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a b s t r a c t 

We examine the seasonal cycle of upper-ocean mesoscale turbulence in a high resolution CESM climate 

simulation. The ocean model component (POP) has 0.1 ° resolution, mesoscale resolving at low and mid- 

dle latitudes. Seasonally and regionally resolved wavenumber power spectra are calculated for sea-surface 

eddy kinetic energy (EKE). Although the interpretation of the spectral slopes in terms of turbulence the- 

ory is complicated by the strong presence of dissipation and the narrow inertial range, the EKE spectra 

consistently show higher power at small scales during winter throughout the ocean. Potential hypothe- 

ses for this seasonality are investigated. Diagnostics of baroclinc energy conversion rates and evidence 

from linear quasigeostrophic stability analysis indicate that seasonally varying mixed-layer instability is 

responsible for the seasonality in EKE. The ability of this climate model, which is not considered subme- 

soscale resolving, to produce mixed layer instability although damped by dissipation, demonstrates the 

ubiquity and robustness of this process for modulating upper ocean EKE. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mesoscale turbulence is ubiquitous in the ocean and has signif-

cant impacts on the large-scale ocean circulation and its interac-

ion with the climate (e.g. Jayne and Marotzke, 2002; Volkov et al.,

008; Lévy et al., 2010; Griffies et al., 2015 ). Ocean currents are

ost energetic in the mesoscale range, on the order of tens to a

ew hundred kilometers. Mesoscale turbulence is driven by baro-

linic instability of the main thermocline ( Gill et al., 1974; Smith,

007 ), and is relatively well described by quasi-geostrophic (QG)

odels ( Rhines, 1979; Held et al., 1995 ), in which enstrophy and

nergy conservation lead to the inverse cascade of energy from

mall to large scales ( Charney, 1971 ). Below the mesoscale lies

he submesoscale, which feeds off of the available potential en-

rgy (APE) in the mesoscale fronts, particularly in the mixed layer

 Boccaletti et al., 2007 ). 

A number of recent observational and modeling papers have

emonstrated a pronounced seasonality in surface EKE in the sub-

esoscale range, roughly 10–100 km ( Mensa et al., 2013; Qiu

t al., 2014; Sasaki et al., 2014; Callies et al., 2015; Brannigan et al.,
∗ Corresponding author at: 205A Oceanography 61 Route 9W - PO Box 10 0 0 Pal- 

sades, NY 10964-80 0 0, USA 

E-mail address: takaya@ldeo.columbia.edu (T. Uchida). 
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015; Rocha et al., 2016b; Buckingham et al., 2016 ). Most of the

tudies cited are regional or from idealized models, thus global

atterns have not yet been established. Moreover, there are at least

our main hypotheses proposed to explain this seasonality: (i) vari-

tion in internal gravity wave energy due to seasonality in upper

cean stratification ( Rocha et al., 2016b ); (ii) variation in fronto-

enesis (FG) due to seasonality in lateral strain and convergence

n horizontal density gradients ( Mensa et al., 2013 ); (iii) variation

n the interior baroclinic instability (BCI) due to seasonality in the

ertical shear of the full-depth background state ( Qiu et al., 2014 );

nd (iv) variation in the mixed-layer (ML) BCI due to seasonality

n ML stratification, depth and vertical shear in the mixed layer

 Boccaletti et al., 2007; Qiu et al., 2014; Callies et al., 2016 ). There

s as yet no strong consensus about the relative roles of these

echanisms on a global scale. 

Current generation satellite altimetry products provide global

bservations of sea surface height (SSH), and thus geostrophic ve-

ocity, but the spread of the tracks and instrument noise limit the

ffective resolution to about 100 km ( Xu and Fu, 2012 ), which

s just sufficient to see the peak of the mesoscale. The almost-

ubmesoscale-resolving Surface Water Ocean Topography (SWOT) 

atellite ( Fu and Ferrari, 2008 ) is expected to launch in 2021,

nd until then, investigations of submesoscale and submesoscale-

riven seasonality in EKE must rely on models. 

http://dx.doi.org/10.1016/j.ocemod.2017.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2017.08.006&domain=pdf
mailto:takaya@ldeo.columbia.edu
http://dx.doi.org/10.1016/j.ocemod.2017.08.006
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Fig. 1. Annual mean of spectral slopes at scales above 200–250 km ( 4 × 10 −3 −
5 × 10 −3 cpkm). The black boxes indicate the seven regions (Kuroshio, north of 

Kuroshio, east Pacific, Gulf Stream, Sargasso Sea, northeast Atlantic and the ACC) 

we consider in detail. 
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In this paper, we investigate seasonal variability of eddy kinetic

energy (EKE) in a state-of-the-art global climate model; specifi-

cally the 0.1 °-resolution configuration of the Parallel Ocean Pro-

gram (POP) model, run within the fully-coupled Community Earth

System Model (CESM) simulation described in Small et al. (2014) .

To our knowledge, the seasonality of ocean turbulence has not

been examined in a coupled model on a global scale. According

to the criteria of Hallberg (2013) , this configuration ranges from

mesoscale-resolving at low latitudes to mesoscale-permitting at

high latitudes. Although this is very fine resolution for a climate

model — finer than resolved by current generation altimeters —

it is coarse compared to recent numerical studies of submesoscale

seasonality, some of which have used a spatial resolution of 1 km

or even higher ( Mensa et al., 2013; Sasaki et al., 2014; Gula et al.,

2014; Brannigan et al., 2015; Rocha et al., 2016a; 2016b ). The lack

of resolution is a necessary trade-off for a global analysis. More-

over, analysis of such a model should provide a useful test bed for

future work on SWOT observations. 

Driven by this connection to altimetric observations, we fo-

cus on the analysis of surface fields, especially on wavenumber

power spectra, which provide a practical way to characterize scale-

dependent variance and have been widely used in related studies

(e.g. Stammer, 1997; Thomas et al., 2008; Capet et al., 2008b; Xu

and Fu, 2011; 2012 ). An oft-cited motivation for spectral analysis is

its connection to inertial-range turbulence theories, which provide

specific predictions for spectral power law scalings that vary with

the nature of the turbulence, suggesting a tempting way to test

ideas. For example, Xu and Fu (2012) made a global estimate of

two-dimensional (2D) along-track spectral slopes of SSH observed

by satellite altimeters on Jason-1 and Jason-2 . They found that in

regions of high eddy activity, the SSH spectral slopes had values

between k −5 and k −11 / 3 , which are consistent with predictions by

QG ( Charney, 1971 ) and surface-QG (SQG) theory ( Blumen, 1978;

Held et al., 1995; Lapeyre and Klein, 2006 ), respectively. However,

such theories formally only apply to scales that are neither directly

forced nor dissipated, are stationary in time, and reflect only one

underlying dynamics. Callies et al. (2016) points out that the sub-

mesoscale range is likely directly forced, violating the inertial as-

sumption, and Dufau et al. (2016) argues that previous estimates

of spectral slopes from altimetry which do not properly account

for the spatial and temporal variability of significant wave height

(e.g. Xu and Fu, 2012 ) may be contaminated by observational

noise even in the mesoscale range. Moreover, the very tempo-

ral variability we seek to study implies temporal non-stationarity.

Consequently, our study does not emphasize specific values of

the spectral slopes; rather, we simply use spectra as one of

many tools to characterize energy variations in a scale-dependent

way. 

Despite the limitations imposed by the model resolution and

strong damping due to dissipation, we show that the POP simu-

lation resolves some submesoscale generated energy cascading up

to the mesoscale. Moreover, many lines of evidence — including

linear stability analysis, predictions for energy transfer rates, and

phase correlations — point to an inverse cascade of submesoscale

energy generation by mixed-layer instability as the primary driver

of this seasonality. 

The paper is organized as follows. In Section 2 , we give a brief

description of the POP model. The results of spectral analysis and

comparison of the spectral slopes among seasons are shown in

Section 3 . In Section 4 we discuss baroclinic instability at the

mesoscale and submesoscale, and detail our evidence for MLI as

a main source of seasonality in EKE. In Section 5 , we examine two

other possible drivers of seasonality in small-scale EKE: intertia-

gravity waves and frontogenesis. We summarize and conclude in

Section 6 . The details of our spectral analysis and linear stability

analysis are given in the appendix . 
. Description of the numerical model 

The ocean simulation we examine is a part of the fully-coupled

lobal simulation using the CESM described in Small et al. (2014) ,

hich was run under present-day greenhouse gas conditions for

00 years, similar to McClean et al. (2011) . The POP model, which

s the ocean component, is a level-coordinate ocean general cir-

ulation model that solves the three-dimensional primitive equa-

ions for ocean dynamics. The hydrostatic and Boussinesq approxi-

ations are prescribed, and the model employs a B-grid (scalars at

ell centers, vectors at cell corners) for the horizontal discretization

cheme. The time discretization scheme uses a three-time-level

econd-order-accurate modified leap-frog scheme for stepping for-

ard in time. The diffusive terms are evaluated using a forward

tep. 

Subgrid scale horizontal mixing is parameterized using bi-

armonic diffusivity and viscosity, with the coefficients spatially

arying with the equatorial values of A H = −3 . 0 × 10 9 m 

4 /s and

 M 

= −2 . 7 × 10 10 m 

4 /s respectively. The vertical diffusion depends

n the K-profile parameterization (KPP) of Large et al. (1994) . Fur-

her details about the discretization and advection schemes of the

rimitive equations and parameterization methods are described

n the Parallel Ocean Program Reference Manual ( Smith et al.,

010 ). The horizontal grid spacing in the POP simulation is ap-

roximately 0.1 ° in latitude/longitude. Each component of the cou-

led model exchanges information at different time intervals, with

he atmosphere, sea ice, and land models coupling every time step

15 min), and the ocean every 6 h. The simulation outputs at the

cean surface were saved as daily averages, while interior informa-

ion was saved as monthly averages. The available model output

onstrains the scope of our analysis; since the monthly averaging

lters out lots of small-scale variance, we focus our spectral analy-

is at the surface. More details of the model setup can be found in

mall et al. (2014) . 

A video of the sea surface temperature in the Kuroshio region

s available online at https://vimeo.com/channels/oceandynamics/

9933667 . This video clearly shows the formation of secondary in-

tabilities on the fronts of mesoscale eddies; this process appears

o be much more active in winter, when mixed layers are deep.

lthough the spatial resolution of this model (0.1 °) is not consid-

red submesoscale resolving, the video suggests that some sub-

esoscale processes are captured by the model. This visualization

rovided the motivation for our subsequent quantitative analysis of

easonality. 

https://vimeo.com/channels/oceandynamics/99933667
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Fig. 2. Snapshot of the anomaly fields of vorticity ( ζ ), buoyancy ( b ), SST and SSS on March 1, and September 1. The upper panels (a, b, c and d) correspond to the Kuroshio 

region (lon: 150.0–160.0E, lat: 31.5–41.5N) and the lower panels (e, f, g and h) to the ACC region (lon: 145.0–155.0E, lat: 56.5–46.5S). 
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. Spectral analysis of the velocity and tracer fields 

Spectral analysis provides a practical way to characterize the

cale-dependent variance in the simulation. To resolve regional

ariability, we split up the domain over the globe into 10 ° latitude–

ongitude boxes and calculate the spectra for each subdomain. For

very daily-averaged field in each subdomain, we remove the spa-

ial mean by subtracting the bi-linear trend derived from the least-

quare plane fit of the horizontal fields and apply a 2D Hanning

indow. In deriving the wavenumber spectrum, we approximate a

ocal tangent plane in Cartesian geometry and take the 2D Fourier

ransform of the anomaly fields. We then take the average over the

zimuthal direction to create an isotropic spectrum. We sample the

patial fields every 13 days, which is approximately the temporal

ecorrelation time. For the purposes of calculating the error, each

ndividual spectrum is therefore treated as an independent realiza-

ion of the process. Using 41 years of data, we have 1135 individual

pectra. Numerical implementation and normalization of the spec-

ra is discussed in the Appendix A.3 . 

.1. Snapshots of tracer fields and example of spectra 

The annual mean spectral slopes are shown in Fig. 1 (see

ection 3.2 for description of how slopes are fit). In most regions,

he spectral slopes are in the range predicted by QG theory but

ome regions have slopes steeper than −3, which is likely due to

he presence of dissipation. Before examining the seasonal variabil-

ty of this global map, we first examine the details of the spa-
ial and spectral fields in a few energetic regions of the ocean

Kuroshio, Gulf Stream, and ACC). The location of the regions is

hown in Fig. 1 . (Additional regions are presented in Appendix A.1 )

Fig. 2 shows instantaneous spatially detrended fields of rela-

ive vorticity ( ζ ) and buoyancy ( b = −gδρ/ρ0 ; δρ = ρ − ρ0 , ρ0 ≡
025 kg/m 

3 ) on March 1, and September 1, (representative of win-

er and summer in the northern hemisphere and vice versa in the

outhern hemisphere) in model year 46. We see the spatial fields

ave more small scale features and sharper fronts on March 1, in

he Kuroshio region and September 1, in the ACC region, particu-

arly in the vorticity field. 

Fig. 3 (a–c) shows the seasonally-averaged isotropic wavenum-

er spectra of EKE for the Kuroshio, Gulf Stream and ACC regions. 

Boreal winter is defined as January, February and March (JFM),

pring as April, May and June (AMJ), summer as July, August and

eptember (JAS) and autumn as October, November and Decem-

er (OND). (The spectra for the other four regions are shown in

ppendix A.1 .) Comparing the EKE spectra for each season, the

pring spectra have the highest energy in the lower mesoscale

ange (between 50 km and 100 km, i.e. 10 −2 – 2 × 10 −2 cpkm)

hile autumn has the lowest energy. At the smallest scales, the

KE spectra have most power in winter and least power in sum-

er. (Buoyancy spectra are presented and discussed in Section 3.3 .)

.2. Seasonal variations kinetic energy spectra 

Theoretical models of ocean mesoscale turbulence predict spec-

ral slopes in the inertial range ( Charney, 1971; Held et al., 1995 )
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Fig. 3. Seasonally-averaged EKE spectra in eddy active regions: (a) Kuroshio, (b) Gulf Stream, and (c) ACC in Fig. 1 . The shading shows the dissipation range defined as 

where 80% of the dissipation due to biharmonic diffusion occurs (blue: winter, red: summer). The black dashed and dotted lines show the spectral slope of −3 and −5/3 

respectively. The black vertical line indicates the 30 km scale. The dashed and dotted spectra in panels (d), (e) and (f) show the rotational and divergent component of EKE 

respectively for each of these regions. The 95% confidence intervals were thinner than the lines used to plot the spectra and so are not shown. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Difference of spectral slopes of EKE between JFM and JAS at scales between 

200 km and 250 km (i.e. 4 × 10 −3 – 5 × 10 −3 cpkm). 
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and many previous studies have used spectral slopes to character-

ize ocean turbulence in observations and numerical models (e.g.

Stammer, 1997; Capet et al., 2008b; Xu and Fu, 2011; 2012 ). As

pointed out by Callies et al. (2016) , however, the actual values of

spectral slopes are not dynamically unique and inertial range theo-

ries are invalid at scales that are directly forced. Furthermore, given

the strong role of dissipation and the relatively small wavenumber

range resolved by our model, it is unlikely that inertial range theo-

ries apply quantitatively to this simulation. Consequently, we focus

on the seasonal changes in slopes, rather than their absolute val-

ues. These slope changes indicate a seasonally varying partition of

energy between large and small scales. The slopes were calculated

by fitting a straight line to the log–log spectrum using the least-

square method. Due to limited spatial resolution and the influence

of sub-grid dissipation, the slope fit is very sensitive to the choice

of wavenumber range. In addition to dissipating EKE at each scale,

the numerical dissipation also removes EKE due to baroclinic insta-

bility that would have otherwise cascaded upscale, so the spectral

slopes are expected to be steeper than predicted by QG turbulence

theories. 

We address dissipation by explicitly calculating the momentum

tendency due to lateral biharmonic viscosity in the spectral do-

main (see Appendix A.4 for details). We define the “dissipation

range” as the wavenumber range above which 80% of dissipation

occurs. From Fig. 3 , we see that the dissipation range is broad and

extends up to 100 km. This is likely the main cause for the rela-

tively steeper spectral slopes at high wavenumbers. The influence

of dissipation means it is problematic to compare the actual values

s  
f slopes in this range and possibly below with turbulent inertial

ange theory. The dissipation is broad-band so the inertial range is

ery narrow, if it exists at all. The seasonal variability could also

iolate the stationarity requirement for such a range to exist. The

lope fit is, therefore, performed on scales between 200 km and

50 km (i.e. 4 × 10 −3 – 5 × 10 −3 cpkm), which is outside of the

issipation range globally. Fig. 4 shows the resulting slope differ-

nce between winter and summer. We see the seasonal contrast

etween winter (JFM) and summer (JAS), which is consistent with

he regional spectra ( Fig. 3 ). 

The slope analysis neglects the broad dissipation range, but the

trongest variations in spectral energy occur within the dissipation
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Fig. 5. Seasonal climatology of EKE at scales smaller than 30 km ( 3 . 3 × 10 −2 cpkm) for JFM (a), JAS (b) and the ratio between the two (EKE JFM /EKE JAS ) (c). 
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W  
ange. To quantify the energy at the smallest scales, we perform a

igh pass in the spectral range representing scales below 30 km

 3 . 3 × 10 −2 cpkm); the resulting seasonal difference in small scale

KE is shown in Fig. 5 . A strong seasonal cycle in is clearly present

n both hemispheres. As visible in Fig. 3 these results are not sen-

itive to the specific wavenumber range. 

Seasonality in submesoscale turbulence has been noted in nu-

erous very-high-resolution regional simulations ( Mensa et al.,

013; Sasaki et al., 2014; Qiu et al., 2014 ) but not in a global

odel with 1/10 ° resolution. In order to estimate the rela-

ive validity of the amplitude of this model’s seasonal cy-

le, we compare the POP model EKE levels with the val-

es found by Sasaki et al. (2014) (Fig. 5 (a) in their paper 1 ).

asaki et al. (2014) examined a regional model of the Kuroshio

ith the resolution of 1/30 ° in the horizontal and 100 vertical

evels, finding a strong seasonal cycle of submesoscale turbulence

riven by mixed-layer instability (MLI). The domain they analyzed

as 14 8 °E-16 8 °W, 20 °N-43 °N; our closest regional 10 °× 10 ° box is

50–160 °E, 31.5–41.5 °N. The annual-mean KE( k ) at 10 −2 cpkm is

pproximately 120 m 

3 /s 2 in their model and 50 m 

3 /s 2 in ours. (It

s not surprising that their spectrum has higher energy levels since

heir model has a higher spatial resolution.) Comparing the ratio

f energy levels at the scale 3 × 10 −2 cpkm between winter and

ummer, the ratio is around 5 in theirs and 4 in ours. This com-

arison suggests that the POP simulation produces seasonal vari-

bility of comparable amplitude to submesoscale resolving models,

espite the overall lower energy level. 

.3. Temperature, salinity, and buoyancy spectra 

We also calculated seasonal isotropic power spectra for po-

ential sea-surface temperature θ (SST), sea-surface salinity S

SSS), and sea-surface buoyancy b . The buoyancy is defined as

 = −gδρ/ρ0 where δρ = ρ − ρ0 and ρ is derived using the

sw TEOS-10 package ( McDougall and Barker, 2011 ) and ρ0 =
1 Keeping in mind that the units in Sasaki et al. (2014) are [cm 

2 s −2 (cpkm) −1 ], 

here is a factor of 20 π when converting them to [m 

3 /s 2 ] 

b  

o  

p  
025 kg/m 

3 . The tracer spectra for the three example regions

re shown in Fig. 6 . The spectral slope of buoyancy is generally

hallower than that of KE, a finding consistent with results of

allies et al. (2016 , c.f. Fig.10 in their paper), although the en-

rgy levels themselves are inconsistent with observed sub -surface

uoyancy spectra ( Callies et al., 2015 ). In contrast to EKE, we do

ot observe significant seasonal variations in the spectral slope for

hese tracers. This finding is consistent with the SST spectrum of

chloesser et al. (2016 , c.f. Fig. 6 in their paper at scales larger

han 10 km). There is, however, substantial seasonal variability in

he overall power level across all length scales. 

To examine the seasonality of tracer variance globally, Fig. 7

hows maps of the seasonal difference in small-scale power for

uoyancy, SST and SSS between winter and summer. (Since the

racer power level varies uniformly across all analyzed wavenum-

ers, the choice of averaging band is unimportant here.) The SST

ower levels show hemispheric seasonality broadly similar to EKE:

ore SST variance in winter, less in summer. The SSS power lev-

ls, in contrast, do not have a coherent hemispheric-scale season-

lity, with having opposite seasonality from EKE and SST in some

egions. Due to the possibility of compensation between SST and

SS variability, buoyancy variance is not a linear combination of

ST and SSS variance. The spatial pattern of seasonal variability of

he buoyancy variance ( Fig. 7 a) more closely resembles the vari-

bility of SSS, even at low and mid latitudes. It is likely that a

ide range of different processes, especially air–sea interaction,

ontribute to these patterns of seasonal variability ( F. Bryan (2017)

ersonal communication). 

From the buoyancy field, it is tempting to compute surface

vailable potential energy (APE), especially given its relevance to

aroclinic instability (discussed in the next section). Studies of the

nergy cycle in global ocean models (e.g. Chen et al., 2016 ) com-

only employ the approximation APE ≈ b 2 / N 

2 , appropriate in a

ell-stratified incompressible Boussinesq fluid (e.g. Vallis, 2006 ).

e calculated this quantity in the model mixed layer using daily

uoyancy variance b and a seasonal, 10 °-box-averaged climatology

f N 

2 , but found that the APE level and its seasonality were com-

letely dominated by the seasonal climatology of the buoyancy fre-
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Fig. 6. Isotropic wavenumber spectra of buoyancy (a–c), SST (d ∼ f) and SSS (g–i) in the Kuroshio, Gulf Stream and ACC domain in Fig. 1 (blue: winter, red: summer). The 

black dashed and dotted lines show the spectral slope of −3 and −5/3 respectively. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 7. Ratio of tracer variance between JFM and JAS at scales below 30 km (i.e. 3 . 3 × 10 −3 ) (a) buoyancy, b) SST and c) SSS). 
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2 ), with almost no role for the buoyancy variance itself.

Upon reflection, this is unsurprising: the APE approximation used

is not suited for weakly-stratified boundary layers, and even less

so in the artificial mixed layer of the POP model, which is set by

the K-Profile Parametrization scheme ( Large et al., 1994 ) and lacks

representation of the submesoscale processes that act to restratify

it in the real ocean. 

4. Evidence for mixed-layer baroclinic instability as the source 

for seasonal variations in EKE 

Baroclinic instability (BCI) converts available potential energy

(APE) of the background ocean state into eddy kinetic energy

(EKE), generally at or near the scale of the most linearly unstable

mode ( Gill et al., 1974 ). A leading hypothesis for the generation of

seasonality in the submesoscale range is the mixed layer instabil-

ity (MLI), a form of BCI which extracts potential energy from buoy-

ancy fronts in the mixed layer ( Boccaletti et al., 2007 ). Since mixed

layer depth and stratification vary substantially over the seasonal

cycle, EKE production from MLI has been shown to be much higher
n winter, when mixed layers are deep and stratification is weak

 Callies et al., 2015; 2016 ). However, seasonal variations in deep

CI, which draws energy from the main thermocline, have also

een implicated in driving seasonal variations in EKE in the North

quatorial Counter Current region ( Qiu et al., 2014 ). 

MLI occurs on scales near the ML deformation wavelength

 L ML 
d 

), which ranges from several km to less than 1 km

 Boccaletti et al., 2007 ). The study of MLI in numerical models

as consequently mostly focused on models with grid spacing of

oughly 4 km or less (e.g. Mensa et al., 2013; Sasaki et al., 2014;

iu et al., 2014 ). The relatively coarse resolution of the POP simu-

ation, and the large role of dissipation at small scales (as noted in

he previous section), would presumably prevent MLI from emerg-

ng. Nevertheless, in this section we show evidence that the cause

f the seasonal variability in EKE described above is indeed MLI. 

.1. Baroclinic conversion rate 

BCI produces eddy kinetic energy from potential energy via the

ertical eddy flux of buoyancy w 

′ b ′ ( Vallis, 2006 ). When high-
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Fig. 8. Seasonal climatology of sub-monthly APE conversion rate ( w 

′′ b ′′ ) for JFM (a), JAS (b) and the ratio between the two (c). 

Fig. 9. APE conversion rate following the parametrization by Fox-Kemper et al. (2008) ( w 

′ b ′ 
FK 

) for JFM (a), JAS (b) and the ratio between the two (c). Values near the equator 

are masked out for (a) and (b) as the Coriolis parameter becomes small. 

Fig. 10. Seasonal phase of w 

′′ b ′′ and EKE in the Kuroshio (a), Gulf Stream (b) and ACC (c) domain in Fig. 1 . 
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Fig. 11. Kuroshio region in Fig. 1 for (a) the geostrophic velocity and buoyancy frequency. We also show the homogenized buoyancy frequency in the ML for winter and 

summer. The figure is divided at the ML base. (b) Amplitude of the unstable mode with the largest growth rate closest to the Nyquist wavenumber. (c) Numerical solution of 

growth rates in the Kuroshio region for each season plotted against the zonal inverse wavelength with zero meridional wavenumber: linear instability solved with original 

profile (solid line) and with homogenized stratification in the ML (dashed line). The Eady (dot-dashed line) and ML Eady (dotted line) growth rate are shown as well. The 

zonal inverse wavelength was defined between the range of 10 −1 to 10 3 L −1 
d 

. The Rossby deformation inverse wavelength are shown in black thin lines and the thick black 

line indicates the Nyquist wavelength. 

Fig. 12. Seasonal difference of the maximum growth rate solved numerically at the 

Nyquist wavelength. 
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frequency data is available, this term can be calculated in the

spectral domain, i.e. as the cross spectrum �{ ̂  w 

∗ ˆ b } (k ) , which re-

veals the spatial scales of energy production from BCI. This anal-

ysis has been used to demonstrate the link between the scales

and growth rates of the most unstable normal modes identified

by linear stability analysis and the finite-amplitude production of

kinetic energy in fully developed, nonlinear baroclinic turbulence

(e.g. Holland, 1978; Qiu et al., 2014 ). Callies et al. (2016) used such

cross spectra to show the importance of MLI in energizing subme-

soscale turbulence in idealized QG simulations. 
In analyzing baroclinic conversion from the POP model, we

re somewhat constrained by the available output. High frequency

daily) data were only saved for the surface, precluding a spec-

ral decomposition of w and b in the interior. Interior fields were

aved as monthly averages, which heavily filters small-scale fluc-

uations. However, a six year portion of the integration was con-

ucted in which this monthly-averaged interior data included the

ertical tracer fluxes wθ
m 

and wS 
m 

, where the m superscript in-

icates a temporal average over a single month. From this output,

he monthly-averaged buoyancy flux can be calculated as wb 
m ≈

(αwθ
m − βwS 

m 

) where α is the thermal expansion and β the

aline contraction coefficient determined from the seasonal clima-

ologies for each 1 ° grid box. 

To isolate the baroclinic conversion associated with small-scale

otions, we calculate the sub-monthly contribution to the verti-

al buoyancy flux. The sub-monthly fluctuations are defined as

nomalies from the instantaneous monthly average ( not the clima-

ology) and denoted with a double prime: e.g. u ′′ ≡ u − u m . This

emporal high-pass filter acts as a crude spatial high-pass filter.

e tested the effect of this filtering on the surface horizontal ve-

ocity fields, for which daily data is available, and found that it

trongly attenuates the EKE spectrum at wavenumbers less than

 × 10 −3 cpkm while leaving the smaller scales mostly unchanged.

See Appendix A.3 for discussion and figure.) This filtering thus al-

ows us to focus on baroclinic conversion in the high wavenumber

ange where we observe the strongest seasonality in EKE. 
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Fig. 13. (a) The zonal average of the Rossby radius ( L d ) for winter and summer and the ML Rossy radius ( L ML 
d 

) for winter between 60 S and 60N 60 N. The black dashed line 

indicates the Nyquist wavelength. (b) Ratio of the Rossby wavelength calculated over the mixing layer to the Nyquist wavelength ( L ML 
d 

(2	x ) −1 ). The values of L ML 
d 

used in 

the northern hemisphere are values during JFM (boreal winter) and JAS (austral winter) for the southern hemisphere. The black contours indicate where the ratio is unity. 

r = 0.58r = 0.72 r = 0.49

Fig. 14. Scatter plot of seasonal difference of (a) EKE against w 

′′ b ′′ , (b) σ N against w 

′′ b ′′ and (c) EKE against σ N . Negative values of w 

′′ b ′′ were masked out before calculating 

the correlation. The colors represent each latitudinal band and the correlation coefficient ( r ) is calculated for the globe. 

Fig. 15. Eddy turnover timescale in days for the Kuroshio region in Fig. 1 . The color 

shadings represent the EKE dissipation range for JFM (blue) and JAS (red). (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Although we can’t directly calculate w 

′ ′ (or its spectrum) from

he available interior output, we can calculate the sub-monthly

ertical buoyancy flux as 

 

′′ b ′′ 
m = wb 

m − w 

m 

b 
m 

. (1) 

e do this for each month of the six years in which this output is

vailable. The seasonal climatology of w 

′′ b ′′ (superscript m dropped

ecause we are dealing with a climatology) is then calculated by

rouping together all the months from each season and averaging
ver the upper 100 m of the water column. (Results are not highly

ensitive to averaging depth.) 

The results of this analysis for JFM and JAS are shown in Fig. 8 ,

ogether with the seasonal difference. The climatologies show that

 

′′ b ′′ is positive nearly everywhere, indicating conversion of poten-

ial energy to kinetic energy, as expected in MLI and BCI in general.

he conversion is strongest in energetic regions such as the Gulf

tream, Kuroshio, Agulhas, ACC, and Leeuwin current. The strong

easonal cycle is readily visible by comparing the two seasons and

merges clearly in the difference plot. The winter hemisphere ex-

eriences much stronger conversion rates, up to 10 times larger

han the summer conversion rate. 

The maximum magnitude of w 

′′ b ′′ in energetic regions is ap-

roximately 10 −7 m 

2 s −3 , which is also roughly the amplitude of

he seasonal cycle. In comparison, Sasaki et al. (2014 , Fig. 4b) di-

gnosed a seasonal amplitude in baroclinic conversion of approxi-

ately 10 −6 m 

2 s −3 in a much higher resolution regional model of

he Kuroshio. Brannigan et al. (2015 , Fig. 19b) found a seasonal cy-

le amplitude of approximately 10 −8 m 

2 s −3 in an idealized model

ased on the mid-latitude open ocean run at 0.5 km resolution.

hese comparison show that the magnitude and seasonal cycle of

 

′′ b ′′ in the POP model is consistent with, but somewhat weaker

han, higher resolution studies of seasonal MLI in eddy active re-

ions. 

We also compare the diagnosed w 

′′ b ′′ with an estimate given

y the MLI parametrization of Fox-Kemper et al. (2008) , which is

ased on an Eady-type model of BCI within the mixed layer (see

ection 4.2 for further discussion of this model). The parameteri-

ation assumes that APE stored in mixed layer fronts is converted

o EKE at the rate 

 

′ b ′ 
F K = 

M 

4 H 

2 

| f | (2) 
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2 This open source package is available at https://github.com/rabernat/ 

oceanmodes . Appendix A.5 . 
3 Within the ML, the background state of shear and stratification is ill- 

determined. This limits our interpretation of the actual values of the growth rates 

but our point shown below is that the large seasonal difference is due to the re- 

duced ML stratification during winter time. 
where M 

4 is the squared horizontal buoyancy gradient, defined as

M 

4 ≡
(

∂ b 
xy 

∂x 

)2 

+ 

(
∂ b 

xy 

∂y 

)2 

, (3)

H is the mean mixed-layer depth, and f is the Coriolis parameter.

This parameterization was designed to be applied to the mesoscale

buoyancy gradients, so we first average the buoyancy field horizon-

tally over ten grid points (roughly 1 °), as indicated by the symbol

b 
xy 

. We then square the gradients of this coarse-grained buoyancy

field and finally take the climatological average over seasons (indi-

cated by the overbar in Eq. (2)) . Since daily-resolution of buoyancy

was only available at the surface, we assume that M 

4 is uniform

over the mixed layer. 

One caveat is that the exact magnitude of the FK-parameterized

conversion rate is uncertain up to a scaling factor and the mag-

nitude of buoyancy gradient in Eq. (2) is highly sensitive to the

choice of averaging scale used to define M 

4 . Here we choose a scale

representative of the mesoscale fronts which drive MLI. We also

focus on the magnitude of the seasonal cycle, which the scaling

factor cancels out and is less sensitive to the choice of averaging

scale than the absolute value of the estimated conversion rate. 

The JFM and JAS values of w 

′ b ′ F K are shown in Fig. 9 . The pre-

dicted amplitude of the seasonal cycle is 10 −7 m 

2 s −3 , compara-

ble to the diagnosed values. However, the spatial pattern is some-

what different; while the diagnosed w 

′′ b ′′ has clear maxima in

western boundary currents, w 

′ b ′ F K is distributed more evenly over

the open subtropical oceans. The spatial pattern of seasonal differ-

ence, however, is more similar to that of w 

′′ b ′′ . Given the relatively

coarse resolution of the POP model, and the approximate nature

of the Fox-Kemper parameterization, the consistency between the

two supports the notion that MLI is the driver of the seasonal vari-

ations in baroclinic conversion and EKE. 

Finally, we compare w 

′′ b ′′ with small-scale (below 30 km) EKE

at monthly resolution from the three example regions in Fig. 10 .

The two signals are highly correlated. There is some indication that

the EKE lags the conversion rate by one month. This in-phase rela-

tionship suggests that seasonal changes in w 

′′ b ′′ equilibrate quickly

and are likely balanced on a month-by-month basis by changes in

dissipation and / or spectral energy transfer to larger scales. 

4.2. Linear stability analysis 

In the preceding section, we showed that the sub-monthly

baroclinic conversion rate is indicative of seasonally varying MLI.

The lack of daily output of the interior fields means that we cannot

directly calculate the conversion rate in spectral space. However,

Qiu et al. (2014) showed that the temporal variations in finite-

amplitude baroclinic conversion were well captured by variations

in the linear stability properties of the background ocean state.

Here we use linear BCI analysis of the POP model climatology

to investigate the temporal scales, spatial scales, and the vertical

structure of potential instabilities. 

We first calculate the growth rates of linear instabilities nu-

merically using the same approach as Smith (2007) . This method

solves the linear quasigeostrophic (QG) eigenvalue problem us-

ing the local profile of geostrophic shear and stratification ( N 

2 ) at

each point in the horizontal to define the background state. While

Smith (2007) considered just the annual mean climatology, here

we use a seasonally resolved climatology, revealing how instability

varies between winter and summer. 

The background state was defined by taking the seasonal cli-

matology over 41 years of model output and aggregating the orig-

inal 0.1 ° resolution to 1 °. It is instructive to consider the win-

ter and summer climatological profiles of geostrophic velocity and
 

2 , as shown in Fig. 11 (a), an example from the Kuriosio region.

hile there are some seasonal difference in geostrophic velocity

nd associated shear, the dominant seasonal change is in the up-

er ocean N 

2 , which is nearly 100 times weaker in the winter

rofile. This weak winter stratification reflects the cumulative im-

act of deeper winter mixed layers. The winter N 

2 profile can be

iewed as a superposition of interannual and intra-seasonal MLD

ariability over the averaging period. It is, however, problematic to

ttempt to define an actual mixed-layer depth from the climato-

ogical profile; because mixed-layer depth identification (e.g. using

 density threshold criterion ( de Boyer Montégut et al., 2004 )) is

 nonlinear operation, the average of the MLD given by the daily

esolution output is not the same as the MLD of the climatological

ensity field. For this reason, we define the ML as the depth over

hich N 

2 experiences significant seasonality (approximately 160 m

n Fig. 11 (a), the depth at which N 

2 
JF M 

and N 

2 
JAS 

coincide). The ML

orresponds roughly with the maximum winter MLD over the av-

raging interval. 

The growth rates of the linear instabilities were determined nu-

erically using the oceanmodes python package 2 developed for

his study (hereon we will refer to this as the numerical solu-

ion). The numerical details of the linear stability calculation are

iven in Appendix A.5 ; here we show only the final results. The

rowth rates for the same Kuroshio example region are shown in

ig. 11 (c) as a function of zonal wavenumber. (In the example,

eridional wavenumber is set to zero, but full two-dimensional

tability calculations were also performed.) This figure also shows

everal relevant length scales: the full-depth Rossby radius R d , the

ixed-layer (ML) Rossby radius R ML 
d 

, and the model Nyquist wave-

ength (defined as two grid points 2 	x ). R d was calculated nu-

erically with the oceanmodes package using the seasonal cli-

atology of N 

2 (buoyancy frequency), while R ML 
d 

was derived from

he depth averaged buoyancy frequency over the mixed layer (i.e.

 

ML 
d 

= N 

z ML H ML (π f ) −1 ). 

We observe large differences between winter and summer nu-

erical growth rates, especially at small scales. A large portion

f the small scale instability predicted cannot be resolved by the

odel, since it occurs at smaller scales than the model grid scale

thick black line in Fig. 11 c). However, there is still a large sea-

onal difference in the resolved growth rates around the model

yquist wavelength and above 3 . The vertical structure of the mode

ith a local maximum growth rate around the Nyquist wavelength,

hown in Fig. 11 b, is strongly surface intensified. This is the small-

st instability that can potentially be resolved, although its growth

s likely strongly damped by numerical dissipation. 

To quantify the contribution of the reduced near-surface strati-

cation during winter to the growth rates, we artificially homoge-

ize the stratification during winter in the ML to the value at the

ase of ML and then recalculate the numerical growth rate, leaving

he geostrophic velocity profiles untouched. The blue dotted line

n Fig. 11 c shows the growth rate ( σ ML 
JF M 

) for this modified N 

2 pro-

le. We see that the large growth rates at small scales disappear,

hile the growth rates near the full-depth deformation radius re-

ain unchanged. This experiment reveals that the main driver of

easonality in growth rates is indeed the weak near-surface strat-

fication in winter. Furthermore, the lack of significant seasonal

hanges in deep shear/stratification and corresponding large-scale

rowth rates indicates that deep BCI is unlikely to be the main

https://github.com/rabernat/oceanmodes
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t  
river of seasonality. This general behavior holds for all the seven

xample regions (not shown). 

The importance of weak upper ocean stratification in driv-

ng seasonality in instability is consistent with the MLI mecha-

ism ( Boccaletti et al., 2007; Callies et al., 2015; 2016 ). To test

he quantitative connection to MLI theory, we compare the full

rowth rates to the approximated baroclinic instability models of

ady (1949) ( Fig. 11 c), which is considered to be a good approx-

mation for MLI ( Boccaletti et al., 2007; Callies et al., 2016 ). The

nalytical Eady growth rates were calculated using the two differ-

nt assumptions for the Rossby deformation radius: full depth and

L 4 . We find that the ML Eady growth rates during winter are a

ood proxy for the full numerical solution in the Kuroshio region,

apturing roughly the scale and magnitude of the dominant peak

although the numerical solutions contain even smaller-scale insta-

ilities) 5 Since the ML depth is related to the maximum winter ML

epth, it is not surprising that the ML Eady and ML Rossby wave-

ength L ML 
d 

(≡ 2 πR ML 
d 

) capture the scales and large growth rates of

his mode of instability. Examination of all seven example regions

evealed that the ML Eady model qualitatively captures the domi-

ant mode of baroclinic instability around the Nyquist wavelength

uring winter in eddy active regions (not shown). 

We now assess the seasonality in linear instability at the global

cale. In Fig. 12 , we show the seasonal difference of the maxi-

um numerical growth rates at the Nyquist wavelength ( σ N ). (The

aximum was taken from the two-dimensional zonal/meridional-

avenumber space.) We see that the maximum growth rates are

onsistently larger during winter than summer, consistent with the

xample region examined above and coherent with the seasonal

attern of EKE spectra. It is particularly notable that the reversal of

easonal signals in the tropics of the Pacific Ocean show up both in

he EKE and growth rates. The large seasonal difference in growth

ates are not just at the Nyquist wavelength but extend to larger

cales, as seen in Fig. 11 . 

If MLI is indeed the driver of the seasonal variations seen in the

E spectra, the unstable mixed-layer modes must be resolved by

he model grid. The 0.1 ° resolution of the POP model is very fine

or a climate model, but it is still not even classified as mesoscale

esolving at high latitudes ( Hallberg, 2013 ) 6 . We argued above

hat the growth rate at small scales is due to MLI, with a peak

t roughly the mixed layer deformation scale L ML 
d 

. The degree to

hich this is resolved at a particular location depends, then, on

ow L ML 
d 

varies with grid resolution, or Nyquist wavelength 2 	x . In

ig. 11 , we showed that the large growth rates around the Nyquist
4 Due to how the MLD was defined, ML Eady estimates have only been given for 

inter. The Eady growth rates were defined as 

Eady = f 0 

√ 

1 

Ri 

[ (
coth 

μ

2 
− μ

2 

)(
μ

2 
− tanh 

μ

2 

)] 1 / 2 
, k max = 1 . 6 R d 

−1 

here 

 

1 

Ri 
= 

√ 

1 

H 

∫ 0 

−H 

(
∂u g 
∂z 

)2 + 

(
∂v g 
∂z 

)2 

N 2 
dz 

nd H is the full depth or MLD depending on the context. 
5 Unsurprisingly, the (full-depth) Eady solutions using R d do not provide a very 

ood fit to the numerical solution as it is difficult to assume that the stratification is 

niform over the whole depth ( Fig. 11 (c)). Henceforth, we will not further consider 

he full-depth Eady growth rate. Eady (1949) also derived a solution for a model of 

eak stratification overlying a strong but finite-amplitude thermocline, which was 

e-examined by Callies et al. (2016) in the context of ocean MLI. This idealization 

s closer to the real ocean where the ML overlies the thermocline, but here we find 

he ML Eady model to be sufficient. 
6 Note that Hallberg (2013) classifies a model as mesoscale resolving if it resolves 

he deformation radius R d of the first internal mode with at least two grid points. 

he most unstable mode of the linear instability occurs at L ML 
d 

= 2 πR ML 
d 

� 6 R ML 
d 

. This 

s significantly larger than R ML 
d 

itself. 
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avelength are due to the instability around L ML 
d 

where the MLD

s defined in the same manner as in Fig. 11 . In Fig. 13 , we plot

he zonal average of L d and L ML 
d 

, and the ratio of this wavelength

o the model Nyquist wavelength in winter and summer. The ra-

io varies from near 0.1 at low latitudes to 10 at high latitudes.

ote also that in Fig. 11 , the growth rate increases strongly with

avenumber near the model grid scale, implying that, even if L ML 
d 

s not resolved, the fastest-growing resolved instability will still be

ear the grid scale. 

The analysis above shows that there is a strong seasonality

n baroclinic conversion rates and growth rates at the Nyquist

nd larger wavelengths attributable to MLI and partially resolv-

ble by the model. To test the connection between the season-

lity in the EKE spectra and MLI globally, we now examine the

orrelation between the seasonal amplitude in EKE at scales be-

ow 30 km and w 

′′ b ′′ , the numerical growth rate at the Nyquist

avelength ( σ N ) and w 

′′ b ′′ , and EKE at scales below 30 km and

N in Fig. 14 . As EKE and w 

′′ b ′′ are directly related via the en-

rgy budget, it is not surprising that they show the highest cor-

elation ( r = 0 . 72 ; Fig. 14 a). EKE was taken at the surface (due to

odel output availability) while as w 

′′ b ′′ was taken as the aver-

ge over the top 100 m. Also there is leakage of EKE at scales

elow 30 km due to nonlinear spectral transfer and dissipation

 Arbic et al., 2013; 2014 ). Given these caveats, the correlation of

.72 seems quite high. The correlations with the linear instability

rowth rates ( Fig. 14 b and c) are lower (0.58 for w 

′′ b ′′ and σ N ;

.49 for σ N and EKE), but still positive. Processes such as non-

inear turbulent interactions and insufficient model resolution to-

ards higher latitudes ( Fig. 13 ) could be the cause of the lower

orrelation with the linear instability growth rate. Nevertheless,

hese correlations further support the hypothesis that the season-

lity seen in Figs. 4 and 5 is due to MLI. 

.3. Timescale of EKE inverse cascade 

The EKE spectra ( Fig. 3 ) also show weak seasonal variations

t larger scales. The energy in the smallest scales peaks in win-

er, while the energy in the larger mesoscale range (between

0 km and 100 km, i.e. 10 −2 – 2 × 10 −2 cpkm) peaks in spring.

asaki et al. (2014) and Qiu et al. (2014) argued that seasonality

n submesoscale energy cascades upscale, with a time lag, to in-

uce seasonality in the mesoscale. In this mechanism, during win-

er time, deeper ML and reduced stratification lead to enhanced

LI ( Boccaletti et al., 2007; Fox-Kemper et al., 2008 ), which be-

omes an energy source during wintertime at the smallest scales.

his excess energy cascades inversely and reaches the mesoscale in

he springtime. The inverse cascade of geostrophic KE was shown

xtensively by Arbic et al. (2013) ; 2014 ) to be a robust phenomena

egardless of the spatial resolution even in the presence of dissi-

ation. To test whether this is a plausible explanation for the POP

odel mesoscale seasonality, we can quantify the time-lag in the

nverse energy cascade via the eddy turnover timescale. The eddy

urnover timescale quantifies the rate at which energy is trans-

erred across scales via nonlinear eddy-eddy interaction. It is de-

ned as 

k = 

k −1 

v k 
= [ k 3 E(k )] −1 / 2 (4)

e.g. Vallis, 2006 ) where k, v k , and E(k ) are the wavenumber, eddy

elocity associated the wavenumber and the EKE spectrum re-

pectively. τ k can considered as the approximate timescale of the

pectral energy transfer. As shown in Fig. 15 , we obtain values of

0–50 days in the mesoscale range and 100 days for regions with

ow eddy activity (not shown). These timescales are consistent

ith the mechanism in previous studies (e.g. Sasaki et al., 2014;

iu et al., 2014 ) and suggest that the EKE spectra ( Fig. 3 ) may re-
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Fig. 16. Histogram of the frontogenesis function in the a) Kuroshio, b) Gulf Stream and c) ACC regions shown in Fig. 1 . The y -axis is in a log scale to emphasize the 

seasonality and the histograms are normalized so that the area integrates to unity. 
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7 The EKE in the tropical Pacific domain had opposite seasonality from the rest 

of the domain, i.e. higher EKE during summertime, so the seasonality of F s in the 

East Pacific domain is out of phase as well. 
flect a time-lagged cascade of submesoscale energy to larger scales.

One caveat is, however, we may be underestimating the “true” val-

ues of E in the simulation due to the presence of dissipation, and

hence overestimating τ k . As the temporal and spatial resolution

increases, less energy will be dissipated due to dissipation so we

would expect the real ocean to have smaller τ k than our estimates.

5. Other possible mechanisms for seasonality in EKE 

In this section, we examine alternative possible mechanisms

for the generation of seasonal variability in EKE at and below the

30 km scale. 

5.1. Variation in gravity wave energy 

In a recent study, Rocha et al. (2016b ) attribute some season-

ality in upper ocean kinetic energy to inertia-gravity waves, par-

ticularly during summer. It is important to note that the POP

simulation does not include tidal forcings ( Small et al., 2014 ), so

the main mechanism for generation of super-inertial energy is

high-frequency wind forcing. We quantify the contribution of the

inertia–gravity waves by decomposing the horizontal kinetic en-

ergy spectra into rotational ( ψ) and divergent ( φ) components

( Callies and Ferrari, 2013; Bühler et al., 2014; Rocha et al., 2016a ),

which assumes isotropy and homogeneity of the field. The decom-

posed spectra indicates the energy contained in each component

( ψ , φ) respectively. Internal gravity waves are divergent by nature

in a 2D sense, while balanced flow is non-divergent to leading or-

der, and so the divergent spectrum approximates the kinetic en-

ergy contained in internal gravity waves. 

We performed this decomposition in the same seven regions

where we did the linear stability analysis. Fig. 3 (d–f) and 17 (e–h)

show that for all regions, except for the highest wavenumbers, the

rotational component dominates for both seasons. The seasonality

seen in the POP simulation at scales larger than 50 km, therefore,

is mostly due to the rotational component of the velocity field, i.e.

geostrophic turbulence, which is non-divergent to first order. The

divergent component at the highest wavenumbers is possibly due

to small-scale dissipation producing significant ageostrophic mo-

tion. 
.2. Variation in frontogenesis 

Another proposed mechanism for generating submesoscale en-

rgy is frontogenesis (FG) ( Mensa et al., 2013 ). FG is initiated

y mesoscale straining, which sharpens buoyancy fronts. Below

he surface, secondary ageostrophic circulation act to flatten out

he isopycnal slopes, but at the surface, the ageostrophic vertical

elocities vanish and the buoyancy fronts sharpen more rapidly

 Capet et al., 2008a ). The resulting thermal wind shear leads to

harply surface-intensified EKE in the submesoscale range. 

The relevance of strain-induced FG ( McWilliams, 2016 ) in pro-

ucing seasonality at submesoscales can be quantified via the fron-

ogenesis function, defined as 

 s = Q s · ∇ z b (5)

here ∇ z is the horizontal gradient and 

 s = −
(

∂u 

∂x 

∂b 

∂x 
+ 

∂v 
∂x 

∂b 

∂y 
, 

∂u 

∂y 

∂b 

∂x 
+ 

∂v 
∂y 

∂b 

∂y 

)
. (6)

 s represents the instantaneous rate of increase of the horizontal

uoyancy gradient variance arising from the straining by the hor-

zontal velocity field ( Hoskins, 1982; Capet et al., 2008a; Branni-

an et al., 2015 ) (as in Capet et al. (2008a ) where we neglect the

ertical advection term). Histograms of F s from different seasons

nd regions are shown in Fig. 16 . The distributions are strongly

kewed toward positive values, which is expected as advective ve-

ocities act to strengthen fronts. Although there is seasonality in

he Kuroshio and Gulf Stream region, it is very weak (the y -axis in

he histogram is in log scale). As for the ACC region, the seasonality

s out of phase from that of EKE spectra ( Fig. 5 ), i.e. EKE is higher

uring JAS (austral winter) but the frontogenesis function has a

onger tail during JFM (austral summer). The other regions (shown

n Appendix A.1 ) mostly show opposite seasonality from EKE, as

n the ACC 

7 . This is consistent with Brannigan et al. (2015) , who



T. Uchida et al. / Ocean Modelling 118 (2017) 41–58 53 

f  

i  

t  

f  

i  

d  

i  

B  

g  

w  

m  

M  

t  

c

6

 

n  

A  

a  

n  

w  

i  

s

 

fi  

i  

t  

c  

2  

s  

i  

w

 

h  

l  

r  

a  

v  

(  

s  

(  

d  

t  

e  

n

 

t  

c  

g  

t  

e  

s  

t  

e  

s  

i  

t  

s  

w  

Q  

s  

t  

t  

5  

e

 

a  

s  

p  

N  

M  

i  

p  

o

 

i  

K  

2  

t  

s  

t  

m  

n  

i  

o

s  

q

A

 

A  

O  

H  

S  

v  

p  

o  

t  

s

A

A

f

 

b  

s  

v

 

w  

t  

s

A

v

w  

T  

F  

d  

v  

r

ound strong FG in summer/late fall and strong symmetric instabil-

ty and MLI in the winter-early spring. Since EKE at scales smaller

han 30 km has highest levels during winter for both hemispheres,

rontogenesis is not likely to be the cause for the EKE seasonal-

ty in the POP simulation. Although FG does not seem to be the

ominant factor in causing seasonality in EKE, we did find that FG

s strongest during summertime, consistent with results shown by

rannigan et al. (2015) . One possible explanation is that the ener-

etic MLI during winter counteracts FG by slumping the isopycnals,

hich FG feeds off of and as a result, FG is strongest during sum-

er when MLI is weak. Since this is the time of year when the

LD is shallowest, FG may still be an important mechanism for

ransporting tracers across the ML base and impacting the biogeo-

hemistry in the surface layer. 

. Conclusions 

We have assessed the seasonality in ocean surface eddy ki-

etic energy in the ocean component of a global climate model.

lthough this model is not considered submesoscale-resolving, our

nalysis clearly shows significant seasonal differences in both mag-

itudes and spectral slopes of wavenumber power spectra of EKE,

ith a clear signature of seasonally varying mixed-layer baroclinic

nstability as its primary driver. This is the central result of our

tudy. 

In terms of the actual values of the spectral slopes, it was dif-

cult to extract physical meanings and compare them to turbulent

nertial range predictions because the subgrid diffusion impacted

he spectra over a wide range of wavenumbers. We therefore cal-

ulated the seasonal difference of spectral slopes at scales between

00 and 250 km ( 4 × 10 −3 – 5 × 10 −3 cpkm), while for the smallest

cales (below 30 km), we simply calculated the seasonal different

n total energy and variance. Spring had the shallowest slopes and

intertime had the highest energy at the smallest scales. 

As mentioned in the introduction, there have been four major

ypotheses proposed in explaining seasonality in mesoscale turbu-

ence: (i) variation in internal gravity waves due to seasonality in

e-stratification of the upper ocean ( Rocha et al., 2016b ); (ii) vari-

tion in frontogenesis due to seasonality in lateral strain and con-

ergence in the horizontal density gradients ( Mensa et al., 2013 );

iii) variation in the interior baroclinic instability (BCI) due to sea-

onality in the vertical shear of the full-depth background state

 Qiu et al., 2014 ); and (iv) variation in the mixed-layer BCI (MLI)

ue to seasonality in ML stratification, depth and vertical shear in

he mixed layer ( Boccaletti et al., 2007; Qiu et al., 2014; Callies

t al., 2016 ). We have sought to figure out which of these mecha-

isms, if any, are active in the POP simulation. 

We found that the seasonality seen in the EKE field is consis-

ent with observational studies and the predictions of MLI, which

an be approximated by the ML Eady model in eddy-active re-

ions (e.g. Callies and Ferrari, 2013; Callies et al., 2015 ). When

he ML depth is deeper during wintertime, available potential en-

rgy for BCI increases. This energizes the entire mixed layer and,

ubsequently, the submesoscale range through non-linear interac-

ions among scales in turbulence ( Callies et al., 2015; Brannigan

t al., 2015 ). Since the grid scale of the POP simulation is on the

ame order of the length scale at which the growth rate of MLI

s largest, MLI is at least partially resolved in the POP simula-

ion. Due to the inverse cascade, energy is transported between

cales from small to large ( Arbic et al., 2013; 2014 ), which is likely

hat is seen in the wavenumber spectra. Sasaki et al. (2014) and

iu et al. (2014) showed a time-lag in the energy to cascade up-

cale, and our results are consistent with their finding; winter has

he highest energy at the smallest scales, spring and autumn spec-

ra have the highest and lowest energy respectively in the range of
0–100km ( 10 −2 – 5 × 10 −2 cpkm) and summertime has the high-

st energy at the largest scales. 

The POP simulation has the spatial resolution of 0.1 ° in latitude

nd longitude. Due to the subgrid diffusion, however, the effective

patial resolution is much coarser. Consequently, we were very sur-

rised to find evidence of a partially resolved seasonal cycle in MLI.

evertheless, multiple lines of evidence support the hypothesis of

LI being the dominant cause for seasonality of small-scale EKE

n this simulation. There is no such evidence for the other pro-

osed mechanisms we considered (inertia-gravity waves, deep BCI

r frontogenesis). 

Although there have been numerous studies of MLI in ideal-

zed models ( Boccaletti et al., 2007; Fox-Kemper et al., 2008; Fox-

emper and Ferrari, 2008; Brannigan et al., 2015; Callies et al.,

016 ) and specific regions ( Qiu et al., 2014; Callies et al., 2015 ),

his is the first study describing a simulations which resolves the

easonal cycle of MLI on a global scale. It is likely that the MLI in

he POP model is severely damped and consequently unrealistic in

any respects. Nevertheless, the presence of clear seasonality sig-

als at 30 km ( 3 . 3 × 10 −2 cpkm) and below in every ocean basin

mplies a robust mechanism for seasonality despite the limited res-

lution of the model. The implications of this seasonality for air–

ea interaction, ocean ecosystems, and eddy fluxes are important

uestions for future research. 
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ppendix 

.1. Isotropic wavenumber spectra and histogram of the frontogensis 

unction in other regions 

Fig. 17 shows the isotropic wavenumber spectra of EKE and

uoyancy for regions other than the ones shown in Fig. 3 for each

eason. The EKE spectra is decomposed into the rotational and di-

ergent component. 

Fig. 18 shows the histogram of the frontogenesis function for

inter and summertime for the same region as Fig. 17 . We see that

he PDFs are strongly skewed towards positive values and that the

easonality is opposite from that of EKE ( Fig. 5 ). 

.2. Sub-monthly spectrum of EKE 

We define the sub-monthly velocity anomaly as 

 

′′ = v − v m 

(7) 

here the superscript m represents the individual monthly mean.

he sub-monthly EKE (defined as EKE ′′ ≡ 0 . 5(u ′′ + v ′′ ) ) is show in

ig. 19 for the Kuroshio, Gulf Stream and ACC domain. Rest of the

omains are shown in Fig. 17 . We see that the monthly mean acts

irtually as a low-pass spatial filter and the small-scale features are

etained in the anomaly field from that. 

http://dx.doi.org/10.13039/100000104
http://dx.doi.org/10.13039/100000001
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Fig. 17. Seasonally-averaged spectra in: (a) north of Kuroshio, (b) east Pacific, (c) Sargasso Sea, and (d) northeast Atlantic. The colored dotted-dashed lines show the EKE ′ ′ 
spectrum derived using the velocity anomaly from the monthly mean. The shading shows the dissipation range defined as where 80% of the dissipation due to bihamonic 

diffusion occurs and the black dashed and dotted lines show the spectral slope of -3 and -5/3 respectively. Panels (e) –(h) show the rotational and divergent component of 

the full EKE. 
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A.3. Method for calculating isotropic spectra 

Here we derive the normalization factors related to the calcula-

tion of isotropic wavenumber spectra. For an aribtrary 2D scalar

quantity θ ( x, y ) with units of [ D ], the corresponding isotropic

wavenumber spectrum is denoted as B ( k r ), where k r is the

isotropic wavenumber. We wish for B ( k r ) to satisfy the Plancherel

theorem, such that that the total variance is the same when aver-

aged over space or integrated over wavenumber, i.e. 

θ2 
xy = 

1 

X Y 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

θ2 (x, y ) d xd y = 

∫ ∞ 

0 

B (k r ) dk r [ D 

2 ] . 

the first integral is a spatial average, and the second is a spectral

integral. X and Y are the spatial domain lengths respectively. 

We now need to relate B ( k r ) to quantities we can calculate nu-

merically. For a two-dimensional Fourier transform (FT), the in-
erse transform is 

(x, y ) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

ˆ θ (k, l) e 2 π i (kx + ly ) d kd l 

here k and l are zonal and meridional wavenumber. The FT is

hen 

ˆ (k, l) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

θ (x, y ) e −2 π i (kx + ly ) d xd y 

≈ 	x 	y 
∑ 

p 

∑ 

q 

θ (x p , y q ) e 
−2 π i (kx p + ly q ) [ D m 

2 ] 

here the second equality represents the approximation of dis-

retizing the continuous (FT) into a Fourier series. ˆ θ has the units

f [ D m 

2 ]. Numerical simulations and observations are in most

ases discretely sampled data so the discrete FT is necessary. For

onvenience, we define another variable, indicated by a tilde, for
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Fig. 18. Histogram of the frontogenesis function in the a) North of Kuroshio, b) Sargasso Sea, c) East Pacific and d) Northeast Atlantic regions shown in Fig. 1 . The y -axis is 

in a log scale to emphasize the seasonality. 

Fig. 19. Seasonally-averaged spectra in: (a) Kuroshio, (b) Gulf Stream, and (c) ACC. The colored dotted-dashed lines show the EKE ′ ′ spectrum derived using the velocity 

anomaly from the monthly mean. The shading shows the dissipation range defined as where 80% of the dissipation due to bihamonic diffusion occurs and the black dashed 

and dotted lines show the spectral slope of −3 and −5/3 respectively. 

w  

i

θ

w  

d∫

W  

t

	

hich we absorb the spatial units into the Fourier representation,

.e. 

˜ (k, l) ≡
∑ 

p 

∑ 

q 

θ (x p , y q ) e 
−2 π i (kx p + ly q ) 

hich has the units of [ D ]. The Plancherel theorem in two-

imensions (2D) is 
 ∞ 

∫ ∞ 

θ (x, y ) 2 d xd y = 

∫ ∞ 

∫ ∞ 

| ̂  θ (k, l) | 2 d kd l. 

−∞ −∞ −∞ −∞ 
riting out the right-hand side (RHS) in a discrete form, we ob-

ain 

x 	y 
∑ 

p 

∑ 

q 

θ (x p , y q ) 
2 ≈

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

θ (x, y ) 2 d xd y 

= 

∫ ∞ 

∫ ∞ 

| ̂  θ (k, l) | 2 d kd l 

−∞ −∞ 
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≈ 	k 	l 
∑ 

m 

∑ 

n 

| ̂  θ (k m 

, l n ) | 2 

= 	k 	l(	x 	y ) 2 
∑ 

m 

∑ 

n 

| ̃  θ (k m 

, l n ) | 2 . 

	x, 	y are the spacings between the data points in the spatial

domain and 	k, 	l are the spacings between each discrete inverse

wavelength. The discrete inverse wavelengths are defined as 

k ≡ (− N x 
2 

, . . . , −1 , 0 , 1 , . . . , N x 
2 

− 1) 

N x 	x 

l ≡ (− N y 
2 

, . . . , −1 , 0 , 1 , . . . , 
N y 
2 

− 1) 

N y 	y 
, 

where N x , N y are the number of data points in the spatial domain.

Hence, the Plancherel relation in the discrete form becomes 

	x 	y 
∑ 

p 

∑ 

q 

θ (x p , y q ) 
2 = 

1 

N x 
2 N y 

2 	k 	l 

∑ 

m 

∑ 

n 

| ̃  θ (k m 

, l n ) | 2 . 

Now, defining the normalized discrete Fourier coefficients as 

θ̆ (k m 

, l n ) ≡ 1 

N x N y 

√ 

	k 	l 
˜ θ (k m 

, l n ) [ D m ] (A-1)

in which θ̆ represents the square root of power spectral density

(PSD), the discrete Plancherel theorem becomes 

	x 	y 
∑ 

p 

∑ 

q 

θ (x p , y q ) 
2 = 

∑ 

m 

∑ 

n 

∣∣θ̆ (k m 

, l n ) 
∣∣2 

. 

The isotropic PSD, however, needs to be defined carefully. Since

it involves a transformation to polar coordinates, we pick up an

extra factor of k r in the integral. In order to satisfy the Plancherel’s

relation in 2D, we need ∫ ∞ 

0 

∫ π

−π
B (k r , φ) d φ d k r = θ2 

xy = 

∫ ∞ 

0 

∫ π

−π

(
| ̂  θ (k r , φ) | 2 k r d φ

)
d k r 

≈ 1 

πR 

2 

∫ R 

0 

(∫ π

−π
| ̂  θ (k r , φ) | 2 k r dφ

)
dk r [ D 

2 ] 

∴ 

∫ π

−π
B 2 D (k r , φ) dφ = 

1 

πR 

2 

∫ π

−π
| ̂  θ (k r , φ) | 2 k r dφ [ D 

2 m ] 

where 	k r ≡ 1 
N r 	r 

and N r , 	r are the number of data points in the

radial direction and spacing between the data points respectively. 

For an isotropic field, this reduces to 

θ2 
xy = 

∫ ∞ 

0 

B 2 D (k r ) dk r ≈
∑ 

n 

B 2 D ( k r n )	k r 

= (	k r ) 
3 
∑ 

n 

k r n 
π

| ̂  θ ( k r n ) | 2 [ D 

2 ] . 

Using the results above, the relation between the Cartesian and po-

lar coordinate for the Fourier components are 

| ̂  θ (k m 

, l n ) | 2 = (N x 	x )(N y 	y ) | ̆θ (k m 

, l n ) | 2 ⇔ | ̂  θ ( k r n , φ) | 2 
= π(N r 	r) 2 | ̆θ ( k r n , φ) | 2 ⇔ | ̂  θ ( k r n , φ) | 2 
= 

π

(	k r ) 2 
| ̆θ ( k r n , φ) | 2 [ D 

2 ] . 

In an isotropic state 

| ̂  θ ( k r n ) | 2 = 

π

(	k r ) 2 
| ̆θ ( k r n ) | 2 [ D 

2 ] . 

Hence the PSD B 2 D ( k r ) becomes 

B ( k ) = k 
(	k r ) 2 | ̂  θ ( k ) | 2 = k | ̆θ ( k ) | 2 [ D 

2 m ] . 
2 D r n r n π
r n r n r n 
.4. Confidence interval for spectra 

We shall refer to Menke and Menke (2009) . From the Plancherel

heorem, we have 

x 	y 

N x −1 ∑ 

p=0 

N y −1 ∑ 

q =0 

w 

i 2 (x p , y q ) d 
i 2 (x p , y q ) 

≈
∫ ∫ [

w (x, y ) d(x, y ) i 
]2 

d xd y 

= 

∫ ∫ ∣∣ ˆ d i (k, l) 
∣∣2 

d kd l 

≈ 	k 	l 

N x / 2 ∑ 

m = −N x / 2+1 

N y / 2 ∑ 

n = −N y / 2+1 

∣∣ ˆ d i (k m 

, l n ) 
∣∣2 

here w ( x, y ) and d ( x, y ) are the tapering function and data re-

pectively and 

ˆ d includes the tapering. Using the relation shown in

he Appendix A.3 yields 

k 	l 

N x / 2+1 ∑ 

m 

N y / 2+1 ∑ 

n 

∣∣ ˆ d i (k m 

, l n ) 
∣∣2 

= 	k 	l(	x 	y ) 2 
N x / 2 ∑ 

m = −N x / 2+1 

N y / 2 ∑ 

n = −N y / 2+1 

| ̃  d i (k m 

, l n ) | 2 

o we get 

N x 
 

p 

N y ∑ 

q 

(
w 

i (x p , y q ) d 
i (x p , y q ) 

)2 

= 

1 

N x N y 

N x / 2 ∑ 

m = −N x / 2+1 

N y / 2 ∑ 

n = −N y / 2+1 

| ̃  d i (k m 

, l n ) | 2 (∗) . 

e can approximate the left-hand side (LHS) of the equation above

s 

(N x N y ) 
N x ∑ 

p 

N y ∑ 

q 

(
w 

i (x p , y q ) d 
i (x p , y q ) 

)2 ∼
N x ∑ 

p 

N y ∑ 

q 

w 

i 
pq 

2 
N x ∑ 

p 

N y ∑ 

q 

d i pq 

2 

= 

1 

N x N y 

N x ∑ 

p 

N y ∑ 

q 

w 

i 
pq 

2 
(N x N y ) 

2 1 

N x N y 

N x ∑ 

p 

N y ∑ 

q 

d i pq 

2 = (N x N y ) 
2 f T f d 

here ” ∼ ” means equivalent in a statistical sense and we have de-

ned f T ≡ 1 
N x N y 

∑ N x 
p 

∑ N y 
q (w 

i 
pq ) 

2 , f d ≡ 1 
N x N y 

∑ N x 
p 

∑ N y 
q (d i pq ) 

2 . When

o tapering is applied, the right-hand side (RHS) above becomes

 N x N y ) 
2 f d . The Plancherel relation ( ∗) above becomes 

f T f d � 

1 

(N x N y ) 2 

N x / 2 ∑ 

m = −N x / 2+1 

N y / 2 ∑ 

n = −N y / 2+1 

| ̃  d i (k m 

, l n ) | 2 = 

1 

N x N y 
| ̃  d i | 2 . 

ince the mean of a χ2 distribution is equivalent to the number

f elements summed and the variance is twice the mean, we have
i 
/c = 2 or 1 and σ 2 

φi /c 2 = 4 or 2 where φi ≡ | ̃  d i | 2 and c is the

ormalization factor. Thus, 

 = 

N x N y f T f d 
2 

(2 ≤ i ≤ N/ 2) 

 = N x N y f T f d (i = 1 , N/ 2 + 1) 

o φi / c ( ≡�) follows the χ2 distribution. Since, �( k r ) are normal-

zed to the χ2 distribution, the probability that the estimated spec-

rum �est (k r m ) should be close to the true spectrum �true (k r m )

s: 

p 

(
2 ν�est (k r m ) 

b 
≤ �true (k r m ) ≤

2 ν�est (k r m ) 

a 

)
= 1 − α
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Fig. 20. The vertical layer setup of the POP model. The stream function ( �) and 

density ( ρ) are defined at the midpoint of each vertical layer and buoyancy ( b, N ) 

is defined on the boundaries of each layer. 
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 Gille et al., 2015 ) where 1 − α is the confidence level (i.e. α = 0 . 05

or 95% confidence). a and b are the (1 − α) / 2 and α/2 critical val-

es of the χ2 (2 ν) distribution and ν ( ≡ NM ( r )) is the number of

hunks that are added up. The p % confidence range therefore is: 

2 ν

b 
≤ �true (k r m ) 

�est (k r m ) 
≤ 2 ν

a 
. 

hus 

og 
(
�est (k r m ) 

)
+ log 

(
2 ν

b 

)
≤ log 

(
�true (k r m ) 

)
≤ log 

(
�est (k r m ) 

)
+ log 

(
2 ν

a 

)
o the confidence interval is: 

rror high = log 

(
2 ν

a 

)
, error low 

= log 

(
2 ν

b 

)
nd to move the error bar around in the log–log dimension,

e can multiply the values inside the logarithm by an arbitrary

actor A . 

.5. Dissipation range 

The biharmonic momentum dissipation terms are calculated as

efined in the POP simulation, 

 H (u ) = ∇ 

2 
(A M 

∇ 

2 
u ) 

here 

 

2 
u = 	x δx 

	y δx u 

UAREA 

+ 	y δy 
	x δy u 

UAREA 

− u 

[
δx k x − δy k y + 2(k 2 x + k 2 y ) 

]
+ 2 k y δx v − 2 k x δy v . 

he coefficients k x and k y are the metric terms which arise

hen converting Cartesian coordinates to spherical coordinates.

or further details of the definition of each variable, refer to

mith et al. (2010) . We define the dissipation range the wavenum-

er above which 80% of the KE dissipation occurs, i.e. 

 . 8 = 

∫ K Ny 

K diss 

[
ŭ D̆ H (u ) + ̆v D̆ H (v ) 

]
dK ∫ K Ny 

K min 

[
ŭ D̆ H (u ) + ̆v D̆ H (v ) 

]
dK 

here K Ny , K min , and K diss are the Nyquist wavenumber, minimum

avenumber defined by the domain and the wavenumber which

efines the dissipation range respectively. The ( ̆·) indicates the

ourier transforms defined in Eq. (A-1) . 

.6. Linear stability calculation 

The oceanmodes package solves the inviscid QG equations

inearized around the mean background state (u g = − ∂�
∂y 

, v g =
∂�
∂x 

, N 

2 , Q ) : 

∂q 

∂t 
+ u g · ∇ q + u · ∇ Q = 0 

ith the boundary condition of 

∂b 

∂t 
+ u g · ∇ b + u · ∇ (B + N 

2 η) = 0 

here a plane-wave solution for the perturbation, i.e. ψ =
e 
[
�(z) e i (kx + ly −ωt) 

]
is assumed and η is the topographic slope. The

elocity field is divided into the geostrophic and perturbation com-

onent. The geostrophic velocity u g is derived as 

 g = 

g 

fρre f 

[
ρ e z × ∇ η + (η − z) e z × ∇ ρ

]

here ρ ≡ ∫ 0 
−H ρ(z) dz and e z is the unit vector along the verti-

al axis. The reference density ( ρref ) is taken to be the potential

ensity at the surface. 

 = ∇ 

2 ψ + �ψ, Q = βy + ��

 = f 
∂ψ 

∂z 
, B = f 

∂�

∂z 

(
= 

∫ 
N 

2 (z) dz 

)
re the perturbed and mean QG potential vorticity (QGPV) and

uoyancy respectively where � ≡ ∂ 
∂z 

(
f 2 

N 2 
∂ 
∂z 

)
. The buoyancy fre-

uency ( N 

2 ) was derived using the gsw Python package ( https:

/github.com/TEOS- 10/python- gsw ( McDougall and Barker, 2011 )). 

Starting from the linearized QG potential vorticity equation

round a state of rest ( u g = 0 ) and prescribing a solution as � =
e [ e i (kx + ly −σ t) ]�(z) , we get: 

 = 

∂ 

∂t 

[ 
∇ 

2 
z � + 

∂ 

∂z 

(
f 2 

N 

2 

∂�

∂z 

)] 
+ β

∂�

∂x 

= iσ

[
(k 2 + l 2 ) e i (kx + ly −σ t) � − e i (kx + ly −σ t) d 

dz 

(
f 2 

N 

2 

d�

dz 

)]
+ ike i (kx + ly −σ t) β�

� ≡ d 

dz 

(
f 2 

N 

2 

d�

dz 

)
= −

(
k 2 + l 2 + 

k 

σ
β
)
� ≡ −K 

2 � (A-2)

here K is defined as 2 π over wavelength, which is often referred

s ”Rossby deformation wavenumber”. Assuming the same condi-

ions as in Smith (2007) and taking caution of the vertical layer

etup in the POP model ( Fig. 20 ), we can discretize the equation

bove as: 

m 

n �n = 

f 2 

δn 

(
1 

N n 
2 

�n +1 − �n 

	n 
− 1 

N n −1 
2 

�n − �n −1 

	n −1 

)
(1 < n < ν

m 

1 �1 = 

f 2 

δ1 

(
1 

N 1 
2 

�2 − �1 

	1 

)

m 

ν �ν = 

f 2 

δν

(
−1 

N ν−1 
2 

�ν − �ν−1 

	ν−1 

)
here the superscript m and subscript n (= 1 , 2 , . . . , ν) represent

he eigenmodes and vertical layer respectively. 
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