂wc/∂z) for εw, and (αBw−2

c − 2w−1
c ∂wc/∂z) and (−a−1

c ∂ac/∂z) for δw (with α = 0.62).

the mass flux profile with a fixed function for ε but a
flexible parametrization for δ to account for the variations
in the shape from hour to hour and case to case (e.g.
a strong or zero decrease of the mass flux in the lowest
half of the cloud layer). An interesting variation on this
approach is given by Neggers et al. (2009) describing changes
in the cloud fraction profile based on thermodynamical
arguments.

Now, again for the ARM case only, let us take a closer
look at the different terms building up the expressions for ε

and δ and their impact on the vertical profiles of εw and δw

(Figures 6(a–d), again for the selected hours as in Figure 5).
We first return to the relatively large overestimations of
the entrainment during the first cloudy hours and 1930 LT
mentioned before. Comparing Figures 5(a) and (c) with
Figures 6(a) and (c) reveals that the large overestimations in
ε are related to conditions with positive (or small negative)
−(1/wc)∂wc/∂z values. Also for 1230 and 1430 LT (not
plotted) the largest overestimations in the entrainment occur
when −(1/wc)∂wc/∂z > 0 (i.e. wc decreases with height).
The−(1/wc)∂wc/∂z profile for 1930 LT (Figure 6(c)) is quite
different from all other hours with a positive value in the
middle of the cloud layer at 1800 m (also the height with the
maximum error in εw and δw for this hour) and a decrease
above. This atypical profile supports the aforementioned
suspicion that the ensemble for this hour is too small.

The overall picture of Figures 6(a) and (c) is that both
terms in (27) for εw, i.e. αB/w2

c and (1/wc)∂wc/∂z, are of

the same order of magnitude, with the buoyancy term being
somewhat larger. However, for δw (Figures 6(b) and (d)) the
situation is different. Because the sum of the buoyancy and
the vertical velocity terms in (28) for δw, i.e.

αB

w2
c

− 2

wc

∂wc

∂z
,

result mostly in small negative values for a large part
of the cloud layer, the strongly fluctuating (1/ac)∂ac/∂z
term clearly dominates the height and time variation in
δ. As a result, δw can be reasonably well approximated
by −(1/ac)∂ac/∂z with generally underestimations near
cloud base and overestimations near cloud top. Also
a direct comparison between δqt and −(1/ac)∂ac/∂z
for all three cases together gives reasonable results
(Figure 7(a)).

If we assume that δ can be approximated by
−(1/ac)∂ac/∂z, this leads together with (21) to the for-
mulation proposed by Nordeng (1994):

εNordeng = 1

wc

∂wc

∂z
. (30)

However, from Figure 7(b) it becomes clear that, although
the aforementioned approximation works well for δ, it does
not hold for ε where the equal order of magnitude of
the different terms in the analytical expression makes this
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Figure 7. For the ARM, BOMEX, and RICO cases, comparison of (a) δqt

with −1(1/ac)∂ac/∂z, (b) εqt with εNordeng = w−1
c ∂wc/∂z, and (c) εqt with

εGregory = γ Bw−2
c , with γ = 0.31.

expression more sensitive. From an overestimation of high
values of εqt in Figure 7(b), corresponding to values near
cloud base, (30) underestimates ε values in the middle of
the cloud layer and again overestimates the small ε values
near the top of the cloud layer. For all three cases together,
the RMSE for (30) is presented in Table I.

Yet another approximation can be made by simply
ignoring the (1/wc)∂wc/∂z term (Figure 6(a) and (c)) in
(27), leading to the following expression, as proposed by

Gregory (2001)

εGregory = γ B

w2
c

, (31)

where γ represents a tuning constant. Gregory (2001)
used γ = 1/12 and found a 50% underestimation of his
expression against LES for BOMEX. The sensitivity of
(31) for γ is shown in Figure 3 which suggests a much
higher optimal value, namely γ = 0.31. To demonstate the
potential of (31), we show results with the latter optimal
value. Figure 7(c) for all three cases reveals reasonable
results for (31) but less good than with the full analytical
expression 27 (compare Figure 7(c) with Figures 4(a) and
8(a) or see Table I or Figure 3). Especially for BOMEX and
RICO, the (1/wc)∂wc/∂z term (not shown) has relatively
large values near cloud base and cloud top. Consequently,
εGregory in Figure 7(c) reveals inevitably a bend in the
scatterplot with overestimations near cloud base and top
and underestimations around the middle of the cloud layer.
Another indication that the influence of (1/wc)∂wc/∂z
cannot be ignored in an expression for ε comes from
examining the profiles in Figure 5(c) in detail. For example,
looking just above 1500 m for 1730 LT, ε atypically
increases slightly with height. This increase is caused by
the increase of −(1/wc)∂wc/∂z at the corresponding height
(Figure 6(c)). Although such increases in εw are generally at
the approximately correct heights, they seem to be somewhat
stronger than in εqt, especially for hour 1930 LT. As well
as Gregory, Mironov (2009) and Rio et al. (2010) also
mentioned the term B/w2

c in an expression for the lateral
mixing coefficients.

As a validity check we also present results for the
steady state cases BOMEX and RICO (Figure 8). Again
the correspondence between the usual LES diagnosed
mixing coefficients and εw and δw is good. While the
analytical expressions overestimated the entrainment for
ARM, they seem to underestimate the detrainment for
BOMEX and RICO somewhat. The RMSE for the analytical
expressions 27 and 28 for all cases together are presented in
Table I.

In comparison with δ, the variations from hour to hour
and case to case in ε are small (Figure 5) and describing
ε with some fixed (non-dimensionalized) function from
cloud base to cloud layer top seems more feasible than a
fixed function for δ (also de Rooy and Siebesma, 2008).
But despite the relative small variation in ε profiles, the
results clearly show overall smaller entrainment rates for
the ARM case than for the BOMEX and RICO case
(compare Figure 4(a) with Figure 8). This is caused by
the smaller αB/w2

c term, and more specifically the larger

Table I. Root Mean Square Error of different expressions
for ε and δ against εqt and δqt respectively for the ARM,
BOMEX and RICO case together (N=1009). Results for εw

and δw are based on α = 0.62 and for εGregory on γ = 0.31.

RMSE

εw 3.45 × 10−4

εGregory 4.87 × 10−4

εNordeng 1.01 × 10−3

δw 3.85 × 10−4
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Figure 8. Comparison of (a) εqt with εw and (b) δqt with δw, for all hours except the first during the BOMEX and RICO cases.

vertical velocity in the ARM case. For example, at cloud
base wc ≈ 1.5 m s−1 for ARM whereas wc ≈ 0.7 m s−1 for
BOMEX and RICO. The higher velocities during the ARM
case can be related to the more vigorous convection in the
subcloud layer with strong surface heating above land. If
we are able to make an adequate estimate of the vertical
velocity of the updraught at cloud base in a NWP or climate
model, this velocity can be used to refine the often-applied
parametrization where ε is a fixed function of height (e.g.
Siebesma et al., 2003), i.e. parametrize the starting value of
ε at cloud base with a function of the vertical velocity of the
updraught and assume e.g. a z−1 lapse rate for the rest of
the cloud layer. This is an example of how insight given by
the analytical expressions can be used for parametrization
developments. Note that the ARM case has a much deeper
subcloud layer than the other two cases, enabling not only
larger accelerations of the updraught thermals but also the
development of larger thermals that will normally have
smaller ε values. A separation between these positively
correlated updraught properties, high updraught vertical
velocity and large sizes of the thermals, cannot be made
here.

4. Conclusions and discussion

In contrast with other studies on fractional entrainment
and detrainment (e.g. Gregory, 2001; Siebesma et al., 2003),
where the development of parametrizations was the main
goal, here we primarily wanted to gain more insight into
the behaviour and physical nature of ε and δ. For that,
we derived analytical expressions for ε and δ starting
from generally valid equations for arbitrary-shaped in-cloud
fields and subsequently applied assumptions known from
literature. In contrast with most other theoretical studies
on convection, we did not assume a constant cloudy area
fraction with height which is crucial because we consider
an ensemble of updraughts for which it is known that the
cloudy area fraction can vary strongly with height. One of the
key assumptions in the derivation concerns the description
of the fluxes across the cloudy boundaries, where we follow
Asai and Kasahara (1967) including the distinction between
larger-scale dynamical transport and small-scale turbulent
mixing.

From the derivation of the analytical expressions, the
following physical picture (Figure 2) emerges for an
ensemble of shallow cumulus clouds under the usual
divergent situation (∂M/∂z < 0): Massive entrainment
occurs just beneath cloud base (here defined as the level
with maximum mass flux). From cloud base to cloud
top, individual clouds have a constant mass flux with only
turbulent lateral mixing until the massive detrainment at the
cloud top. This picture is in line with Arakawa and Schubert
(1974) and Nordeng (1994), but now includes a turbulent
detrainment term. As a result of different cloud sizes in the
ensemble, the massive detrainment of the various clouds
shows up as a dynamical detrainment term and the overall
mass flux decreases with height. The consequence of the
above-mentioned concept is that, in the cloud layer, ε is
only determined by turbulent lateral mixing whereas δ is
also influenced by dynamical transport ((1/M)∂M/∂z). As
a result there is a strong correspondence between variations
in δ and (1/M)∂M/∂z (or (1/ac)∂ac/∂z), which supports
the approach of de Rooy and Siebesma (2008) to describe
the mass flux profile with a fixed function for ε but a flexible
parametrization of δ to account for the often described
substantial variations in the shape. For example, from
de Rooy and Siebesma (2008), we know that δ varies strongly
with cloud layer depth. This can now be easily explained
because in a bulk sense (averaged over the cloud layer)
and under (the usual) divergent conditions, (1/M)∂M/∂z
and (1/ac)∂ac/∂z, and therewith δ, must increase with
decreasing cloud layer depth.

Based on a continuity equation and budget equations
for the updraught vertical velocity and total water specific
humidity, analytical expressions for ε and δ are derived.
The first term in the expressions, αB/w2

c , is similar to the
expression for ε as proposed by Gregory (2001). Further, it
is shown that under certain assumptions both terms in the
expression for ε together can be written as the expression
suggested by Nordeng (1994). Overall, results with εGregory

and especially εNordeng are less accurate than the analytical
expression εw. Moreover, with the help of the full expression,
biases in εGregory and εNordeng can be explained.

Although the variations from case to case and hour to
hour in ε are smaller than in δ, the entrainment values
diagnosed for the ARM case are significantly smaller than
for the BOMEX and RICO case. The analytical expression

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1216–1227 (2010)



1226 W. C. de Rooy and A. P. Siebesma

for ε reveals that this difference can be related to the much
smaller B/w2

c term, or more specifically much larger wc

values, in the ARM case. It is discussed how this insight
given by the analytical expression for ε can be useful for the
development of a new parametrization.

Although we used assumptions already known from
literature in the derivation of the expressions, this does not
mean that all applied assumptions were straightforward and
undisputed. A problematic point remains the determination
of a proper value for the buoyancy reduction factor α

which covers the subplume turbulence term of the vertical
velocity variance as well as the pressure perturbation
term. In principle, α should be objectively derived from
a careful analysis of the vertical velocity budget terms in
LES. But even then it is not yet established if α can be
considered as approximately constant under all conditions.
For example, Holton (1973) already pointed out that the
importance of the pressure perturbation term will increase
going from shallow to deep heavy precipitating convection.
Nevertheless, preliminary results from LES experiments
diagnosing the vertical velocity budget terms (Voogd, 2009),
early results based on water tank experiments (Turner, 1963;
Simpson and Wiggert, 1969), as well as the results presented
here, all suggest a suitable value for α of around 0.62 for
shallow convective conditions.

The presented analytical expressions are useful to identify
important processes determining the behaviour of ε and δ.
It is shown that the expressions can be used as a starting
point for the development of parametrization approaches as
well as to judge existing parmetrizations.
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