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ABSTRACT

Retrievals of liquid cloud properties from remote sensing observations by necessity assume sufficient in-

formation is contained in the measurements, and in the prior knowledge of the cloudy state, to uniquely

determine a solution. Bayesian algorithms produce a retrieval that consists of the joint probability distribution

function (PDF) of cloud properties given the measurements and prior knowledge. The Bayesian posterior

PDF provides the maximum likelihood estimate, the information content in specific measurements, the effect

of observation and forward model uncertainties, and quantitative error estimates. It also provides a test of

whether, and in which contexts, a set of observations is able to provide a unique solution. In this work, a

Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to sample the joint posterior PDF for re-

trieved cloud properties in shallow liquid clouds over the remote Southern Ocean. Combined active and

passive observations from spaceborne W-band cloud radar and visible and near-infrared reflectance are used

to retrieve the parameters of a gamma particle size distribution (PSD) for cloud droplets and drizzle.

Combined active and passive measurements are able to distinguish between clouds with and without pre-

cipitation; however, unique retrieval of PSD properties requires specification of a scene-appropriate prior

estimate. While much of the uncertainty in an unconstrained retrieval can be mitigated by use of information

from 94-GHz passive brightness temperature measurements, simply increasing measurement accuracy does

not render a unique solution. The results demonstrate the robustness of a Bayesian retrieval methodology and

highlight the importance of an appropriately scene-consistent prior constraint in underdetermined remote

sensing retrievals.

1. Introduction

Clouds are a critical component of Earth’s climate

system, acting to influence the radiation budget, the

hydrologic cycle, and the vertical distribution of water

and energy (Stephens 2005). The details of cloud radi-

ative effect, as well as precipitation rate and distribution,

are sensitive to the vertical and horizontal distribution of

hydrometeor size and phase within clouds. In particular,

the distribution of cloud particle sizes [the cloud particle

size distribution (PSD)] plays a role in determining the

vertical transport of water mass, latent and radiative

heating, and precipitation rate. Estimates of cloud particle

sizes at and near the tops of clouds have been available for

some time from passive spaceborne measurements [e.g.,

the Moderate Resolution Imaging Spectroradiometer

(MODIS); Platnick et al. 2003]. Spaceborne radar has

provided information on the vertical distribution of

cloud-sized particles (CloudSat; Stephens et al. 2008)

and precipitation-sized particles [e.g., from the Tropical

Rainfall Measuring Mission (TRMM; Kummerow et al.

2000) and Global Precipitation Measurement mission

(GPM;Houet al. 2014)]. Thesemeasurements, alongwith a

growing volume of observations from field campaigns,

are providing crucial global data on cloud properties.
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While the observational volume continues to grow,

unambiguous retrieval of cloud particle size distribu-

tions remains a significant challenge. In a recent paper

(Posselt and Mace 2014, hereafter PM14), we explored

the information content of upward-looking active and

passive measurements of precipitating orographic clouds.

We found that, in the absence of a sophisticated cloud

structure algorithm and a priori estimate, a unique cloud

PSD retrieval was not possible. The cloud observed in

PM14 was mixed phase, and the difficulties retrieving ice

PSD properties are well known (Wood et al. 2014). In this

study, we follow the work of Lebsock et al. (2011), Mace

et al. (2016), and Leinonen et al. (2016), and examine data

from A-Train measurements of liquid-only clouds over

the subtropical Pacific Ocean. The physical scenario is far

simpler than in our previous experiments, as these clouds

contain only one condensed phase. They may also be

expected to contain two particle modes: a small (non-

precipitating) cloud mode and a larger (drizzle) mode.

The droplet mode is directly related to the ambient con-

centrations of cloud condensation nuclei (CCN; Hegg

et al. 2012). The evolution of the precipitation mode is

connected to within-cloud microphysics, dynamics, and

radiative heating, and is fundamentally a cloud-lifetime-

limiting process (Wood et al. 2009). Restricting our ob-

servations to liquid clouds (with and without drizzle) also

removes the influence of the particle shape on measure-

ments, reducing the sources of uncertainty in the cloud

PSD estimate.

Recent work has demonstrated that a combination

of a single radar frequency, with a passive (microwave

and/or visible/infrared) constraint on integrated cloud

mass, has promise for retrieving warm rain precipitation

(Lebsock et al. 2011; Mace et al. 2016; Leinonen et al.

2016) and mixed phase (PM14) cloud properties.

However, a detailed, and in some cases complex, algo-

rithm is needed tomitigate the cloud particle size/number

ambiguity associated with use of a single radar frequency

(Lebsock et al. 2011; Mace et al. 2016; Leinonen et al.

2016). Proper incorporation of prior knowledge may al-

low for a unique retrieval of cloud properties, even in the

absence of sufficient observational constraint. In many

cases, such detailed prior constraints are necessary to

provide convergence to a solution in an iterative algo-

rithm. In this paper, we utilize a Bayesian Markov chain

Monte Carlo (MCMC) algorithm that explicitly samples

the probability distribution of cloud properties and does

not specifically require a prior estimate or cloud structure

model. We explore the information contained in obser-

vations available from both passive and active remote

sensing observations of cloud properties, and also explore

the extent to which prior information may help to con-

strain the retrieval. Specifically, we utilize the flexibility

and generality of MCMC to address the following

questions:

d What is the structure of the retrieval space for

estimates of low cloud properties from CloudSat?

How does the information space change with addi-

tion of passive visible, shortwave infrared (SWIR),

and microwave measurements?
d Is there sufficient information in combined active–

passive measurements fromA-Train to place a unique

constraint on the PSD properties of liquid-only clouds?
d Previous studies indicate CloudSat is capable of dis-

tinguishing precipitating from nonprecipitating clouds

(Haynes et al. 2009). How clear is this distinction in the

full retrieval space returned by the MCMC algorithm?
d What additional information is contained in 94-GHz

passive microwave observations obtained by the Cloud-

Sat Cloud Profiling Radar (CPR)?

In examining the influence of prior information, we

consider two limiting cases. The narrowly defined prior

(which we refer to as ‘‘scene consistent’’) assumes the

geophysical context and the cloud types are known, so

that the ranges of possible cloud particle size distribu-

tion properties are tightly constrained. In our specific

application, this means that we assume the PSD prop-

erties are restricted to those that are consistent with

shallow drizzling liquid clouds over the SouthernOcean.

The broadly defined prior (which we refer to as ‘‘cli-

matological’’) assumes no knowledge of the specific

scene, but instead sets broad constraints on the PSD

properties consistent with the expected range of condi-

tions observable on Earth.

In addition to exploring the characteristics of the so-

lution space in a remote sensing retrieval, we test a new

version of our MCMC algorithm (three-stage delayed-

reject MCMC) suitable for higher-dimensional retrieval

problems. We illustrate how this algorithm can be ap-

plied to retrieval of vertical profiles of cloud properties,

maintaining the flexibility of the Bayesian framework

and simultaneously accounting for covariance in cloud

properties in the vertical. We wish to emphasize at the

outset that we do not expect radar-only (or even radar1
passive microwave and visible/shortwave IR reflectance)

observations to provide sufficient constraint on a bimodal

cloud particle size distribution. Rather, our aim is to de-

termine how much information the observations contain,

both if one assumes scene-dependent constraints and if

one relaxes the prior constraints. In addition, we do not

seek to describe a newoperational retrieval algorithm, and

there are certainly important sources of variability that we

will not be able to consider (e.g., radar beamfilling, at-

tenuation). Our experiments lay the foundation for future

research that will examine several related questions:
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d What is the effect of adding measurements in the form

of additional active or passive microwave frequencies,

Doppler spectrum observations, infrared frequencies,

or multiangle imaging? Such observations have been

collected in recent field campaigns [e.g., the joint

Radar Definition Experiment–Integrated Precipitation

and Hydrology Experiment (RADEX–IPHEX)], and

forthcoming experiments will examine this question.
d What is the utility of adding information on the

internal cloud dynamics and thermodynamic state?

Is it possible to utilize a numerical model in the

retrieval to enforce a scene-consistent prior? Such

questions are the purview of data assimilation, a topic

that is beyond the scope of this paper.
d What is the effect of imposing more restrictive struc-

ture functions (e.g., allowing cloud particles to have

approximately the same number and size at and near

the cloud top, but very different at cloud base)? We

leave this as a suggestion for future work, and plan to

present results of experiments using different prior

assumptions in a subsequent paper.

The remainder of this paper is structured as follows. We

describe the observations, forward models, and retrieval

algorithm in section 2. Section 3 contains a presentation

of the retrieval results, followed by a discussion of the

limitations of our work and suggestions for future work

in section 4. We offer a summary and conclusions in

section 5, followed by three appendices that describe the

details of the Bayesian MCMC algorithm.

2. Observations, forward models, and retrieval
algorithm

a. A-Train observations and cloud scene description

Observations used in the retrieval consist of MODIS

0.55- and 2.1-mm reflectance and CloudSat radar re-

flectivity and 94-GHz brightness temperature. While

our previous work has illustrated the value of lower-

frequency brightness temperatures (e.g., 23 and 31GHz),

the effective footprint sizes of these observations in the

A-Train are much larger than those of CloudSat and

MODIS. Incorporation of these measurements into the

retrieval would have required additional treatment of

the effects of partial cloudiness in these low broken

clouds, and therefore we have decided not to include

them here. MODIS data were obtained from collection

6 downloaded from the Level-1 and Atmosphere Ar-

chive and Distribution System (LAADS) site and

extracted from the granule observed at 1955 UTC

6 January 2007 over the eastern South Pacific Ocean

(http://dx.doi.org/10.5067/MODIS/MYD01.006). CloudSat

radar reflectivity was obtained from the CloudSat data

processing center from granule 3691 from version 4 of

the 2B-GEOPROF product. The 94-GHz brightness

temperature is an experimental product produced by

using the CloudSat radar antenna as a passive micro-

wave observing system between observations of the ac-

tive radar return. Because there is no onboard calibration,

rather than using the absolute brightness temperatures, we

utilize the cloudy–clear brightness temperature difference.

This quantity is computed as the difference between the

Tb94 observed for the cloudy footprint and an along-track

average of the Tb94 in clear air on either side of the cloud.

We ensure the profiles are cloud free by using the cloud

mask flag in the 2B-RL-GEOPROF product (Mace and

Zhang 2014) that combines the radar cloud mask

(Marchand et al. 2008) and the cloud mask produced

by the CALIPSO lidar. We note that recent work has

reported on retrievals of cloud properties using CloudSat

Tb94 calibrated against AMSR-E and AMSR-2 (Lebsock

and Suzuki 2016).

Uncertainties in the observations are specified con-

sistent with optimal estimation retrievals (Mace et al.

2016) and are listed in Table 1. Examination of the re-

trieval PDFs is conducted for three different cloud

profiles over the remote subtropical ocean. The spatial

context may be seen in the MODIS scene depicted in

Fig. 1. The cloud located farthest to the south (profile 1)

has relatively small visible reflectance and near-infrared

reflectance (;0.33 and ;0.2, respectively; Table 2;

Fig. 2c), indicating this cloud likely contained primarily

drizzle drops. The reflectance at near-infrared wave-

lengths decreases with increasing cloud droplet size, and

reflectance at 2.1-mm wavelength derives from near the

cloud top (Platnick 2000). In contrast, the profiles de-

termined to have both precipitation and cloud droplets

(profile 2) and cloud droplets only (profile 3) both ex-

hibit larger visible reflectance (0.69 and 0.77, respectively)

and SWIR reflectance (0.30 and 0.31, respectively; Table 2;

Fig. 2c). Evidence for differences in cloud internal struc-

ture can be seen in theCloudSat radar reflectivity (Fig. 2a).

Cloud 1 exhibits relatively large radar reflectivity (maxi-

mum of 24dBZ), but with a cloud top that is lower than

clouds 2 and 3 by approximately one CloudSat range bin.

Cloud 2 almost certainly contains precipitation-sized

TABLE 1. List of observations and the assumed uncertainty.

Values in parentheses are used in sensitivity experiments (see text

for details).

Observation Uncertainty

0.55-mm reflectance (%) 25 (5)

2.10-mm reflectance (%) 25 (5)

Cloudy 2 clear Tb94 (K) 5.0

Radar reflectivity (dBZ) 1.0
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droplets, as it exhibits reflectivity values greater than

zero in the lower levels of the cloud. Reflectivity in

cloud 3 does not exceed 221 dBZ and therefore likely

contains only small cloud particles, albeit enough of

them to lead to relatively large visible and SWIR re-

flectance values. The fact that the cloud-top proper-

ties are very similar for clouds 2 and 3, while the

interior structure is clearly very different, highlights

the importance of a multivariate approach to retrieval

of cloud properties (Mace et al. 2016). We do not plot

CloudSat reflectivity lower than 1000m above the

surface, as the signal-to-noise ratio is low in this region

because of the presence of ground clutter.

b. Forward models

All retrievals of cloud properties from remote sensing

measurements rely on some form of model to connect

the retrieved quantities to the observations. In our case,

the measurements consist of 94-GHz radar reflectivity

and brightness temperature, as well as 0.55- and 2.1-mm

reflectances. Consistent with observations of drizzling or

lightly precipitating cumulus clouds over the ocean

(Rauber et al. 2007; Mace et al. 2016), we assume there

are two populations of condensed phase particles pres-

ent: a small (cloud) mode and a larger (drizzle) mode.

We further assume the PSD can be described by a

modified version of a gamma probability density func-

tion of the form

n
i
(D

i
)5N

0i

 
D

i

D
0i

!ai

exp

 
2
D

i

D
0i

!
, (1)

where the subscript i refers to either the small mode

(subscript s) or the large particle mode (subscript l). The

retrieval returns estimates of the parameters of the

gamma function: the reference numberN0i and diameter

D0i. Except where noted, we also retrieve the width

parameter ai. Note that the distribution defined in (1)

has a single mode that occurs at a diameter of

Dmodei 5aiD0i and with a number of particles per unit

diameter (the number density) at the modal diameter

(Dmodei) N(Dmodei)5N0ia
ai
i exp(2ai). Since the param-

eters N0i and D0i set the number of particles and di-

ameter at the mode of the distribution for species i for a

given width parameter ai, we will refer to them hence-

forth as the modal number and diameter, respectively.

The radar forward model is documented in PM14 and

computes radar reflectivity using Mie theory for liquid

(Bohren and Huffman 1983). For the shallow cumulus

clouds observed in this study, we neglect multiple scat-

tering. Microwave brightness temperatures are computed

using the Eddington approximation (Kummerow 1993),

with radiative properties consistent with Mie theory and

surface emissivity set to 0.99. Visible and near-infrared

reflectances are computed using the Radiant eigenmatrix

solver (Christi and Gabriel 2003), again with radiative

properties consistent with Mie theory.

FIG. 1. MODIS (a) 0.55- and (b) 2.10-mm reflectance over the scene of interest. Cloud profiles analyzed in the text

are circled and labeled consistent with the annotations in Fig. 2, below.

TABLE 2. Observations from each profile used in this study.

Rain Cloud 1 rain Cloud

0.55-mm reflectance 0.33 0.69 0.77

2.10-mm reflectance 0.20 0.30 0.31

Cloudy 2 clear Tb94 (K) 10.74 16.20 16.23

dBZ, 2520m — 229.62 228.29

dBZ, 2280m 230.57 213.81 227.14

dBZ, 2040m 212.88 24.40 221.48

dBZ, 1800m 26.96 20.19 222.84

dBZ, 1560m 24.85 0.42 235.00

dBZ, 1320m 24.07 20.52 —

dBZ, 1080m 25.69 20.37 —
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c. Markov chain Monte Carlo algorithm

The solution to a retrieval problem may be formu-

lated probabilistically (e.g., Rodgers 2000) by comput-

ing the conditional probability of the retrieved variables,

given prior knowledge and the set of available

observations:

P(x j y)5P(x)P(y j x)
P(y)

. (2)

In this statement of Bayes’s relationship between con-

ditional probabilities, P(x) represents prior knowledge

of the retrieved variables, P(y) represents the probability

space containing all possible values of the observations,

and the likelihood P(y j x) represents the uncertainty in

the observations and in the forward models (cf. Posselt

et al. 2015). While many algorithms assume the proba-

bilities in (2) are Gaussian so that the posterior distri-

bution can be obtained via least squares error variance

minimization, a more complete description of the

retrieval solution may be obtained if we assume no

specific form for the posterior distribution. MCMC

algorithms generate a Markov chain that consists of

samples from the posterior distribution produced by

the combination of the prior and likelihood. A description

of the theory that underliesMCMCcan be found in Posselt

(2013) and PM14, as well as references therein.

In this study, the vector of retrieved variables x con-

tains the large and small cloud modal diameter and

number and the gamma width parameter alpha, in each

CloudSat range bin. As such, the retrieval vector is 6 3
(number of radar range bins) long. In each experiment

we assume no prior knowledge on x, except that each

retrieved variable lies within a realistic range of values

(Table 3). We set ranges on the various components of x

depending upon whether a scene-consistent or climato-

logical prior is assumed. The observation vector y consists

of the two reflectance values, the 94-GHz brightness

temperature difference, and the 94-GHz reflectivity in

each CloudSat range bin. As such, the observation

FIG. 2. (a)CloudSat reflectivity (dBZ; color shading) alongwith the locations of the three cloud profiles examined

in the text, (b) CloudSat 94-GHz brightness temperature (K), and (c) MODIS 0.55- (black) and 2.10-mm (red)

reflectance.
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vector is 3 1 (number of radar range bins) in length. In

the MCMC algorithm, each step in the Markov chain is

generated via random perturbation of the six state var-

iables in a single layer. Acknowledging that the cloud

properties will be correlated layer to layer, we spread

this perturbation in the vertical using a Gaussian de-

correlation function (see appendix A for details).

To simultaneously allow for rapid exploration of a

large range of cloud properties and detailed analysis of

local features in the solution space, we implemented a

three-stage delayed-reject algorithm based on the work

of Green and Mira (2001). A detailed derivation of the

three-stage delayed-reject algorithm is presented in

appendix B. An uncorrelated Gaussian proposal distri-

bution was used to generate perturbations, and proposal

variance was tuned to an acceptance rate of greater than

30% in each experiment. Delayed-reject algorithms al-

low for a generally larger accept rate than standard

Metropolis–Hastings algorithms, and an accept rate

between 30% and 60% was found in our case to strike a

balance between thorough and efficient sampling. We

utilize 24 simultaneous MCMC chains to more effi-

ciently explore the retrieval space, and each chain is run

to 100 000 iterations so that each MCMC experiment

generates 2.43 106 forward model solutions per profile.

Chains are initiated from values of the PSD parameters

that are distributed evenly in the prior space, but we

found that the results were completely insensitive to the

choice of chain starting point. We assess convergence of

the algorithm by computing the R statistic (Gelman et al.

2004), which compares variance between Markov chains

with variance within each Markov chain (see appendix C

for details). Each experiment converged to an R value of

less than 1.1, indicating sufficient mixing was achieved.

3. Retrieval results

a. Comparison of three cloud profiles with
scene-consistent prior

We first examine results from the scene-consistent

prior, and compare the multidimensional retrieved

probability density function for each of the three clouds

of interest. As mentioned above, MCMC produces a

sample of the full multidimensional probability distribu-

tion of the retrieved variables. In our experiments, the

dimension of the retrieval space (the number of retrieved

parameters) is equal to the number of cloudy layers

multiplied by the number of retrieved variables. As the

default is to allow variability in all three PSD parameters

(modal length and number and PSDwidth) for cloud and

precipitation droplet modes, each layer has a six-

dimensional retrieval space. Examination of the output

revealed that there was near complete nonuniqueness in

the determination of the width parameter in the scene-

consistent case, and, for this reason, we show only a de-

piction of the four-dimensional space consisting of modal

diameter and number for cloud and precipitation modes.

Examination of this space indicated that plots of the two-

dimensional marginal distributions of the droplet and

drizzle number parameters N0 were also flat; nearly any

combination of the two was capable of producing

forward-modeled values consistentwith the observations.

There are interesting features in the 2D droplet modal

diameter–drizzle modal diameter marginal and in the 2D

marginal of the modal number parameter and modal di-

ameter for each cloud species. Consequently, we show

this subset of three two-dimensional marginals in Fig. 3.

To illustrate the differences between the clouds, and the

changes in retrieval space with depth, we plot two-

dimensional marginal PDFs for the cloud and pre-

cipitation modal diameter and number for the cloud top,

cloud topminus 480m (thirdCloudSat range bin from the

top) and cloud top minus 960m (fifth CloudSat range bin

from the top).

Comparison of the retrieval space at the cloud

top in all three clouds (Fig. 3, top row) reveals little

difference in the solution among the three profiles.

The precipitation-mode diameter is very well con-

strained, and ranges from approximately 15–30 mm

for all three cases. Cloud-mode diameter probability

density is maximized at approximately 8–10 mm, with

smaller droplets also highly likely. There is little change

in probability density with change in precipitation-mode

number, indicating changes in the precipitation-mode

number have a small effect on the forward-modeled

reflectivity, brightness temperature, or reflectance.

Larger cloud droplet diameters are feasible in profiles

that contain precipitation (profiles 1 and 2), but where

the cloud droplet diameter is largest, the number pa-

rameter for cloud droplets is restricted to be small

(,;200 cm24). In contrast, the cloud-only profile

(profile 3) centers the cloud droplet modal diameter

probability density maximum at approximately 8 mm.

Differences in the retrieval space begin to emerge 500m

TABLE 3. List of retrieved state variables, along with their prior

ranges for scene-consistent and climatological experiments.

Scene Climate

Min Max Min Max

D0, cloud droplets (mm) 0.1 15.0 0.1 30.0

N0, cloud droplets (cm24) 0.001 1000.0 0.001 50 000.0

a, cloud droplets 1.0 2.0 1.0 5.0

D0, precipitation (mm) 0.1 100.0 0.1 1000.0

N0, precipitation (cm24) 0.0001 5.0 0.0001 500.0

a, precipitation 1.0 2.0 1.0 3.0
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into the cloud (Fig. 3, center row). The profiles containing

precipitation (profilesm1 and 2) have similar retrieval

space characteristics, with modal precipitation drop di-

ameters of approximately 40 mm and a maximum cloud

droplet modal diameter of 15 mm (the maximum value

allowed in the retrieval). In contrast, the profile that likely

contains primarily cloud droplets (profile 3) exhibits a

maximum in the cloud droplet modal diameter proba-

bility at 10 mm, and a maximum precipitation modal di-

ameter probability at approximately 25mm. Examination

of the layers nearer the bottom of the cloud (as detected

by the radar; bottom row, Fig. 3) reveals that the clouds

containing precipitation continue to exhibit increases in

precipitation-mode size with increasing depth below

cloud top, while the cloud droplet-only profile (profile 3)

exhibits smaller cloud and precipitation diameters than

the layer immediately above. The small cloud and pre-

cipitation diameters in the lowest layer of profile 3 are

likely due to the fact that this layer is at the bottom of

the cloud.

In profiles 1 and 2, there is a small increase in

precipitation-mode diameter with decreasing precipitation-

mode number. While the sensitivity of radar reflectivity

to changes in number is relatively small, in this case the

increase in diameter compensates for the decrease in

number to maintain the same radar reflectivity (and vice

versa). In addition, all three profiles exhibit a decrease in

precipitation-mode diameter as the cloud-droplet-mode

diameter increases. In fact, the increase in curvature in

the mode of the joint distribution of raindrop modal

number and diameter space is due specifically to the

constraint that the small mode diameter must always be

smaller than the large mode diameter. As the small

mode diameter increases, the large mode diameter must

decrease to maintain the same radar reflectivity.

The features observed in the two-dimensional mar-

ginal distributions in Fig. 3 may be understood more

generally in terms of the functional dependence of the

observations on the PSD parameters. Specifically, note

that the radar reflectivity may be very coarsely approx-

imated as Z ; NtD
6. If we further assume that the re-

flectivity is additive so that it consists of the sum of

contributions from droplets and rain, then we may see

that 1) the major contribution to reflectivity sensitivity

derives from the dependence on drop size and 2) there is

nonuniqueness in the system in that a change in droplet

number may be compensated by a change in precipita-

tion number, etc.

Examination of the retrieval in the retrieved variable

space provides the most direct information on the solution

characteristics, but it is also instructive to examine the

retrieval solution in terms of cloud mass and number.

The liquid water content (gm23) can be computed from

the modal diameter, number, and distribution width

according to

q
i
5 a

m,i
N

0i
D

(bm,i11)

0i
G(a

i
1 b

m,i
1 1). (3)

Here, i corresponds to either cloud or rain, am,i and bm,i

are the coefficient and exponent (respectively) in the

mass–dimensional power-law relationship, D0i and N0i

are the modal diameter and number (respectively), and

ai is the width of the gamma distribution. In contrast to

clouds that may contain ice particles, the assumption

that liquid particles are spheres with constant liquid

water density (rL) prescribes the values of am,i and bm,i

to rL(p/6) and 3.0, respectively. The total number of

particles per unit volume (cm23) is

N
t,i
5N

0i
D

0i
G(a

i
1 1). (4)

Plots of the retrieved vertical profiles of cloud and

rainwater content and number are shown in Fig. 4. Be-

cause MCMC returns a sample of the multivariate pos-

terior probability density function, it is possible to

compute all manner of statistics of the retrieval. In these

plots, we depict the center of mass of the distribution

(mean and median) as well as the 5%, 25%, 75%, and

95% quantiles and the interquartile range (IQR).

Viewed this way, we can determine 1) whether themean

is a robust measure of the center of mass, 2) whether

distributions are skewed or symmetric, and 3) the dis-

tribution dispersion (commonly taken to be the single

measure of retrieval uncertainty). Rather than plotting

the standard deviation of the solution, as is typically

done, we utilize the interquartile range as it is a more

robust measure of dispersion in the distribution, and is

resistant to outliers (Wilks 2011).

Examination of the retrievals across all three clouds of

interest reveals the posterior distribution is strongly

skewed in cloud number and cloud water content for the

profiles that contain nonnegligible drizzle content

(profiles 1 and 2). The mean and median differ, and the

95% quantile extends to relatively large values. In these

cases, themean is not an appropriatemeasure of the true

cloud water content or number, and the standard de-

viation is not a representative measure of the error. In

contrast, the distributions of rainwater content for pro-

files 1 and 2 are very symmetric, and the mean and

median are nearly identical. Precipitation number is

more symmetric than cloud number, but the fact that the

numbers are very lowmakes the distributions skewed, as

the values are hard bounded at zero. Uncertainties in

cloud droplet content and number (as measured by the

interquartile range) are largest a few hundred meters

below cloud top. Uncertainty is smallest at cloud top in
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FIG. 4. Plots of the statistics of the retrieved (top) cloud droplet liquid water content (gm3), (top middle) droplet number concentration

(cm23), (bottom middle) precipitation water content (gm23), and (bottom) precipitation drop number concentration (cm23) for the

profile containing (left) primarily precipitation, (center) a combination of cloud droplets and precipitation, and (right) primarily cloud

droplets. Each plot depicts themean (solid black line), median (dashed black line), 25th and 75th percentiles (blue lines), and 5th and 95th

percentiles (red lines) of the retrieved probability distribution. Note that all variables are plotted on a log scale for ease of interpretation.

The IQR is reported as a column of values along the right-hand side of each plot.
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the profiles that contain precipitation, with IQR smallest

at the cloud base in the nonprecipitating profile. Un-

certainty in precipitation content and number is maxi-

mized in the middle and lower portions of each cloud,

and is again smallest at the cloud top. The very small

retrieval uncertainty at and near cloud top results from

the assumption of a constant 1 dB error in the radar

reflectivity. Small changes in modal number and di-

ameter will lead to large changes in reflectivity when the

reflectivity is low. Consequently, the water content and

number are very tightly constrained for low radar re-

flectivity but less well constrained at higher reflectivity.

In fact, examination of the radar reflectivity values for

each of the three profiles (Table 2) indicates the un-

certainty scales with the reflectivity value itself.

A brief discussion of these results is warranted before

we proceed to exploration of the specific influence of the

various observations. First, a unique retrieval estimate

implies that a single most likely set of values of the PSD

properties can be obtained. It is clear from the proba-

bility contour plots (Fig. 3) that the precipitation-mode

diameter is relatively well constrained, and that the

observations place an upper bound on the cloud droplet

size at and near the cloud top. However, there is very

little information in the observations to constrain the

droplet number. In each profile and cloud layer, any

value of cloud droplet and precipitation number con-

centration that lies in the range between the prior min-

imum and maximum values would produce very similar

forward-modeled observations. It should be noted that

we used a very conservative estimate for the error on the

visible reflectance to account for cloud 3D effects across

this very spatially inhomogeneous scene. We shall ex-

plore the influence of increased visible and SWIR re-

flectance accuracy presently.

In addition, we utilized a restrictive range on the re-

trieval space, but we applied no further information on

the relationship between cloud and precipitation-mode

diameter and number. Knowledge of the geographic

region, the cloud-top height, and the thermodynamic

and dynamic environment could be used to place addi-

tional constraints on the relationship between cloud

modes that may very well lead to a unique retrieval. It

may also be possible to apply constraints based on spa-

tial correlation between retrieval parameters. We shall

discuss this further in section 4.

b. Observation-specific influence on the retrieval

We now focus on the profile containing cloud and

precipitation (profile 2), and examine the influence of

each type of observation on the retrieval. We analyze

the retrieval space variables (modal diameter and

number), as these are the quantities directly estimated in

theMCMC algorithm. To examine the influence of each

observation, we conduct several different experiments

in which we utilize various combinations of reflectance,

reflectivity, and 94-GHz brightness temperature. Each

involves a separate run of the MCMC algorithm, so that

each has an estimate of the full joint posterior distribu-

tion. We compare results for the distribution center of

mass (mean or median) and dispersion (standard de-

viation or interquartile range). Recall that the prior

distribution for all parameters is bounded uniform, and

the minimum is set to nearly zero. The median and

interquartile range are both trivial to compute for the

uniform distribution, and are equal to a1 0.5(b2 a) and

0.5(b2 a), respectively (Fig. 5; dashed black line), where

a and b represent the minimum and maximum values

used to bound the uniform distribution (Table 3).

The control experiment (Fig. 5; black solid line) uti-

lizes all available observations, and assigns to them the

default values of observation uncertainty (Table 1). In a

retrieval that uses only radar reflectivity as a constraint

(Fig. 5; purple line), the median and IQR are approxi-

mately equal to the prior for the cloud modal diameter

and number, reflecting the fact that the reflectivity

contains very little information on the small cloud mode

for this case. In contrast, the drizzle diameter and

number are constrained nearly as well with reflectivity

as with all observations, indicating the bulk of the in-

formation on the drizzle mode is derived from the radar.

When only reflectance is used as an observation (Fig. 5;

blue line), there is near zero information on any of the

retrieved parameters, even the cloud droplet mode. This

is due to the fact that the errors in reflectance are as-

sumed to be 25%, as we shall see shortly.

An experiment run without 94-GHz brightness tem-

perature (Fig. 5; cyan line) yields results nearly identical

to the experiment that includes Tb94 as an observation.

Tb94 has been shown to provide an important early con-

straint in optimal estimation retrievals (Mace et al. 2016),

but in our case, the radar provides the bulk of the in-

formation, and little is added by the passive microwave

observations. It is possible that use of different types of

observations, with smaller uncertainty, may change the

balance of information (Lebsock and Suzuki 2016), andwe

leave such an analysis for future study. The effect of the

assumption of 25%error in theMODIS reflectance can be

assessed by rerunning the reflectance-only and radar

reflectivity 1 reflectance cases with an assumed re-

flectance observation uncertainty of 5% (Fig. 5; green and

red lines). In the case in which reflectance and reflectivity

observations are used, there is little difference in the

drizzle-mode solution. However, themedian cloud droplet

modal diameter and number in layers below the cloud

top increase to near their maximum allowed values of
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15 mm and 1000cm24, respectively, while the interquartile

range narrows considerably. When only the reflectance is

used as an observation, and error is assumed to be 5%, the

cloud droplet mode is nearly as well constrained (except

near the cloud top). The drizzle-mode diameter is well

constrained low in the cloud but not well constrained near

the cloud top. The rain number near the cloud base is

forced to increase when only the reflectance is used be-

cause the reflectance places an integral constraint on the

retrieval in the absence of radar information. A number of

questions naturally arise:

1) What is the appropriate uncertainty for MODIS

reflectance in this case? As we shall see, specification

of smaller uncertainty causes difficulty for the re-

trieval when we relax the prior constraints, possibly

because of 3D radiative effects in the shallow cumu-

lus clouds contained in this scene.

2) Would the 94-GHz brightness temperature have

placed a larger integral constraint on both cloud and

drizzle modes if it were more accurately observed?We

shall see that it does indeed place a stronger constraint

on the retrieval (in terms of reduction in posterior

dispersion) when a less restrictive prior is used.

c. Retrieval of vertically resolved cloud PSD
properties using a climatological prior

In all of the results reported above, it was assumed

that the retrieval was restricted (via prior knowledge)

to cloud properties consistent with the scene of in-

terest. That is, we assumed that it was possible to

specify in advance the realistic range of values for the

modal diameter and number of both cloud and pre-

cipitation. We now explore the effect of relaxing these

constraints, and instead consider the opposite ex-

treme. In this case, we assume we only know the broad

global and climatological distribution of cloud and

drizzle and do not place any scene-consistent con-

straint on the retrieval. In practice, this amounts to

allowing the modal cloud diameter to be as large as 30 mm

and themodal number to be as large as 50000cm24. These

numbers are intentionally extreme, and are designed to

allow the retrieval to explore a very wide range of possible

values of droplet and precipitation content and number.

The maximum modal droplet diameter and number

equate to a cloud liquid water content of 30.0gm23 and

droplet number concentration of 18000cm23. We allow

themodal precipitation diameter to be as large as 1000mm

and the modal rain number to be as large as 500 cm24,

which correspond to rainwater content of 190gm23 and

number concentration of 300 cm23. It is important to re-

member that these numbers are not expected to be in any

sense typical but instead serve as the far upper bound on a

large range of cloud water contents and number concen-

tration values. As in the experiments with different ob-

servations, we run experiments for cloud 2, the profile that

contains both cloud droplet and precipitation modes.

Before we compare the climatological prior with the

scene-consistent results, we return to the question of

the effect of fixed versus variable gamma width pa-

rameter. We show results in Fig. 6 for the same three

levels as were shown in Fig. 3. The left column corre-

sponds to an experiment that utilizes variable gamma

width, while in the right-hand column the gamma width

is fixed to 1.0 and 1.25 for the cloud droplet and drizzle

modes, respectively. It is clear that a fixed alpha leads

to a more well-constrained retrieval of the modal pre-

cipitation diameter. Values are concentrated around

20 mm at cloud top and around 30 and 40 mm lower in

the cloud. However, close inspection of the 2D PDFs

indicates that in fact there is larger uncertainty in the

drizzle number when alpha is fixed. The range of values

inside of the 99.7% probability contour extends to

300 cm24 for a fixed alpha while it is less than 100, 250,

and 80 cm24 in layers at cloud top, top 2 480m, and

top 2 960m, respectively. The cloud number exhibits

the same range of variability in both experiments, but

the droplet diameter is restricted to a smaller range of

values, leading to a greater concentration of probabil-

ity mass. While it may, in principle, be desirable to

apply an a priori constraint on the gamma width pa-

rameter (resulting in an overall decrease in the number

of degrees of freedom), our results indicate that vari-

ability in alpha allowed the MCMC algorithm to find

values that better fit the observations than when alpha

is artificially fixed.

Comparison between the posterior statistics for the

scene-consistent and climatological priors for the

physical space retrieval is shown in Fig. 7. These plots

are similar to those presented in Fig. 4, but for sim-

plicity we omit the 5% and 95% quantiles. Before we

examine the results in detail, note that the uncertainty

in the solutions (as quantified by the IQR) differs be-

tween the scene-consistent and climatological results

by at least an order of magnitude. This in itself reflects

the influence of the prior on the solution; given a larger

range of in the prior estimate, the observations alone are

not able to constrain the solution. The exception is the

drizzle water content, which remains relatively well

constrained evenwith a largeprior range. If the interquartile

range is taken as a measure of the uncertainty in the

retrieval, the error in the retrieval increases by approx-

imately 10 times and 100–1000 times for cloud water

content and number, and by 40–100 times for drizzle

number. In contrast, the errors for the drizzle water

content increase only 2–5 times.
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As in the earlier results, we compare the influence of

different observations, but in this case we only show the

effect of adding observations of 94-GHz brightness tem-

perature difference. In contrast to the scene-consistent

prior (Fig. 5), dTb94 observations lead to a significant

reduction in the uncertainty for all variables consid-

ered. The IQR for the cloud water content is reduced

by a factor of 2–10, bringing it to nearly the value of the

scene-consistent prior in the lower portions of the

cloud. Cloud number concentration uncertainty is also

reduced by approximately a factor of 10; in this case

reducing the error to approximately 100 times the

scene-consistent value. Drizzle content is relatively

well constrained by the radar, so is less affected by

dTb94 observations. However, there is a reduction in

uncertainty in the middle and lower portions of the

cloud from an IQR of approximately 0.06 to 0.04, re-

ducing the error to 4 times the scene-consistent value.

Drizzle number IQR is unaffected by inclusion of

Tb94 observations, and in both cases is approximately

30–100 times the error of the scene-consistent prior.

There are two key conclusions that may be drawn

from these results:

1) There is not enough information in the observations

alone to constrain any of the variables except the

drizzle water content. For all others, a scene-

consistent prior will be required.

2) In the case of cloud water content, a large portion of

uncertainty introduced via unknown prior range can

be mitigated if the 94-GHz brightness temperatures

are used as an additional observational constraint.

4. Discussion

As we noted at the outset, radar observations alone

cannot be expected to provide unique constraint on a

FIG. 6. As in Fig. 3, but for experiments in which the prior was allowed a climatological range. The two left columns correspond to an

experiment in which the width of the gamma PSD was allowed to vary in the retrieval; alpha was set constant in the experiment repre-

sented in the two right columns.
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FIG. 7. As in Fig. 4, but in this case all three profiles correspond to the cloud that contains both droplets and precipitation and we have

plotted only the 25th and 75th percentiles, mean, and median of the posterior distribution. The left column is a reproduction of the center

column in Fig. 4. The center and right columns correspond to experiments in which a climatological prior was used. In the center column,

the experiment used observations of MODIS reflectance and radar reflectivity, whereas the right column adds observations of Tb94.
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bimodal particle size distribution, even in shallow clouds

composed only of liquid. As has been shown by multiple

recent studies (Lebsock et al. 2011; Lebsock and Suzuki

2016; Leinonen et al. 2016; Mace et al. 2016), at

minimum a combination of active and passive mea-

surements is required. Passive microwave observations

place a constraint on total column water mass, visible

optical depth constrains the total cloud-mode water

path, and near-infrared observations contain informa-

tion on particle size at cloud top. Retrievals that iterate

to a solution probabilistically (e.g., Mace et al. 2016)

utilize the passive observations to find a realistic first

guess, then employ radar to retrieve vertical distribu-

tions of cloud properties. Our study has shown in detail

the character of the retrieval space. It is clear that not

only is a scene-dependent prior required, but additional

observations will be necessary if multiple PSD modes

are to be disentangled. Specifically, we hypothesize the

following:

1) Knowledge of cloud dynamics, in the form of vertical

velocities, could place a key constraint on the vertical

distribution of cloud mass (cf. PM14). In addition,

connecting passive forward models to a dynamic

model that includes thermodynamics and updrafts

may serve to produce an internally consistent cloud

profile. Such experiments have already begun to be

conducted in studies of cloud parameterization un-

certainty (Posselt and Vukicevic 2010; Posselt 2016).

Inclusion of cloud dynamics and environmental

thermodynamic context moves the retrieval in the

direction of dynamic data assimilation, which may be

the most general way to retrieve cloud extensive and

intensive properties.

2) In addition to information on cloud vertical velocity,

additional radar frequency observations would al-

most certainly reduce the mass–number ambiguity in

the particle size distribution in situations where rain

is heavy enough to cause differential attenuation and

different scattering signatures.Additional passivemi-

crowave frequencies (e.g., 31GHz for liquid, higher

frequency for ice) have been shown to place valuable

integral constraints on the total solution. In addition

to observations of 94-GHz brightness temperature,

recent work has shown that the radar path-integrated

attenuation may place a strong integral constraint on

condensate profiles (Lebsock and Suzuki 2016).

Recent field campaigns [e.g., IPHEX and theOlympic

Mountain Experiment (OLYMPEX)] produced high-

quality multifrequency active and passive observation

datasets. We will report on the results of observation

information content experiments in a forthcoming

manuscript. Our research aimed at combining dynamic

and thermodynamic information with cloud observa-

tions will also be reported elsewhere.

5. Summary and conclusions

This paper provides an analysis of the solution space

for a combined radar–reflectance retrieval of cloud

properties for shallow cumulus clouds over the ocean.

Study of liquid-only clouds allows us to avoid the com-

plexity associated with poorly known ice crystal shape

and density. Several previous studies have examined the

information content of active and passivemeasurements

of shallow cumulus clouds, but have typically made as-

sumptions about the uniqueness of the retrieval solution

and the constraint of active versus passive observations.

In addition, while previous work has made it clear that a

unique and well-posed solution requires a prior con-

straint, it has not been obvious how such constraints

should operate and in which situations they are

necessary.

Bayesian algorithms produce a sample of the joint

probability density of retrieved cloud properties given

the information in observations and the prior constraint.

They are flexible, in that they allow implementation of

various retrieval assumptions, and provide a quantita-

tive estimate of the information contained in observa-

tions. They are also capable of incorporating physical

constraints that are more difficult to implement in op-

timal estimation retrievals (e.g., raindrop diameter .
cloud droplet diameter). In this study, we have used a

Markov chain Monte Carlo algorithm to sample the

joint posterior PDF for a bimodal particle size distri-

bution (cloud droplets and rain) in shallow clouds over

the Southern Ocean. A combination of W-band radar

and visible and near-infrared reflectance measurements

from three different cloudy columns (containing pri-

marily cloud droplets, primarily rain, and a mixture) are

used as observations. Two different prior constraints are

tested: one that is scene dependent and restricts the re-

trieval to a range of PSD parameters consistent with the

observed scene, and one that more encompasses a

broader global climatology of droplet and rain PSD

properties. In addition to an exploration of the solution

space for low liquid cloud retrievals, this study

implements a new three-stage delayed-reject MCMC

algorithm, and explores its application to vertical profile

observations. This study represents the highest-dimensional

application ofMCMC to cloud property retrievals to date,

and paves the way for more sophisticated future analysis

and for systematic Bayesian retrievals of cloud properties

from active and passive sensors.

The major conclusions of this study include the

following:
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1) Comparison among the posterior PDFs for profiles

containing primarily cloud, primarily rain, and a

mixture of the two confirms that A-Train observations

are able to effectively distinguish between precipitating

and nonprecipitating cloud columns, even in the ab-

sence of any additional prior information.

2) As has been shown in other studies, single-frequency

radar alone does not contain enough information to

produce a unique estimate of the PSD properties,

even in liquid-only clouds over the ocean. However,

there is enough information contained in the radar

reflectivity to provide reliable estimates of rainwater

content.

3) Addition of visible and near-infrared reflectance

observations bounds the cloud droplet size but only

in the uppermost 500m of the cloud and only if

observation uncertainties are assumed to be rather

low (e.g., 5%). If observation errors are set to;25%

(as is reasonable in scenes with broken and isolated

clouds), the constraint provided by the passive mea-

surements is negligible.

4) It is clear that a scene-consistent prior estimate is

required if the retrieval is to have a unique solution.

This is certainly true for algorithms that utilize data

similar to what is employed in this study, and likely

true for other combined active–passive cloud prop-

erty retrievals. The intermittent availability of robust

prior estimates (e.g., from field campaigns) means

that proper specification of a scene-consistent prior

is a major challenge. Data from measurement suites

(e.g., A-Train) are necessary, but not sufficient, and

investment is needed in expanding the observa-

tional knowledge of in situ cloud and precipitation

properties.

5) Access to a sample of the full joint posterior distri-

bution of the retrieved cloud properties allows us to

compute a range of statistics on the retrieval solution.

Examination of the posterior distributions of the

cloud and rainwater content and number indicate the

posterior distribution of rain may be effectively de-

scribed using a centered single-mode (e.g., Gaussian)

distribution, while the cloud number and water

content exhibits significant skewness. As such, the

mean of the solution PDF is not a useful measure of

the true water content or number, and the standard

deviation does not provide a useful estimate of un-

certainty. In this case, it appears that a log transform

may be necessary if the goal is to render a cloud-mode

solution that is approximately Gaussian in form.

6) Passive 94-GHz brightness temperature observations

provide a significant integral constraint on the re-

trieval in cases with a broad prior range of possible

cloud PSD parameters, leading to more accurate

estimates of the cloud and rainwater content in

particular.

7) It is typically assumed that a reduction in the degrees

of freedom in a retrieval, via specification of one or

more of the free parameters in the scene or forward

model, will result in a reduction in retrieval un-

certainty. We tested this assumption by running

experiments in which we alternately fixed and varied

the width of the particle size distribution for cloud

droplets and rain. We found that variability in the

PSD width (effectively an increase in the number of

degrees of freedom) in fact led to improved con-

straint (reduced uncertainty) on the raindrop num-

ber concentration. In this case, it appears that

allowing a flexible distribution width allowed the

retrieval to find a solution that was a closer match to

the observations. This illustrates the fact that a

smaller number of degrees of freedom in a retrieval

is not necessarily desirable; while the retrieval may

converge, the solution may not properly represent

the true values of the free parameters when fixed

parameters are incorrectly specified.

8) The three-stage delayed-reject MCMC algorithm is

able to return a robust estimate of the retrieval space

probability distribution in a relatively high-dimensional

problem. The retrieval solution reflects known prop-

erties of oceanic cumulus clouds, while allowing a

detailed exploration of the information contained in

the measurements and the vertical structure in the

clouds themselves.

The experiments described in this manuscript set the

stage for a more detailed trade study of which mea-

surements are necessary to be able to uniquely retrieve

cloud PSD properties in liquid, mixed-phase, and ice

clouds. Such studies are critical for planning the next

generation cloud observing system. We are using recent

observations from the IPHEX and OLYMPEX field

campaigns and are specifically exploring the relative

influence of multiple-frequency radar observations of

both reflectivity and the Doppler spectrum. We are

quantifying the information provided by observations in

multiple different passive microwave, visible, and infrared

channels, and will report on the results of this study in a

forthcoming manuscript. In addition, we are actively

working to utilize the MCMC algorithm to produce long-

term estimates of liquid cloud properties over the U.S.

Department of Energy Atmospheric Radiation Measure-

ment (DOE ARM) sites. Results of each of these studies

will be reported in forthcoming manuscripts.
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APPENDIX A

Vertical Correlation Function for Cloud Property
Retrievals

In previous work, our MCMC algorithm utilized a

proposal distribution that treated each control variable

as independent of the others. While this is less efficient

for posterior distributions that exhibit significant cova-

riability between two or more variables (Tamminen

2004), it allows greater flexibility when sampling distri-

butions that have a nonstatic covariance structure (e.g.,

covariance between two variables changes sign). Clouds

are known to strongly covary in both the vertical and

horizontal directions. If the vertical structure of

clouds is not taken into account (e.g., PSD properties

for each level in the cloud are perturbed indepen-

dently of the other levels), this will cause the algo-

rithm to converge more slowly, and will introduce

noise into the retrieval.

The algorithm used in this paper applies a Gaussian

vertical structure function to the proposal distribution,

with covariance set according to the observed vertical

variability of radar reflectivity in the cloud. In practice,

in each MCMC iteration, a cloud layer is selected at

random, and all variables in this layer are randomly

perturbed according to the proposal variance tuned

for the layer (set during burn-in). After the resulting

perturbations are inspected to ensure they are within

the range of values allowed in the prior, PSD prop-

erties in adjacent layers are perturbed in the same

direction (with the same sign), and with magnitude

that is weighted by the distance from the layer per-

turbed. Specifically, consider a perturbation dp ap-

plied at level z0. The perturbation applied at another

level zi will be

dp
i
5 dp

0
exp

"
2
1

2

(z
0
2 z

i
)2

s2
z

#
, (A1)

where dpi is the parameter perturbation at level i, dp0 is

the perturbation applied at level z0, and sz is the vertical

decorrelation length.

We have found the results to be insensitive to the

precise specification of sz, as long as it is smaller than the

depth of the cloud (so that perturbations are not applied

uniformly over the cloud depth) and large enough so

that more than one layer is modified at a time. Use of a

static covariance length also allows us to retain the rel-

atively simple Metropolis–Hastings accept–reject pro-

cedure. Allowing the covariance to vary with height, or

applying a more sophisticated vertical structure

function, is tantamount to including additional in-

formation in the prior. While this will almost cer-

tainly need to be done if this algorithm is used to

generate routine retrieved products (see discussion

above), specification of such a structure is beyond the

scope of this paper.

APPENDIX B

Three-Stage Delayed-Reject MCMC Algorithm

MCMC algorithms are intended to produce a sample

of the Bayesian posterior joint probability distribution

given a prior, likelihood, and a model that relates them.

The algorithm works by producing a Markov chain that

consists of successive samples from the posterior distribu-

tion. Each new sample is generated by first computing a set

of candidate (or test) values x̂ of each element in the

control vector x, then using a Metropolis–Hastings (MH)

accept–reject test to determine whether the candidate is

indeed a sample from the posterior PDF. The efficiency

with which the algorithm will sample the posterior dis-

tribution P(x jy) depends on how well the proposal

distribution used to generate new candidate values ap-

proximates the posterior distribution. The ideal proposal

distribution is identically the posterior distribution, but

since the posterior distribution is generally not known in

advance (else, why bother to sample it?), it is in practice

not possible to construct an optimal proposal distribu-

tion. Instead, in most applications the proposal distri-

bution is assumed to have a well-defined structure (e.g.,

multivariate Gaussian), and the dispersion (and higher

moments, if applicable) are tuned in an iterative pro-

cedure so that a reasonable fraction of the proposals are

accepted. If the target density is Gaussian, and every

variable is independent and identically distributed (i.i.d.),

the optimal accept rate is 0.234 (Gelman et al. 1997;

Roberts andRosenthal 2001). This fractional accept rate

strikes a balance between sampling rapidly in a high-

dimensional space, and resolving local features of the

PDF. The proposal density for the multivariate Gauss-

ian target distribution has covariance Sp:

S
p
5

"
(2:38)2

d

#
S , (B1)

where S is the covariance of the target (posterior) dis-

tribution and d is the dimension of the state vector. If the
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model is nonlinear, the posterior density will not be

Gaussian, and the proposal will be a suboptimal ap-

proximation. The result will be less than perfect

sampling efficiency. For example, let the true target

density be unimodal and skewed, and consider a case in

which the proposal variance is tuned to produce the

Gaussian-optimal accept rate while the chain is located

near themode of the distribution. Proposals will be close

to optimal when the chain is near the mode but will be

increasingly suboptimal (undervariant) when the chain

explores the tail of the posterior distribution. An even

more difficult case arises when the posterior distribution

has more than one mode, and the modes are distinct

(separated by regions with very low probability). In this

case, if the algorithm is tuned to optimally sample a

single low-variance mode, there will be a low likelihood

that it will be capable of spanning the gap between

modes. One way to combat this problem is to build an

adaptive algorithm that adjusts to the various regions

of the space (e.g., Haario et al. 1999). However, it is

difficult to construct such an algorithm so that it is

properly ergodic. Another option is to delay rejection

when theMH criterion is not met. Instead, in this case, a

second (or third, fourth, etc.) proposal is conducted with

modified (smaller) variance. As long as the secondary

proposal is properly incorporated into the MH accept–

reject test, the chain will be ergodic. Delayed rejection

allows the proposal distribution to have a variance that

is large enough to span the range of finite probability in

the space but may be adapted to explore locally if there

are well-defined modes.

Here, we document a three-stage delayed-reject al-

gorithm that has proven to work well for the cloud re-

trievals considered here. Our derivation follows the

work of Green andMira (2001), adapted for our specific

application. First, let the numerator in Bayes’s re-

lationship be denoted p(x):

p(x)5P(x)P(y j x) . (B2)

Note that this is simply the nonnormalized right-hand

side of (2). Given a set of proposed (candidate) control

values x̂1, the MH accept ratio (Tamminen and Kyrölä
2001; Posselt 2013) is computed as

r(x, x̂
1
)5

P(y j x̂
1
)P(x̂

1
)q(x̂

1
, x)

P(y j x)P(x)q(x, x̂
1
)
. (B3)

Using the notation of Green and Mira, we can write

(B3) as

r(x, x̂
1
)5

p(x̂
1
)q(x̂

1
, x)

p(x)q(x, x̂
1
)
, (B4)

where q(x, x̂1) is the proposal distribution used to gen-

erate new candidate values x̂1, and q(x̂1, x) represents

the probability of randomly drawing x from x̂1. The (first

stage) acceptance probability is

a
1
(x, x̂

1
)5min

(
1,

p(x̂
1
)q(x̂

1
, x)

p(x)q(x, x̂
1
)

)
. (B5)

What this means, in practice, is that if the candidate

point x̂1 has a higher density than the previous point x,

it is automatically accepted as a sample. If not

[a1(x, x̂1), 1], then a1 is compared with a uniform

random number on [0, 1]. If a1 is larger than the ran-

domly drawn value, x̂1 is accepted as a sample of the

posterior distribution. Now, if (B5) is evaluated and the

candidate point x̂1 is rejected (a1 is less than U[0, 1]),

delay rejection and instead draw another candidate

point x̂2, centered on x and using a proposal distribution

with smaller variance (e.g., explore the state space in a

region closer to the current point). We have chosen to

aggressively decrease the proposal variance in each de-

lay iteration so that the proposal distribution in delay

step n is

q(x, x̂
n
);N x,

s
x

2(n21)

� �
, (B6)

where n5 2 in the first delay step, and sx is the variance

of the proposal distribution. Clearly, the proposal stan-

dard deviation is halved in each subsequent delay

step. The new (stage 2) acceptance probability must

now be evaluated taking into account both proposal

distributions and the original (stage 1) acceptance

probability:

a
2
(x, x̂

1
, x̂

2
)

5min

(
1,

p(x̂
2
)

p(x)

q
1
(x̂

2
, x̂

1
)q

2
(x̂

2
, x̂

1
, x)[12a

1
(x̂

2
, x̂

1
)]

q
1
(x, x̂

1
)q

2
(x, x̂

1
, x̂

2
)[12a

1
(x, x̂

1
)]

)
.

(B7)

Here, a1(x̂2, x̂1) represents the probability of ac-

cepting a transition from x̂2 back to x̂1, and may be

computed from (B5); q1(x̂2, x̂1) is the (stage 1; n 5 1)

proposal distribution that generates x̂1 from x̂2 using

the proposal in (B6) with n5 1, while q2 is the (stage 2;

n 5 2) proposal distribution that generates x̂2 from x

(through x̂1; denominator) or x from x̂2 (numerator). If

the stage 2 proposal is also rejected, a third-stage

proposal to x̂3 may be attempted using a yet smaller

proposal variance [n 5 3 in (B6)]. This third set of

proposed parameter values may be accepted with

probability
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As above, the third-stage proposal density q3 generates

x̂3 from x through intermediate stages x̂1 and x̂2 (and the

reverse). The higher-order proposal densities [e.g.,

q3(x, x̂1, x̂2, x̂3)] are simply a combinationof theproposals

required to transition from the initial state to proposed

states x̂1, x̂2, x̂3, and so on. In principle, an n-stage delayed-

reject algorithmmay be constructed recursively so that the

probability of acceptance of proposal i is

a
i
(x, x̂

1
, . . . , x̂

i
)5min
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Note, however, that 1) this recursive algorithm requires

evaluation of successively greater numbers of ai, and 2)

the forward model(s) that map from x to y must be run

each time a new x̂i is tested, so there are rapidly di-

minishing returns. Our algorithm is a three-stage de-

layed-reject in which q1, q2, and q3 are all symmetric,

with proposal variance that varies only according to

stage. When all proposal densities are symmetric their

ratios cancel. In this case, the accept ratio in the first

stage of the three-stage delayed-reject algorithm re-

duces to

a
1
(x, x̂

1
)5min

�
1,
p(x̂

1
)

p(x)

�
, (B10)

and the stage 2 accept ratio is

a
2
(x, x̂

1
, x̂

2
)5min

(
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p(x̂

2
)

p(x)

[12a
1
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1
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1
)]

)
, (B11)

where a1(x̂2, x̂1) is simply (B10) evaluated with p(x̂1) in

the numerator and p(x̂2) in the denominator. The stage

3 accept ratio is

a
3
(x, x̂

1
, x̂

2
, x̂

3
)

5min
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1,
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2
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(B12)

where, as above, a1(x̂3, x̂2) is (1) evaluated with p(x̂2)

in the numerator and p(x̂3) in the denominator.

a2(x, x̂1, x̂2) has already been evaluated [(B11)], and

a2(x̂3, x̂2, x̂1) can be obtained using the appropriate in-

puts to (B11). In practice, log probabilities (prior and

likelihoods) are computed in the MCMC algorithm, and

in the application here the prior is uniform so that p(�) in
each case reduces to the likelihood. In closing, we note

that there is no established theory that dictates the ideal

accept rate for the delayed-reject algorithm. In the limit of

an infinite number of delay steps, the accept rate should

asymptotically approach 1.0, and between the single stage

and the infinite recursive limit the accept rate should lie

somewhere between 0.23 and 1.0. In practice, we aim for

an accept rate between 0.4 and 0.7; higher than the single-

stage target, but lower than 1.0.

APPENDIX C

Assessing MCMC Convergence Using the R̂ Statistic

A key aspect of any experiment that involves sampling

using anMCMCalgorithm is the diagnosis of convergence

of the Markov chain to sampling the true posterior PDF.

In cases for which the shape of the true posterior PDF is

unknown, it is not possible to knowwith absolute certainty

that the Markov chain has converged to sampling the true

target distribution. However, there are several diagnostic

tools that can be brought to bear in assessing whether the

chain has converged to sampling a stationary distribution.

In the case of the R statistic (Gelman et al. 2004), the di-

agnosis of convergence is paired with an assessment of

whether multiple Markov chains are all sampling a similar

distribution. This method leverages the information con-

tained in the differences between chains of a multichain

MCMC simulation. It is based on a comparison between

the variance (or other moments) within each chain to the

variance between chains for each estimated parameter,

and is done in the following manner.
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Consider m chains, each of length n samples. First,

the within-chain variance is computed for each pa-

rameter x as

W5
1

m
�
m

j51

�
1

n
�
n

i51

(x
ij
2 x

j
)2
�
, (C1)

where xj is the mean of each parameter x within each

chain, defined as

x
j
5

1

n
�
n

i51

x
ij
. (C2)

The between-chain variances are computed as

B5
n

m2 1
�
m

j51

(x
j
2 x)2 , (C3)

where x is the mean of the given parameter across all

chains, defined as

x5
1

m
�
m

j51

x
j
. (C4)

An unbiased estimate of themarginal posterior variance

of each variable x conditioned on the set of observations

y can be obtained from a weighted combination ofB and

W as

cvar1(x j y)5 n2 1

n
W1

1

n
B . (C5)

This quantity tends to overestimate the true marginal

posterior variance, but converges to the true variance as

n / ‘. Proper chain mixing is assessed by comparing

the variance estimate with the within-chain variance,

and computing theR statistic R̂, an estimate of the factor

by which the dispersion in the current sample would be

reduced if each chain were allowed an infinite length:

R̂5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar1(x j y)
W

s
. (C6)

It can be readily seen from (C6) that this estimate will

converge to 1 in the limit as n / ‘. According to

Gelman et al. (2004), there is no specific value of the R

statistic for which chains can be said to have sufficiently

mixed, though a value of R̂ less than 1.1 for each pa-

rameter is generally deemed acceptable.
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