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ABSTRACT

Uncertainty in equilibrium climate sensitivity impedes accurate climate projections. While the intermodel

spread is known to arise primarily from differences in cloud feedback, the exact processes responsible for the

spread remain unclear. To help identify some key sources of uncertainty, the authors use a developmental

version of the next-generation Geophysical Fluid Dynamics Laboratory global climate model (GCM) to

construct a tightly controlled set of GCMs where only the formulation of convective precipitation is changed.

The different models provide simulation of present-day climatology of comparable quality compared to the

model ensemble from phase 5 of CMIP (CMIP5). The authors demonstrate that model estimates of climate

sensitivity can be strongly affected by the manner through which cumulus cloud condensate is converted into

precipitation in a model’s convection parameterization, processes that are only crudely accounted for in

GCMs. In particular, two commonly used methods for converting cumulus condensate into precipitation can

lead to drastically different climate sensitivity, as estimated here with an atmosphere–land model by increasing

sea surface temperatures uniformly and examining the response in the top-of-atmosphere energy balance. The

effect can be quantified through a bulk convective detrainment efficiency, whichmeasures the ability of cumulus

convection to generate condensate per unit precipitation. The model differences, dominated by shortwave

feedbacks, come from broad regimes ranging from large-scale ascent to subsidence regions. Given current un-

certainties in representing convective precipitation microphysics and the current inability to find a clear obser-

vational constraint that favors one version of the authors’ model over the others, the implications of this ability to

engineer climate sensitivity need to be considered when estimating the uncertainty in climate projections.

1. Introduction

Numerical global climate models (GCMs) exhibit a

wide range of equilibrium climate sensitivities and,

consequently, a large spread in futurewarming projections

(e.g., Randall et al. 2007; Flato et al. 2013). Uncertainty in

cloud feedback is a leading cause of this disagreement

(e.g., Cess et al. 1990; Soden et al. 2008). Despite decades

of research to narrow uncertainties, there is still a need to

pinpoint key processes that are responsible for model

spread in cloud feedback (e.g., Betts and Harshvardhan

1987; Roeckner et al. 1987; Mitchell et al. 1989; Cess et al.

1990; Senior andMitchell 1993; Bony et al. 2004; Bony and

Dufresne 2005; Bony et al. 2006; Stephens 2005; Wyant

et al. 2006; Webb et al. 2006; Soden and Held 2006;

Dufresne and Bony 2008; Webb et al. 2013; Zelinka et al.

2013; Zhang et al. 2013; Sherwood et al. 2014; Bretherton

et al. 2014; Webb et al. 2015; Bretherton 2015). This is

partly due to a myriad of different assumptions coexisting
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inmodels, making it especially difficult to isolate the effect

of individual processes. Nevertheless, several recent stud-

ies analyzing multimodel results from phase 5 of CMIP

(CMIP5) (e.g., Sherwood et al. 2014) and perturbing in-

dividual models’ physics parameters (e.g., Zhao 2014,

hereinafterZ14) suggest that cumulus convectionmay be a

key to understanding the uncertainty in cloud feedback

and climate sensitivity in GCMs, supporting earlier sug-

gestions (e.g., Somerville and Remer 1984; Murphy et al.

2004; Stainforth et al. 2005; Sanderson et al. 2008, 2010;

Joshi et al. 2010).

Cumulus convection takes place over a large area of

Earth’s surface, manifesting itself through a variety of

cloud morphologies from shallow fair weather cumulus

and midlevel cumulus congestus to deep towers of cu-

mulonimbus. Condensation and/or deposition and pre-

cipitation are essential to cumulus convection, and they

occur on microscales but connect intimately with their

macroscale (from 10m to 10km) turbulent environment.

Precipitating shallow cumulus clouds are not uncommon,

especially over tropical oceans (Nuijens et al. 2009).

Neither the micro nor macro processes of the cumulus

convection are resolved, and therefore they must be

approximated in a GCM. In particular, the representa-

tion of cumulus precipitation microphysics has been

considered one of the crudest aspects of current GCMs

(e.g., Emanuel and Zivkovic-Rothman 1999). Figure 1

shows a diagram of a mass flux convection scheme typ-

ically used in a GCM. Planetary boundary layer air

parcels are lifted based on convective instability. As a

parcel or plume rises, it cools and deposits vapor into

condensate,maintaining buoyancy via latent heat release.

The plume interacts with its surroundings through

turbulent mixing, entrainment, detrainment, and con-

densate precipitation, which together modify its

buoyancy and mass flux (e.g., Arakawa and Schubert

1974; Tiedtke 1989; Emanuel 1991; Moorthi and Suarez

1992; Bretherton et al. 2004). Figure 1 shows one plume,

butmany schemes inGCMs involvemultiple plumeswith

different characteristics, especially for distinguishing be-

tween shallow and deep convection. Since cumulus pre-

cipitation is affected by so many complicated processes,

including an ensemble of turbulent updrafts and down-

drafts and associated microphysical transformations of

hydrometers between various phases, sizes, and shapes,

an accurate representation is not possible in current

GCMs. Despite some recent attempts to incorporate

more sophisticated convective microphysics (e.g., Song

and Zhang 2011), most models choose a rather simple

approach for determining the portion of cloud conden-

sate converted to precipitation, with the rest being stored

within a plume and/or detrained into the environment

(e.g., Tiedtke 1989; Gregory and Rowntree 1990; Zhang

and McFarlane 1995; Anderson et al. 2004; Emanuel and

Zivkovic-Rothman 1999). Depending on details of the

plume model, precipitation and detrainment of cloud

condensate may be applied either at plume top (e.g.,

Anderson et al. 2004) or at every model level as a plume

marches upward through the troposphere (e.g., Zhao

et al. 2009).

Despite many variations in implementation details,

one can identify two distinct manners by which cumulus

condensate is converted to precipitation. One is a

threshold removal, in which all condensate exceeding

a threshold value is converted to precipitation (e.g.,

Gregory and Rowntree 1990; Emanuel and Zivkovic-

Rothman 1999; Zhao et al. 2009). The other approach

is a fractional removal scheme, which assumes that a

fraction of total condensate is removed as precipita-

tion (e.g., Tiedtke 1989; Zhang and McFarlane 1995;

Anderson et al. 2004). One can also consider schemes

intermediate between these two extremes, in which

there is a threshold before any removal occurs, with

condensate above this threshold removed proportion-

ally. Often the specifications for the fraction of pre-

cipitating condensate vary between shallow and deep

convective plumes to roughly account for their differ-

ences in precipitation efficiency (e.g., Anderson et al.

2004). While threshold removal in an individual up-

draft may be more plausibly connected to the micro-

physical requirements for precipitation, the threshold

values used in GCMs are often only crudely de-

termined and may not be directly compared to obser-

vations (e.g., Suzuki et al. 2013). Moreover, it is hard

to argue which scheme is more realistic when

FIG. 1. A diagram for mass flux representation of convection and

definitions of convective precipitation efficiency ec and de-

trainment efficiency kc. The vertically integrated convective heat-

ing rate Cc and the surface precipitation rate Pc are both in energy

units (Wm22) and are globally or regionally averaged values. A

bulk convective precipitation efficiency is defined by ec 5 Pc/Cc,

while kc5 (Cc2Pc)/Pc defines a convective detrainment efficiency

(i.e., rate of cloud production by convective detrainment per unit

rate of surface precipitation).
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representing the collective rate of precipitation from

a cumulus ensemble, especially when mixed- or ice-

phase clouds are present and when considering that

the plume model itself is already a poor representation

of cumulus clouds. Indeed, the fractional removalmethod

has also been widely used in a number of GCMs, in-

cluding the GFDL Atmospheric Model version 2 (AM2;

Anderson et al. 2004), NCAR CAM5 (Zhang and

McFarlane 1995), and MPI ECHAM6 (Stevens et al.

2013). Thus, we note that both the formulations and the

parameters used in individual GCMs may apply only to

model implementation and not necessarily to nature. The

crude representations of convective precipitation pro-

cesses may be the cause of some important GCM

biases, including the too light and too frequent pre-

cipitation problem found in virtually all current GCMs

(e.g., Stephens et al. 2010; Suzuki et al. 2013).

GCMs also include microphysical assumptions that

control condensation on the grid scale. Our concern here

is focused on the production of condensate by GCMs’

convection schemes, not the resolved-scale condensation.

In this study, we explore these two commonly used

methods for converting cumulus condensate into pre-

cipitation in a single developmental version of an atmo-

spheric model with differences confined entirely in the

treatment of convective precipitation.Without impacting

the quality of the climate simulation appreciably, we

demonstrate that the two methods can lead to drastically

different climate sensitivity. We further show that the

effect can be understood through a bulk convective de-

trainment efficiency, which measures the ability of cu-

mulus convection to generate clouds andmoisten the free

troposphere per unit precipitation (Z14). Figure 1

provides a definition of the convective detrainment effi-

ciency, kc 5 (Cc 2 Pc)/Pc, where Pc and Cc are, re-

spectively, globally (or regionally) averaged surface

convective precipitation rate and column-integrated

convective heating rate (see Z14; Pc and Cc are both in

energy units). We argue that kc is a key for understand-

ing cloud feedback and climate sensitivity in relation to

convection parameterization. Section 2 describes the

model and simulation setup. Section 3 presents the results.

Section 4 provides a summary and discusses the implica-

tions of having an ability to engineer climate sensitivity in

the absence of clear observational constraints on cumulus

precipitation microphysical processes.

2. The model and simulation setup

The model used here is a developmental version of

the GFDL new-generation Atmospheric Model, version

4 (AM4). AM4 began with an integration of two streams

of existing models [AM3 (Donner et al. 2011) and

HiRAM (Zhao et al. 2009)] and the creation of a new

prototype model. The new model incorporates the prog-

nostic aerosols and aerosol-cloud physics in AM3 with

the higher spatial resolution used in HiRAM. To reduce

computational cost, the fully interactive atmospheric

chemistry in AM3 is reduced to gas and aqueous phases

sulfate chemistry only, which includes three prognostic

equations for SO4, SO2, andH2O2 while all other chemical

species are fixed climatological (1980–2000) monthly

mean based on simulations by Donner et al. (2011).

While the target resolution for AM4 is 50km, much of the

development has taken place in a 100-km configuration.

Based on a developmental version of the 100-km resolution

AM4, we have created three models [denoted below as the

high- (H), medium- (M), and low- (L) sensitivity models],

which are identical in all aspects of the dynamics and physics

formulations except the treatment of cumulus precipitation.

The convection scheme is based on a modified ver-

sion of the University of Washington Shallow Cumulus

(UWShCu) scheme (Bretherton et al. 2004) similar to

that used in HiRAM (Zhao et al. 2009). In addition to

the single plume used in HiRAM, we have included a

second plume for representing deep convection. Ap-

pendix A provides the motivations for this development

and a description of the changes made to the convection

scheme. Below, we only focus on the differences between

H,M, and L to explore the role of convective precipitation

treatment on cloud feedback and climate sensitivity. The

results and conclusions do not depend on the specific ver-

sion of AM4 used. We have repeated a similar set of ex-

periments for various developmental versions of AM4 as

well as HiRAM. The sensitivity of cloud feedback to the

different treatments of convective precipitation is robust

across all the GFDL models we explored.

As parameterized convective plumes move upward,

H follows HiRAM and the shallow convection scheme

of AM3, assuming a threshold removal for precipita-

tionP, precipitating the portion of total condensate qc in

excess of qc0: that is,

P5M
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where Mc denotes convective mass flux. The threshold

value qc0 is set to q0 for warm clouds and decreases

linearly with temperature T for T , 08C to account for

ice effects (Emanuel and Zivkovic-Rothman 1999).

The critical temperature is Tcrit in degrees Celsius, be-

low which qc0 is set to 0; q0 and Tcrit are two parameters
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that can be adjusted to optimize the model’s clouds

and cloud radiative effect.

In contrast to H, both M and L utilize a fractional

removal scheme for precipitation similar in concept to

that in AM2. To account for the threshold behavior as-

sociated with the warm rain autoconversion process,

as a plume rises through a model layer, we set pre-

cipitation to be

P5M
c
bdpmax(q

c
2 q

c0
, 0), q

c0
5

�
q
0
, T$258C

0, T,258C
.

(2)

If q0 is set to 0, this scheme becomes completely a

fractional removal scheme for both warm and cold

clouds. Here, b represents a precipitation efficiency pa-

rameter (Pa21), and dp denotes the pressure depth of a

model layer so that the specification of b is independent

of the model’s vertical resolution (bdp is capped at 1).

We distinguish the precipitation efficiency b between

warm/shallow and cold/deep clouds by setting b 5 bl

when T $ 258C, and b 5 bi when T # 2258C, with
bl being smaller than bi. The parameter b is linearly in-

terpolated between 258 and 2258C. Since in nature the

accretion process in deep convective clouds can signifi-

cantly enhance precipitation efficiency, we represent it

by making the pair of (bl, bi) in deep convective plumes

proportionally larger than those used for shallow convec-

tive plumes with the proportionality constant denoted as

a (a . 1). The parameters q0, bl, bi, and a are adjustable

for cloud tuning inMandL.To explore the impact ofa, we

seta5 1 for L so that deep and shallow convective plumes

use the same set of values for bl and bi.

H, M, and L were individually tuned to reproduce

reasonably well the observed present-day climate (both

global means and spatial distributions) when forced by

the observed climatological SSTs from the Met Office

HadISST, version 1.1 (Rayner et al. 2003). The tuning

of each model, however, does not involve any parame-

ter changes outside its convective precipitation scheme

so that the differences betweenH,M, and L are confined

entirely in their representations of convective pre-

cipitation. In this study, parameters such as bl, bi, and

q0 are considered as adjustable parameters for model

optimization and the tuning of the top-of-atmosphere

(TOA) net radiative flux close to balance. Table 1

provides a list of the parameters used in H, M, and L

and their simulated global mean quantities for TOA

cloud radiative effect (CRE) and its longwave (LW) and

shortwave (SW) component, the low, middle, and high

cloud amount, and the cloud liquid and ice water path.

We have carefully examined various aspects of the sim-

ulated mean climate by each model to confirm that they

perform comparably to those of earlier GFDL models as

well as other CMIP5 models. Figures 2a and 2b show a

comparison of the simulated longwave (LCRE) and

shortwave CRE (SCRE) with 22 CMIP5 models (over the

period 1981–2000, http://cmip-pcmdi.llnl.gov/cmip5/data_

portal.html) forced by observed SSTs as well as the obser-

vational estimates derived from the NASA Clouds and the

Earth’s Radiant Energy System (CERES; EBAF Ed2.6

data over the period 2000–12, http://ceres.larc.nasa.gov/

order_data.php; Smith et al. 2011). The latitudinal distri-

butions of LCREandSCRE fromH,M, andL are close to

the CERES estimates and are well within the spread of

the CMIP5 ensemble. Figure 2c further compares these

three models with the CMIP5 ensemble using the nor-

malized root-mean-square errors (RMSEs) for seven se-

lected fields: LW, SW, total CRE, surface precipitation,

near-surface air temperature over land, sea level pressure,

and surface zonal wind stress. The simulation qualities

from H, M, and L are generally as good as or better than

most CMIP5 models for most fields.

To assess the models’ cloud feedback and climate

sensitivity, we follow the Cess approach by conducting

a pair of present-day and global warming simulations for

each model using prescribed SSTs and greenhouse gas

(GHG) concentrations (Cess et al. 1990). The present-

day simulations are forced by the observed HadISST

climatological SSTs averaged over the period of 1981–

2000, with GHG concentrations fixed at the year 2000

level. The global warming experiments are identical to

the present-day simulations, except SSTs are uniformly

increased by 2K. A Cess climate sensitivity parameter

l can then be computed as l 5 DTs/DG, where Ts de-

notes global mean SST, G is TOA net radiative flux,

and D indicates the difference between warming and

present-day simulations (Cess et al. 1990). The effect of

clouds on l can be measured by the ratio of the all-sky

l to clear-sky lclr sensitivity or by the changes in total

CRE (TCRE), where l/lclr 5 DTCRE/DG 1 1 [see Eq.

(9) in Cess et al. (1990); note, DG denotes their G].

Although the sign of DTCRE should not be simply in-

terpreted as the sign of cloud feedback when DTCRE

is modestly negative (Soden et al. 2004), DTCRE is

strongly correlated across models with the cloud feed-

back computed using a more detailed partial radiative

perturbation (PRP) method (Wetherald and Manabe

1988) or the kernel method (Soden and Held 2006).

Cloud feedback computed by the kernel method is sys-

tematically more positive thanDTCRE because of cloud

masking (;0.3 Wm22K21 for Cess feedbacks), but the

offset is roughly model independent (Soden et al. 2004).

Another simplification of the Cess approach is the

use of uniformed SST warming experiments with an

atmospheric-only model for studying cloud feedback.
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Previous studies demonstrated that the cloud feedbacks

derived from the Cess experiments well capture the

intermodel differences of feedbacks in the equilibrium

response of slab ocean models to a doubling of CO2 (e.g.,

Ringer et al. 2006). Very recently,Ringer et al. (2014) and

Brient et al. (2015) analyzed the CMIP5 fully coupled

ocean–atmosphere models and their corresponding Cess

experiments and confirmed again that the Cess experi-

ments provide a good guide to the global cloud feed-

backs determined from the coupled simulations, including

the intermodel spread. The differences in total climate

feedback parameter between theCess and coupledmodels

arise primarily fromdifferences in clear-sky feedbacks that

are anticipated from the nature of the Cess experimental

design (i.e., ignoring the polar amplification and sea ice

albedo feedback). As a result, the Cess climate sensitivity

parameter should not be interpreted at its face value for

estimates of model equilibrium climate sensitivity. With

these limitations in mind, the Cess approach has been

widely used in characterizing and understanding many

aspects of intermodel differences in cloud feedback and

climate sensitivity between GCMs (e.g., Cess et al. 1990;

Zhang et al. 1994; Cess et al. 1996; Soden et al. 2004;Wyant

et al. 2006; Ringer et al. 2006; Bony et al. 2006; Medeiros

et al. 2008; Wyant et al. 2009; Brient and Bony 2012, 2013;

Bretherton et al. 2014; Ringer et al. 2014; Webb et al.

2015). It is because of its high relevancy as well as its much

lower computational cost that the Cess-like experiments

have now become a standard set of simulations requested

by the IPCC Cloud Feedback Model Intercomparison

Project (CFMIP) and continue to serve as an important

tool for studying intermodel difference in cloud feedback.

3. Results

A scatterplot of the Cess climate sensitivity parame-

ter l versus the cloud feedback parameter DTCRE/DG
from H, L, and M is shown in Fig. 3a. For comparison,

AM2, AM3, and HiRAM results are also plotted. The

value of l ranges from 0.48Km2W21 in L to roughly

0.82Km2W21 in H with a large intermodel spread well

accounted for by changes in the cloud feedback pa-

rameter. This result is consistent with many earlier

studies that show that spread of equilibrium climate sen-

sitivity among GCMs is primarily due to model differ-

ences in cloud feedback. The deviation ofAM3 sensitivity

from the regression line in Fig. 3a is largely caused by

its clear-sky sensitivity parameter lclr being about

0.08Km2W21 lower than the other models for reasons

not yet clear. Except for AM3, all other models fall nicely

along a straight line with both the intercept and the slope

of the linear regression close to the models’ direct esti-

mates of lclr (;0.55Km2W21).

The intermodel variations in changes of total CRE

are well explained by model difference in response of

convective detrainment efficiency kc, as shown in Fig. 3b.

The three models (H, HiRAM, and AM3) with large

positive cloud feedbacks also exhibit larger reductions

in kc, while the diminished positive cloud feedbacks in

AM2 and M and the negative cloud feedback in L are

associated with little change or an increases in kc. This

result suggests that changes in cumulus detrainment ef-

ficiency are important in understanding the response of

total CRE with warming in these models.

Z14 conjectures that the different assumptions in

representing cumulus precipitation may be partly re-

sponsible for the increased positive cloud feedback in

HiRAM and AM3 compared to AM2. Since the con-

vection schemes in AM2, AM3, and HiRAM differ not

only in precipitation treatment but also in many other

important aspects (e.g., number of plumes, mixing char-

acteristics, and cloud-base mass flux closure), it was im-

possible for Z14 to preclude other possibilities. However,

the set of AM4 models (H, M, and L) provides clean

evidence that assumptions in cumulus precipitation alone

can strongly alter cloud feedback and climate sensitivity

in a GCM, and the impact may be understood through

an aggregated bulk parameter kc.

The tightly controlled H, M, and L models provide us

clean cases to understand why the differing assumptions

in cumulus precipitation lead to large discrepancies in

TABLE 1. A list of the parameters used in the convective pre-

cipitation schemes in H, M, and L models and some of their sim-

ulated global quantities. See text for the definition of the

parameters. The global quantities include the Cess climate sensi-

tivity parameter, TOA total CRE and its LW and SW component,

the low, middle, and high cloud amount, the cloud liquid and ice

water path, and the precipitation.

Parameters used H M L

q0 (g kg21) 1.5 0.8 0.8

Tcrit (8C) 290 — —

bl (Pa
21) — 1.5 3 1025 4.0 3 1025

bi (Pa
21) — 3.0 3 1025 8.5 3 1025

a — 4 1

Model-simulated

global quantities

Cess climate sensitivity

(KW21 m2)

0.82 0.53 0.48

TOA TCRE (Wm22) 224.2 224.7 224.8

TOA LCRE (Wm22) 25.9 24.7 23.8

TOA SCRE (Wm22) 250.1 249.4 248.6

Low cloud amount (%) 37.0 36.3 34.7

Middle cloud amount (%) 17.5 17.9 17.8

High cloud amount (%) 37.7 36.4 36.1

Liquid water path (gm22) 47.1 47.9 47.3

Ice water path (gm22) 50.0 43.4 47.0

Precipitation (mmday21) 3.00 3.00 3.01
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cloud feedback. Figure 4a shows changes in LCRE, SCRE,

and TCRE between the SST warming and the present-day

simulations. Globally, H produces 0.57Wm22K21 in-

crease (less negative) in TCRE, which is contributed

by a larger increase (less negative) in SCREwith a small

compensation through a reduction in LCRE. In contrast,

M produces a small net reduction (20.1Wm22K21) in

TCREbecause of a significant reduction (20.2Wm22K21)

in SCRE and a small increase in LCRE. Moreover,

L produces a larger reduction (more negative;

20.38Wm22K21) in TCRE, which is composed

of 20.59Wm22K21 reduction in SCRE and a modest

compensation increase in LCRE. It is clear that the

differences in TCRE response between the models are

dominated by their SW component, with their LW

component tending to counteract some of their SW re-

sponses. This result is consistent with many earlier

studies of the importance of SW feedbacks for model

spreads, including the more recent CMIP5 analyses

(e.g., Donohoe et al. 2014; Vial et al. 2013). The model

FIG. 2. (a) A comparison of the latitudinal distribution of LCRE between H, M, L, 22 CMIP5 models forced by

observed SSTs, and the observational estimates from CERES (EBAF Ed2.6). The black solid line shows the en-

semble mean of the 22 CMIP5 models with dark shading for one standard deviation and light shading for minimum

and maximum values. (b) As in (a), but for the SCRE. (c) A comparison of normalized RMSEs for seven selected

fields between H, M, L, and the 22 CMIP5 models (shown in box-and-whisker plots: center markers are medians,

bottom and top box edges are 25th and 75th percentiles, and whiskers are minimums and maximums). Each model’s

RMSEs are computed from the global distribution of annualmean biases between amodel and observations. TheRMSEs

for each field are normalized by the standard deviation of spatial variation of the observed annual mean field so that

different fields can be shown in one plot. The observational data used here are respectively CERES (EBAF Ed2.6) for

LCRE, SCRE, and TCRE; GPCP (version 2.2, 1981–2010, http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html)

for surface precipitation (PCP); Hadley Centre/Climatic Research Unit temperature dataset, version 3 (HadCRUT3 ;

1981–2000, http://www.metoffice.gov.uk/hadobs/hadcrut3/), for 2-m surface air temperature (SAT) over land; ECMWF

interim reanalysis data (ERA-Interim; 1979–2011, http://www.ecmwf.int/en/research/climate-reanalysis/era-interim) for

sea level pressure (SLP), and surface zonal wind stress (TAUX). The legend shows symbols for H, M, and L.
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contrasts become stronger for the tropical means (Fig. 4a),

suggesting that the global mean differences are dominated

by the tropics, as is confirmed by direct inspection of the

latitudinal dependence of these changes (not shown).

Figure 4b shows that, as the climate warms, global

mean liquid and ice water contents tend to increase while

cloud amounts or fractions decrease, with low-plus-middle

cloud fractions (below 400hPa) diminishing more prom-

inently than the high cloud fraction (e.g., Stephens and

Ellis 2008). Clouds on average tend to be denser and less

frequent in warmer climate in all the models. However,

the magnitude of reductions in low-plus-middle cloud

fractions in H is considerably larger than that in M and

L. Meanwhile, the magnitude of global increases in liq-

uid and ice condensate is smaller in H than in M and L.

Both are consistent with their different response in

SCRE. The contrast becomes especially clear in the

tropics where the percentage change in low-plus-middle

cloud fraction is reduced from roughly 213%K21 in H

to roughly 23.5%K21 in M and L. Consistently, the

response in liquid and ice water paths changes

from 21.5%K21 in H to 13%–5%K21 in M and L in

the tropics. Despite the significant differences in cloud

response, changes in global mean precipitation show

very little difference between the models, which may be

partly due to the limitation of the Cess experiment (i.e.,

SSTs are prescribed). Both the weaker reductions in

low-plus-middle cloud fractions and the enhanced gains

in cloud condensate path (which are dominated by low-

and middle-level clouds) from H to M and L are im-

portant in explaining the differences in cloud feedback

from strongly positive in H to relatively neutral in M

and slightly negative in L.1

Since the differences in global mean cloud responses

between the models are dominated by the tropics, be-

low we focus on the tropical region (308S–308N) to ex-

amine the intermodel differences. We first show the

vertical profiles of cloud fraction and cloud condensate

averaged over the entire tropical ocean in Figs. 5a and

5b. The largest differences between the models appear

to be in the middle troposphere between 400 and

800 hPa, with H producing fewer midlevel clouds and

slightly more high clouds for both cloud fraction

and condensate. This result is consistent with recent

findings by Webb et al. (2015) and Brient et al. (2015),

who show that the high-sensitivity models in the CMIP5

ensemble also tend to have fewer midlevel clouds.

Figures 5c and 5d further show the change in vertical

profile of cloud fraction and condensate between the

warmer and the present-day simulations. Interestingly,

the largest differences in cloud response are also below

400hPa, with the higher-level cloudiness showing a ro-

bust dipole pattern, indicating an upward shift of high-

level cloud in a warmer climate (Hartmann and Larson

2002). Below 400hPa, H produces systematically larger

reductions of cloud throughout the middle and lower

troposphere, while M and L produce a minimal re-

duction of cloud below 600hPa and even an increase

above. The intermodel differences in response of both

cloud cover and condensate amount are consistent with

FIG. 3. (a) Scatterplot of the Cess climate sensitivity parameter

l vs cloud feedback parameter DTCRE/DG from H, M, L, AM2,

AM3, andHiRAM. See text for the definitions of TCRE,G, and D.
The dashed line shows linear regression. (b) As in (a), but for

changes in TCRE vs changes in convective detrainment efficiency

kc (see Fig. 1). All changes are for the global means and normalized

per kelvin of warming.

1 This statement has taken into account the 0.3Wm22 difference

between the DTCRE metrics and the radiative kernel metrics

(Soden et al. 2004).
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their differences in tropical mean CRE response. In

addition, the negative feedback due to phase change of

middle-level clouds from ice to liquid should contribute

to the reduction of positive cloud feedback in M and L

since they contain more midlevel clouds. Below, we

further partition the tropical mean CRE changes into

different large-scale regimes to explore what regimes

might best explain their tropical mean responses.

We follow the Bony method (Bony et al. 2004; Bony

and Dufresne 2005) by sorting changes in tropical

CREs into different regimes of large-scale overturning

circulation characterized by monthly mean 500-hPa

vertical pressure velocity v500. Figures 6a–c show

changes in LCRE, SCRE, and TCRE across all v500 re-

gimes. Consistent with the global means, changes in the

SW component dominate the total CRE changes, while

the LW component tends to slightly oppose the SW ef-

fects. Large differences in SCRE response between the

threemodels do not only occur over the large-scale ascent

regions but also extend throughout the subsidence re-

gions, indicating that the tropical mean differences in

SCRE response are contributed from a wide range of

regimes, from deep cumulonimbus to cumulus congestus

and shallow cumulus clouds in these models.

FIG. 4. (a) Changes in LCRE, SCRE, and TCRE fromH,M, and L for both the global and the

tropical (308S–308N) means. Units are normalized per kelvin of warming. (b) As in (a), but for

fractional changes in liquid and ice water paths, low-plus-middle (below 400 hPa), and high

(above 400 hPa) cloud fractions.
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Except in the very strong ascent regions (v500 ,
280 hPa day21), H produces positive changes in SCRE

across all other v500 regimes. In contrast, M and L

produce negative SCRE responses in all tropical large-

scale ascent regions and gradually transition to positive

responses in some subsidence regions. Throughout all

regimes, H produces systematically the largest changes

(more positive or less negative) in SCRE, while L gen-

erates the smallest changes (more negative or less pos-

itive), with M generally in the middle. The intermodel

differences in SCRE and TCRE response are larger in

the broad ascent regimes with either strong or marginal

precipitation. However, their global mean differences

are dominated by the weakly ascending and subsiding

regions because of their larger spatial coverage (Bony

et al. 2004; Bony and Dufresne 2005). This can be seen

from the changes in TCRE, weighted by the tropical

probability density function (PDF) of v500 computed

from each model’s present-day simulation (Fig. 6d).

The model differences in SCRE response can be un-

derstood from their differences in simulated changes in

low and middle clouds. Figure 7a shows that, for all

regimes, H produces systematically more reductions in

low-plus-middle cloud amounts than M and L. In addi-

tion, H also produces the least increases in liquid and ice

water path in the ascent region (Fig. 7b). Over the

subsidence regions, H generates reductions in liquid

water path in contrast to little changes or increases in

M and L (Fig. 7b). Both the smaller reductions in low-

plus-middle cloud fractions and the larger increase in

cloud condensate path (optical depth) are important

for the negative cloud feedback inM and L compared to

the positive feedback in H.

Previous studies based on the model results from

phase 3 of CMIP (CMIP3) showed that the regimes of

weak subsiding motion tend to dominate the intermodel

spread in cloud feedback because of their larger spatial

coverage (Bony and Dufresne 2005). Recent analysis by

Vial et al. (2013) suggested that, compared to the CMIP3

models, the spread of tropical cloud feedbacks between

the CMIP5 models arises from a larger range of dynamical

regimes, ranging from weak large-scale ascent motions to

subsidence regimes. These results are, in general, consis-

tent with our findings, which also suggest that, in addition

FIG. 5. (a) Vertical profiles of cloud fraction averaged over the tropical (308S–308N) ocean fromH,M, andL. (b)As

in (a), but for cloud condensate (liquid1 ice). (c) As in (a), but for the change in cloud fraction between warmer and

present-day simulations. (d) As in (c), but for cloud condensate.
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to the weak subsidence regime, the response of low and

middle clouds over the broad ascent regimes can also

exert large impacts on global cloud feedbacks. Our re-

sults demonstrate that the differing assumptions com-

monly used in representing convective precipitation can

strongly affect cloud response across both ascending

and descending large-scale regimes in a GCM and,

through this, impact model estimates of cloud feedback

and climate sensitivity since that is the only difference

between H, M, and L.

To understand why the threshold removal scheme

used in H produces a marked increase in positive cloud

feedback compared to the fractional removal schemes in

M and L, we compute fractional changes in convective

detrainment efficiency kc for eachv500 regime. Figure 8a

shows that, for all regimes, H produces either more re-

duction or less increase in Dkc/kc with warming com-

pared to M and L. As the climate warms and in the

absence of precipitation, cumulus cloud condensate

would increase at a rate determined by the change in

the moist adiabatic lapse rate (Betts and Harshvardhan

1987). A fixed threshold removal scheme would convert

all the additional condensate into precipitation, result-

ing in a large decline in detrainment efficiency. While

the condensate threshold for precipitation qc0 is not

precisely fixed with warming in H [it slightly increases

for cold clouds with temperature between 08C and Tcrit

as a result of the formulation (Emanuel and Zivkovic-

Rothman 1999)], its effect is small, and to the first order

H behaves like a fixed threshold removal scheme.

Alternatively, as the climate warms, the tropical mean

convective mass flux decreases despite increases in

precipitation (Held and Soden 2006). A fixed threshold

removal scheme would lead to a decrease in total con-

vective detrainment because the condensate mixing ratio

in detrained cloudy air is kept fixed, and all additional

condensate is simply removed as precipitation. However,

to maintain the same supersaturation (or cloudiness) in a

warmer climate with fixed relative humidity (a good

assumption to first approximation), one would need an

increase in condensate detrainment following theClausius–

Clapeyron relation (Rieck et al. 2012). Thus, everything

FIG. 6. Changes between warmer and present-day climates for tropical (308S–308N) mean LCRE, SCRE, and

TCRE sorted into different large-scale regimes characterized by monthly v500: (a) DLCRE(v500), (b) DSCRE(v500),

and (c) DTCRE(v500). (d) As in (c), but DTCRE(v500) is weighted by each model’s present-day PDF of v500.
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else being equal, such a decrease in convective detrainment

would lead to an enhanced reduction in cloudiness. The re-

duction in convective detrainment tends to diminish low and

middle clouds more strongly because the decreases in con-

vective mass flux are larger over the lower and middle tro-

posphere. Compared toM and L, the stronger reductions in

convective detrainment efficiency in H lead to substantially

larger decreases in low and middle clouds (especially cloud

amount) and their reflection of sunlight, enhancing their

positive cloud feedbacks and Cess climate sensitivity.

In contrast to the threshold removal scheme, a frac-

tional removal scheme can result in substantial increases

in cumulus condensate mixing ratio with warming, espe-

cially for midlevel clouds with relatively cold temperature

(Somerville and Remer 1984; Betts and Harshvardhan

1987). This condensate is eventually detrained into the tro-

posphere, counteracting the effect of decreasing convective

mass flux by lessening the reduction of low-plus-middle

cloud amount and increasing the liquid and ice water path

(Fig. 7). Indeed, Fig. 8a shows that L and M produce sys-

tematically less negative or more positive changes of kc
thanH, resulting in little reduction (M) or even an increase

(L) in the tropical bulk convective detrainment efficiency

(Fig. 3b). This is ultimately responsible for their neutral-to-

negative cloud feedback and lowerCess climate sensitivity.

Since the total convective detrainment of condensate

is Cc 2 Pc 5 kcPc and D(kcPc) ’ kcDPc 1 PcDkc, the
change in kc is not the only factor that can affect the

response in the convective detrainment. The change in

the convective precipitation Pc can also play a role.

Figures 8b–d shows this partition into the component due

to changes in convective precipitation Pc and the com-

ponent due toDkc. In the regions of most extreme ascent,

the DPc term dominates the total response and produces

overall increases in total detrainment. However, the in-

termodel differences in total detrainment are primarily

caused by their difference in Dkc, especially over the

broad weak ascent and decent regions, which dominate

the tropical and global mean response. Figure 8d also

shows that, even in the subsidence regions with much

smaller precipitation rate, changes in kc can still signifi-

cantly affect the response of convective detrainment.

Since cumulus detrainment in subsidence regions tends to

be confined in a lower tropospherewhere it is warmer, the

impact on cloudiness for the same amount of condensate

would be smaller than that detrained at a higher level in

ascent regions following Clausius–Clapeyron. Neverthe-

less, the significant effect of precipitation over a large

area of subsidence regions makes the response of kc im-

portant in both ascent and descent regions.

In the subsidence regions, it is also interesting to note

that convective precipitation tends to decrease, which

counteracts the increases in Dkc and produces smaller

changes in detrainment of condensate. While the inter-

model differences in Dkc are consistent with their dif-

ferences in cloud response (see Fig. 6), the overall

positive Dkc in the subsidence regions alone would not

explain the broad reduction of low clouds there. This

suggests that other processes shared between themodels

may be important in explaining the overall reduction in

low cloud amount in the subsidence regions. This is not

surprising since low-cloud responses in the subsidence

regions are affected not only by changes in cumulus

detrainment but also by various processes closely re-

lated to the planetary boundary layer turbulence, a topic

beyond the scope of the current paper.

4. Summary and discussion

Poor understanding of cloud feedback is a leading

cause of disagreement in GCM predictions of future

FIG. 7. Changes in (a) low-plus-middle (below 400 hPa) cloud

amount and (b) liquid and ice water path between warmer and

present-day simulations computed for different tropical large-scale

v500 regimes.
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climate. Despite being aware of the problem for some

time, we are now beginning to develop specific ideas that

lend themselves to a variety of tests (e.g., Bony et al. 2015;

Mauritsen and Stevens 2015; Sherwood et al. 2014; Z14;

Stevens and Bony 2013). Here we show that model esti-

mates of cloud feedback can be strongly affected by the

manner through which cumulus cloud condensate is

converted into precipitation in a model’s convection pa-

rameterization. Based on a developmental version of the

next-generation GFDL GCM (AM4), we have created

three models that are identical in all aspects of the dy-

namics and physics formulations except the treatment of

cumulus precipitation. Without impacting the quality of

the simulated climate appreciably, we demonstrate that

the two commonly used methods for parameterizing

convective precipitation can result in drastically different

cloud feedbacks, with the threshold removal scheme (H)

producing a strong positive feedback and the fractional

scheme (M and L) generating neutral to slightly negative

feedbacks.

The effect can be understood through a bulk con-

vective detrainment efficiency, which measures the

ability of cumulus convection to generate clouds and

moisten the free troposphere per unit precipitation

(Z14). The analysis of clouds and convective detrainment

efficiencies from different large-scale dynamical regimes

characterized by v500 suggests that the difference in

simulated global and tropical mean cloud response comes

from broad regimes ranging from strongly ascending to

weakly ascending toweakly descending, corresponding to

deep cumulonimbus, cumulus congestus, and shallow

cumulus cloud regimes in these models. This result is

broadly consistent with recent findings by Vial et al.

(2013), who showed that the difference in tropical cloud

feedbacks between the high- and low-sensitivity CMIP5

models arises from a larger range of dynamical regimes

(from ascent to subsidence regimes).

Although this study suggests that the response of

convective detrainment (or precipitation) efficiency to

global warming may be important for understanding

GCM-simulated cloud feedback uncertainties, it is be-

yond the goal of the present paper to answer how con-

vective precipitation may change in a warmer climate.

Many processes can affect the convective precipitation

FIG. 8. (a) Fractional changes in convective detrainment efficiency kc computed for different tropical large-scale

v500 regimes. (b) As in (a), but for changes in the rate of total convective detrainment of liquid and ice waterD(kcPc).

(c) As in (b), but for the component due to changes in DPc (kcDPc). (d) As in (b), but for the component due to

changes in Dkc (PcDkc). All changes are computed over the tropics and normalized per kelvin of warming.
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efficiency, including cumulus mixing dynamics, the

formation and evolution of cloud and precipitating

hydrometeors, the fall of precipitation and associated

downdrafts, and precipitation reevaporation, as well as

convection organization and its interactions with radi-

ation and circulation. High-resolution cloud-resolving

simulations of radiative–convective equilibrium (RCE)

suggest that convection is more likely to aggregate in

a warmer climate (e.g., Emanuel et al. 2013). This sug-

gests a possible increase in precipitation efficiency with

warming. However, model simulations of convective ag-

gregation in RCE are sensitive to many details, including

domain size, resolutions, and initial conditions (e.g.,

Bretherton et al. 2005; Muller and Held 2012). Coupled

with our limited understanding of the relevance of RCE

for more realistic atmosphere, the relevance of this result

for climate sensitivity remains unclear.

Once aggregated, the organized convection tends to

dramatically reduce the domain-averaged relative hu-

midity and clouds throughout the troposphere, indicating

strong reductions in the magnitude of both LW and SW

CRE (e.g., Bony et al. 2015; Tobin et al. 2012). It is,

however, not obvious how the net CRE might change

because of the cancellation between LW and SW com-

ponents, especially considering the poor simulation of

thin cirrus clouds in current GCMs, which could have a

large impact on LW CRE. Recently, Mauritsen and

Stevens (2015) hypothesized that a possible increase in

convection aggregation in warmer climates might lead to

the iris effect of Lindzen et al. (2001), which could be

missing in GCMs and may cause the high climate sensi-

tivity and muted hydrological change in GCMs. How-

ever, changes in precipitation efficiency in our model do

not appear tomanifest themselves as a significant iris-like

effect. As shown in Figs. 4–6, the models produce a much

smaller difference in the response of high clouds and LW

CRE than the response of low-plus-middle clouds and

SW CRE. At this time, it is not clear to what extent the

iris effect due to changes in precipitation efficiency might

be model dependent, but there is an indication that this

might be the case. As pointed out by Mauritsen and

Stevens (2015), when their formulation [Eq. (1) in

Mauritsen and Stevens (2015)] for parameterizing con-

vective precipitation efficiency is used in the NCAR cli-

mate model, it produces an increase in equilibrium

climate sensitivity opposite to the decrease seen in the

ECHAM6 model. Future research would be needed to

understand the cause of these discrepancies.

In addition to convective precipitation microphysics,

previous studies point out that changes in cumulus

mixing or entrainment rate can also affect model esti-

mates of cloud feedback and climate sensitivity (e.g.,

Murphy et al. 2004; Stainforth et al. 2005; Sanderson

et al. 2008; Joshi et al. 2010; Sherwood et al. 2014; Z14).

Z14 suggests that some of the effect of cumulus mixing

can be understood through the convective detrainment

efficiency since cumulus mixing directly affects the

convective precipitation and therefore the detrainment

efficiency. However, alterations of cumulus mixing rate

strongly interact with other components of GCM phys-

ics, including the amount of resolved or explicit con-

vection and the planetary boundary layer turbulence,

both of which can profoundly affect GCM-simulated

mean climates. For example, Held et al. (2007) showed

that an increase in the cumulus entrainment rate limiter

inGFDLAM2 strongly increases the fraction of tropical

precipitation that comes from the resolved convection.

This results in a significantly drier and warmer tropical

troposphere with excessive boundary layer clouds and

SW reflection at TOA. These effects can be seen in both

GCM simulations and idealized RCE simulations using

GCM physics (Held et al. 2007). The large TOA radia-

tive imbalance often requires significant retuning out-

side of the convection scheme. Moreover, because the

explicit convection plays a significant role in tropical

convective transport and precipitation, an appreciation

of the response of total detrainment efficiency would

require an understanding of the precipitation efficiency

in the explicit (resolved scale) cloud module, which

should depend on the formulation of explicit cloud

microphysics.

The complicated impacts of cumulus mixing on other

components of GCM physics often make it challenging

to isolate and understand the mechanisms through

which cloud feedbacks are changed. As an example of

this complexity, Joshi et al. (2010) found that the high

climate sensitivity in one version of the Met Office

Hadley Centre single-parameter perturbed physics

model (Murphy et al. 2004) with low entrainment pa-

rameter is due to stratospheric humidity change, rather

than the upper-tropospheric clouds suggested by pre-

vious studies.

Based on an analysis of the simulations from 43GCMs

participating in the CMIP3 and CMIP5, Sherwood et al.

(2014) suggest that themodel spread in climate sensitivity

is causedmostly by the tropical low-cloud response due to

intermodel variations in convective mixing strength be-

tween the lower and middle troposphere. Based on the

mixing inferred from observation and reanalysis data,

they suggest that the models with higher climate sensi-

tivity may be more realistic for predicting future global

warming.

The mechanism that Sherwood et al. (2014) put for-

ward is that the mixing between the lower and middle

troposphere tends to dehydrate the low cloud layer at a

rate that increases as the climate warms, and this rate
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of increase depends on the initial mixing strength.

They suggest that a model with stronger present-day

mixing strength, as measured by their index of subgrid-

scale mixing S and an index of large-scale mixing D

[see Sherwood et al. (2014) for the definitions of S and

D], tends to produce more positive cloud feedback and

therefore a higher sensitivity. We have made the same

calculation of these indices from H, M, and L and found

no evidence that these indices explain the model dif-

ferences described here. In particular, we found S to be

systematically larger in the lower-sensitivity models M

and L than in H.Moreover, bothD and the sum of S and

D do not show a good correlation with cloud feedback

or the Cess climate sensitivity parameters. Table 2 pro-

vides the values for the S and D indices computed from

each of the models.

The fundamental picture behind Sherwood et al.

(2014) is that an increase of upward transport of moisture

near the top of the boundary layer over the convective

regions should result in decrease of low clouds because of

dehydration of the boundary layer (Rieck et al. 2012). To

understand whether this mechanism might be operative

in our models even though the specific indices discussed

by Sherwood et al. (2014) do not correlate with climate

sensitivity as proposed, we have directly computed the

net upward flux of total water (vapor plus liquid plus ice)

at each model level over the tropics. This net flux is the

sum of the net total water fluxes due to the parameterized

and resolved-scale convection and the boundary layer

turbulence. Resolved-scale water flux is computed online

based on upward vertical pressure velocity at each physics

time step of a model.

Figure 9 shows the changes in the total water flux

between the warmer and present-day climate. It is clear

that the two low-sensitivity models (M and L) produce a

larger increase in upward water flux near the top of the

boundary layer (800–900 hPa) than the high-sensitivity

model (H). While they may dehydrate the boundary

layer more, most of the additional upward water flux is

deposited between 800 and 400 hPa, which results in less

reduction or even an increase of clouds in the middle

levels well above the boundary layer. These clouds

have a large SW radiative effect. Our results suggest that

this effect depends strongly on the treatment of con-

vective precipitation, and it can dominate the overall

response of SW and total CRE in a GCM. Although our

results provide an example that the mechanism de-

scribed in Sherwood et al. (2014) cannot explain, this

study alone would not suggest that the mechanism ex-

plored here and the convective detrainment efficiency

can explain a large fraction of the intermodel spread in

the CMIP5 models. Nevertheless, our results are con-

sistent with Fig. 5 in Sherwood et al. (2014), which shows

that considerable spread in climate sensitivity re-

mains even for a fixed S,D, and S1D. In that sense, the

present study is complementary to Sherwood et al.

(2014) toward piecing together a complete understanding

of the processes that result in the spread in climate sen-

sitivity across GCMs.

Given the current level of uncertainty in representing

convective precipitation microphysics, this study sug-

gests that one can engineer climate sensitivity in a GCM

by the approach used for parameterizing convective

precipitation. The differences between the present-day

mean climate simulations in the three models described

here are modest, as shown in Fig. 2, with L performing a

bit less well than H and M, but we suspect that by op-

timizing other areas of the model we could reduce some

of these differences. So far, we have not found a clear

constraint that we feel would make one model choice

more plausible than another. Therefore, holistic mea-

sures of the overall quality of the mean climate simula-

tions do not appear to provide adequate guidance for

choosing between these models. To accelerate progress

for understanding and constraining cloud feedback and

climate sensitivity, comprehensive approaches are nec-

essary. They would include 1) a thorough evaluation

of GCM-simulated cloud variability at all temporal

and spatial scales in addition to the mean climatology,

2) development of hypotheses (or story lines) around

key questions and/or processes for models to confront

(e.g., Bony et al. 2015), 3) process-oriented investigations

using high-resolution cloud-resolving and large-eddy

simulations (e.g., Bretherton et al. 2013, 2014), and

4) development and use of a global cloud-resolving

model or superparameterized GCM for cloud feedback.

In addition, there is value in intentionally engineer-

ing climate sensitivities in specific ways in traditional

GCMs so as to provide material for further research

into possible observational constraints (e.g., Mauritsen

and Stevens 2015). One important way to manipulate

climate sensitivity, through the convective detrainment

efficiency, seems, as described here, to be particularly

powerful in this regard. Models with explicitly en-

gineered climate sensitivity should also be valuable in

studying other constraints on sensitivity from studies of

paleoclimates, volcanic responses, and simulations of

TABLE 2. The S,D, and S1D indices of Sherwood et al. (2014)

computed from theH,M, and Lmodels. See Sherwood et al. (2014)

for the definition of the parameters.

Parameters H M L

S 0.44 0.46 0.47

D 0.28 0.24 0.27

S 1 D 0.72 0.70 0.74
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the warming over the past century. In the latter case,

engineering models with different strengths of indirect

aerosol effects (Golaz et al. 2013) will also be needed to

search for the most powerful constraints provided by the

historical record.
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APPENDIX

A Description of the Convection Scheme

The convection scheme is adapted from the Univer-

sity of Washington Shallow Cumulus scheme originally

developed by Bretherton et al. (2004). Some earlier

modifications have been documented in appendix A

of Zhao et al. (2009). The modified version has been

used in GFDL HiRAM for the IPCC Fifth Assessment

Report (AR5) high-resolution time-slice simulations and

the intermodel comparison project for the U.S. Climate

Variability and Predictability Program (CLIVAR) Hur-

ricane Working Group (Walsh et al. 2015). Below, we

describe the motivations and new modifications that we

havemade for the developmental version of AM4 used in

this study.

Similarly to HiRAM, when the previous modified

UWShCu convection (Zhao et al. 2009) was used in

AM4 prototypes, we find the model produces high-

quality simulations of mean climate and tropical cy-

clone statistics when themodel is forced by the observed

SSTs. However, when coupled with an ocean model

(MOM5), we find it produces too-strong equatorial Pa-

cific code biases, which negatively affect model simula-

tions of El Niño–Southern Oscillation (ENSO). In

addition, the model produces signals of the Madden–

Julian oscillation (MJO) that are too weak and do not

propagate into the western tropical Pacific. We suspect

that this may be caused by some deficiencies in the

model’s representation of deep convection since the

original scheme was designed for shallow cumulus

clouds, and our simple adjustment of the fractional lat-

eral mixing rate « to a smaller value [i.e., c0 was adjusted

to be 10 in Zhao et al. (2009) instead of 15 in Eq. (18) of

Bretherton et al. (2004)] may not fully account for the

effect of deep convection.

In an attempt to reduce these coupled biases, we in-

troduce an additional bulk plume so that the new

scheme can contain two plumes at a given time and lo-

cation: one for shallow and one for deep convection. The

mixing characteristic (i.e., inhomogeneous mixing and

buoyancy-sorting determination of the entrainment and

detrainment rate) of the two plumes is identical to the

original plume described in Bretherton et al. (2004),

except the fractional lateral mixing rate of a plume « is

parameterized differently. In Bretherton et al. (2004),

« is formulated to be constant with height and inversely

proportional to the depth of cumulus top H (i.e.,

« 5 c0/H; here, c0 is a nondimensional adjustable pa-

rameter). The scaling of « by H allows a plume to

penetrate deeper in deep convective regions, offering a

possibility for a single plume to represent both shallow

and deep convection (Zhao et al. 2009; Z14). Since we

separate explicitly the representation of shallow and deep

plumes in the double plume scheme, we adopt a formu-

lation of shallow plume «s that decreases with height z as

the plume ascends (i.e., «s 5 c0/z). The scaling of «s with

height z is supported by results of large-eddy simulations

of shallow cumulus convection (e.g., de Roode and

Duynkerke 2000; Siebesma et al. 2007).

In addition, the fractional lateral mixing rate of the

deep plume «d is parameterized to be a linear function

FIG. 9. Changes in vertical profile of net convective total water

flux between warmer and present-day climate. The net flux is the

sum of the total water (vapor 1 liquid 1 ice) fluxes due to the

parameterized and resolved-scale convection and the boundary

layer turbulence over the tropical convective regions. Resolved-

scale water flux is computed online based on upward vertical

pressure velocity at each physics time step of a model.
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of column relative humidity (CRH is vertically inte-

grated specific humidity divided by vertically integrated

saturation specific humidity):

«
d
5 «

1
1

CRH2CRH
0

12CRH
0

(«
2
2 «

1
), for

CRH
0
#CRH# 1, (A1)

where CRH0 5 0.5, «1 5 1.53 1023m21, and «25 0.53
1024m21. Deep plumes occur only when ambient

CRH exceeds CRH0. Reducing the lateral mixing rate

in a more humid environment attempts to roughly account

for the effect of convective organization on cumulus en-

trainment. An introduction of relative humidity–dependent

entrainment rate has previously been shown to improve

model simulations ofMJOandother tropical variability and

is generally supported by observational and modeling

studies (e.g., Bechtold et al. 2008).

We use a convective available potential energy

(CAPE) relaxation closure to determine the cloud-base

mass flux for the deep plume (e.g., Zhang andMcFarlane

1995; Bechtold et al. 2008). The shallow convective clo-

sure was described in Bretherton et al. (2004) and is not

changed. The CAPE relaxation time scale for deep con-

vection is 8h. As discussed in section 2, we have im-

plemented three different options for removing convective

precipitation, which apply to both shallow and deep

plumes. The model cloud feedback sensitivity to the

treatment of the convective precipitation is the key for this

study. Convective precipitation is allowed to reevaporate

when falling through a subsaturated environment similar

to that used in the relaxed Arakawa–Schubert scheme in

AM2 (Anderson et al. 2004). The modifications do not

include an explicit representation of convective down-

drafts, but the precipitation reevaporation in deep plumes

appears to be able to produce a sufficient cold pool effect.

We find the above modifications help to substan-

tially reduce model biases in simulating the equatorial

eastern Pacific sea surface temperatures, precipitation

response to ENSO, and the MJO. The causes for these

improvements are currently under investigation and will

be reported in upcoming papers.
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