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Three gradient-based scaling systems for the stably stratified boundary layer are
introduced and examined by using data collected during the SHEBA field programme
in the Arctic. The resulting similarity functions for fluxes and variances are expressed
in an analytical form, which is expected to be essentially unaffected by self-correlation
in a very stable regime. The flux Richardson number Rf is found to be proportional to
the Richardson number Ri, with the proportionality coefficient varying slightly with
stability, from 1.11 to 1.47. The Prandtl number decreases from 0.9 in nearly neutral
conditions to 0.7 for larger values of Ri. The negative correlation coefficient between
the vertical velocity and temperature, −rwθ , has a local maximum at Ri of about
0.08, and monotonically decreases with larger values of the Richardson number.
The turbulent kinetic energy budget indicates that for Ri > 0.7, turbulence must
be non-stationary, i.e. decaying or sporadic. Turbulence within the stably stratified
boundary layer can be classified by four regimes: ‘nearly neutral’ (0 < Ri < 0.02),
‘weakly stable’ (0.02 < Ri < 0.12), ‘very stable’ (0.12 < Ri < 0.7), and ‘extremely
stable’ (Ri > 0.7). Copyright c© 2010 Royal Meteorological Society
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1. Introduction

The Monin–Obukhov similarity is regarded as the major
tool for understanding near-surface turbulence. Since the
early 1950 s, its universal framework has been systematically
examined and applied in the analysis of numerous field
observations. Data accumulated during recent years indicate,
however, that the approach has limited utility in very
stable conditions. Specifically, the similarity predictions
for the gradients can be formally derived only for sub-
critical conditions (e.g. Sorbjan, 2006a; 2006b), despite the
observational evidence that stable turbulence survives at
Richardson numbers exceeding the critical value Ric ≈ 0.2
(e.g. Galperin et al., 2007). Similarity scales decrease with
thermal stability, causing the similarity functions to become
practically singular with strongly scattered values. The

definitions of the universal functions and the similarity
argument z/L∗ contain common divisors (u∗, T∗), a
property referred to as ‘self-correlation’, where u∗, T∗,
L∗ are the Monin–Obukhov scales (see section 3.1). As
a result, a relationship between the similarity functions
and their argument is difficult to be established in very
stable conditions with satisfactory confidence (e.g. Klipp and
Mahrt, 2004; Baas et al., 2006). Moreover, the definition of
the stability parameter, z/L∗, includes a ratio of fluxes, which
can cause ambiguities, especially when both temperature
and wind fluxes are small (Grachev et al., 2008). In such
cases there are difficulties in differentiating between a nearly
neutral state with weak velocity and very stable conditions.
By replacing the argument z/L∗ by the Richardson number
Ri, the severity of the self-correlation problem can be reduced
(Sorbjan, 2006b).
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Some of the aforementioned problems could be resolved
by defining similarity scales in terms of the moments of
turbulence, which possess ‘better behaviour’ in very stable
conditions than do the turbulent fluxes (e.g. Sorbjan, 2006a).
Thus, the purpose of this paper is to further explore
alternative forms of similarity scales and to examine the
resulting similarity laws in the stably stratified boundary
layer.

The paper has the following structure. Section 2 discusses
the theoretical background in terms of the K-theory. The
scaling systems and similarity functions are introduced in
section 3. The empirical evaluation is presented in section
4 through the use of the experimental data collected during
the SHEBA experiment. A general discussion of our work is
presented in section 5. Finally, conclusions are provided in
section 6.

2. Background

Let us consider a classic approach of the K-theory, which
allows the expression of the turbulent fluxes of momentum

τ =
√

(−u′w′)2 + (−v′w′)2 and heat H = w′�′ in terms of
the virtual potential temperature gradient � = d�/dz > 0
and the wind shear S =

√
(dU/dz)2 + (dV/dz)2 in a

stationary, horizontally homogenous, stably-stratified shear
flow:

τ = KmS (1a)

H = −Kh� (1b)

where

Km = (κz)2Sfm (2a)

Kh = (κz)2Sfh. (2b)

Above, the overbar indicates the ensemble averaging
operator, U and V are the components of the wind
velocity, fm and fh are empirical functions of the Richardson
number, which is defined as Ri = N2/S2, N = √

β� is
the Brunt–Väisälä frequency, β = g/T0 is the buoyancy
parameter, g is the gravity acceleration, T0 is the reference
temperature, κ = 0.4 is the von Kármán constant, and z is
the height. Equation (2a) is based on the expression for eddy
viscosity Km = l2S of Prandtl (1932), and the mixing length
l = κz/(1 + κz/l∞) of Blackadar (1962), with the ratio of
height and the parameter l∞ assumed to be dependent on
the Richardson number. The eddy diffusivity Kh is defined
analogously.

We will augment the above equations by considering a
simplified, steady-state, horizontally homogeneous balance
of the vertical velocity variance σ 2

w in the form (e.g. Sorbjan,
1989):

τS + βH ∼ σ 2
w

σ w

κzfε
(3)

where fε is an empirical function of the Richardson number.
The left-hand side of (3) describes the shear production
and the work against the buoyant force, while the right-
hand side represents the dissipation rate. The diffusion and
pressure terms are neglected as small in stable conditions.
Following Kolmogorov (1941), the dissipation rate in (3) is
parametrized as being proportional to the mixing length (the

term in the denominator) and the turbulent kinetic energy.
In turn, this expression can be expressed as a product of
the vertical velocity variance and the anisotropy function
dependent on the Richardson number. The von Kármán
constant κ is added for convenience.

In addition, we will consider the simplified, steady-
state, horizontally homogeneous balance of the temperature
variance σ 2

θ in the form:

−2H� ∼ σ 2
θσ w

κzfd
(4)

where fd is an empirical function of the Richardson number.
The left-hand side of (4) expresses the production of
temperature fluctuations, and the right-hand side is the
dissipation rate of the temperature variance. We neglect
the diffusion term as small. The dissipation rate for the
temperature fluctuations is parametrized in terms of a time-
scale, which is assumed to be proportional to the mixing
length and the vertical velocity variance.

When the empirical functions fm, fh, fε , and fd are specified,
the system (1)–(4) is closed. It describes (for given S, �,
β and z) the relationship among the fluxes τ , H, and
variances σ w, σ θ . We will not attempt to find the solution
for the system (1)–(4). Instead, in the following section,
some general conclusions about the above system will be
derived by employing the approach of dimensional analysis.
Such an analysis has a great tradition in meteorology and
oceanography, and has been successfully applied to describe
the properties of turbulence by Kolmogorov, Obukhov,
Monin, Ozmidov and others (e.g. Barenblatt, 1996).

3. Scaling systems

A simple analysis of the system (1)–(4) indicates that the
choice of the similarity scales for the set of eight variables:
{τ , H, σ w, σ θ , S, �, z, β}, with three independent units,
[m], [s], [K], is not unique. Thus, it can be performed
in a number of ways. Generally, any three dimensionally
independent parameters in the above list can be selected to
build a system of three scales for length, temperature and
velocity. Below, we will consider scaling systems, based on
the following choice of the parameter combinations:

{τ , H, β} (5a)

{σ w, �, β} (5b)

{σ θ , �, β} (5c)

{z, �, β} (5d)

We will refer to the scales derived from the first set
of parameters as ‘flux-based scaling’, while the remaining
sets will be called the ‘gradient-based scaling’. It should be
mentioned that other ‘gradient-based scaling’ systems could
also be proposed. For example, one could consider {ε, �,
β} as governing parameters, where ε is the dissipation rate
(Sorbjan and Balsley, 2008).

3.1. The flux-based scaling

Historically, the first scaling system for the atmospheric
boundary layer was proposed by Monin and Obukhov
(1954), who employed (5a), with the surface values of fluxes
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τ 0, H0, to construct scales for length L∗ = −τ 0
3/2/(κβH0),

temperature T∗ = −H0/u∗, and velocity u∗ = √
τ 0. Based

on a dimensional analysis, Monin and Obukhov concluded
that the non-dimensional products of statistical moments X
in the surface layer (such as σ w, σ θ , S, �), and the flux-based
scales, are universal functions ϕx of a single dimensionless
parameter z/L∗:

X

Ua∗Tb∗Lc∗
= ϕx(z/L∗) (6)

where the exponents a, b, c are chosen in such a way
that ϕx is dimensionless. The above result conveys the so-
called ‘self-similarity’ property, which manifests itself in
the reduction of the number of independent dimensionless
variables in comparison to the number of dimensional
ones (e.g. Barenblatt, 1996). As a result, self-similarity
substantially simplifies the description of phenomena and
their experimental, analytical and computational analysis.

By using a second-order closure scheme, Nieuwstadt
(1984) demonstrated that the assumption of the constancy
of fluxes with height is not necessary, so that the scales in
the stable boundary layer can be height-dependent (local):

U∗(z) = √
τ (7a)

ϑ∗(z) = − H

U∗
(7b)

�∗(z) = − τ 3/2

κβH
. (7c)

Note that a new notation is used to mark the local scales.
Sorbjan (e.g. 1986a; 1986b; 1988) argued that the

functional form of universal similarity functions of the
argument z/L∗ and z/�∗ is identical in stable conditions,
ϕx(z/L∗) = ϕx(z/�∗). As a result

κz

U∗
S = ϕm(z/�∗) (8a)

κz

ϑ∗
� = ϕh(z/�∗) (8b)

sw

U∗
= ϕw(z/�∗) (8c)

sθ
ϑ∗

= ϕθ (z/�∗) (8d)

Applying a definition of the Richardson number yields:

Ri = z

�∗
ϕh(z/�∗)

ϕ2
m(z/�∗)

. (9)

Using (9), one can formally rewrite (8) in the equivalent
form:

κz

U∗
S = ψm(Ri) (10a)

κz

ϑ∗
� = ψh(Ri) (10b)

σ w

U∗
= ψw(Ri) (10c)

σ θ

ϑ∗
= ψθ (Ri) (10d)

where ψm, ψh, ψw, ψθ are the universal similarity
functions of the Richardson number. The same result
can be formally obtained based on (1)–(4), with ψm ∼
1/f 1/2

m , ψh ∼ f 1/2
m /fh, ψw ∼ [(1 − Ri/Pr)fε]1/3/f 1/6

m , ψθ ∼
f 5/6
m f 1/2

e /{fhfε(1 − Ri/Pr)}1/6, and an additional assumption
that Ri/Pr < 1, where Pr ≡ Km/Kh = fm/fh is the Prandtl
number. As a consequence, we conclude that the K-theory
formulation (1)–(4) is equivalent to the Monin–Obukhov
similarity approach.

In neutral conditions, the parameters z/�∗ and Ri are
nearly zero, which implies that the values of similarity
functions are constant. Specifically, ϕm(0) = 1 and ϕh(0) =
Pr0, where Pr0 is a constant, referred to as the neutral value
of the Prandtl number. According to the Monin–Obukhov
theory, when the temperature gradient � is positive and
sufficiently large, turbulence is expected to be local and
independent on the distance from the underlying surface
(the ‘z-less regime’). In this case, a dimensional analysis leads
to the conclusion that the similarity functions are linear,
ϕm ∼ ϕh ∼ z/�∗. With increasing thermal stratification,
the parameter z/�∗ = κzβϑ∗/U2∗ → 0/0. As a result, the
similarity functions become singular (large), and strongly
impacted by self-correlation.

3.2. The gradient-based σ w - scaling

Now, let us consider the similarity scaling based on
(5b), which involves the vertical velocity variance σ 2

w, the
temperature gradient �, and the parameter β (Sorbjan,
2006a):

Uw = σ w (11a)

Tw = Nσ w

β
(11b)

Lw = σ w

N
. (11c)

The above scales are considered only for the case of
the Brunt–Väisälä frequency N being sufficiently large.
Applying (11) to (1)–(4) yields:

τ

U2
w

= (κz/Lw)2Ft(Ri) (12a)

− H

UwTw
= (κz/Lw)2Fh(Ri) (12b)

σ θ

Tw
= (κz/Lw)Fθ (Ri) (12c)

where Ft = fm/Ri, Fh = fh/Ri1/2, Fθ = f 1/2
d f 1/2

h /{fmfε(1 −
Ri/Pr)}1/6, and Ri/Pr < 1.

Equation (3) implies that

Lw

κz
= w(Ri) (13)

where w(Ri) ∼ {fmfε(1 − Ri/Pr)}1/3/Ri1/2 can be seen to
be a function of the Richardson number. Using (13),
equations (12a)–(12c) can be rewritten in an equivalent
form:

τ

U2
w

= t(Ri) (14a)
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− H

UwTw
= h(Ri) (14b)

σ θ

Tw
= θ (Ri) (14c)

where m, h, and θ are universal functions of the
Richardson number. Since the above expressions were
derived based on the K-theory formulation (1)–(4), and
we have found to be equivalent to the Monin–Obukhov
similarity approach, we can conclude that (13)–(14)
is also formally equivalent to the Monin–Obukhov
similarity theory. An analogous result can also be
derived by using second-order closure equations (Sorbjan,
2006a).

Using dimensional analysis, (14) can be generalized by
asserting that the non-dimensional products of statistical
moments X in the surface layer and the scales (11),
are expected to be universal functions x of a single
dimensionless parameter Ri:

X

Ua
wTb

wLc
w

= x(Ri) (15)

3.3. The gradient-based σ θ scaling

Yet another similarity scaling can be introduced based
on (5c). It involves the temperature variance σ 2

θ and the
Brunt–Väisälä frequency N :

Uθ = βσθ

N
(16a)

Tθ = σ θ (16b)

Lθ = βσ θ

N2
, (16c)

where the Brunt–Väisälä frequency N is assumed to be
sufficiently large.

Applying (16) to (1)–(4) yields:

τ

U2
θ

= (κz/Lθ )2Ft(Ri) (17a)

− H

Uθ Tθ

= (κz/Lθ )2Fh(Ri) (17b)

σ w

Uθ

= (κz/Lθ )Fw(Ri) (17c)

Lθ

κz
= �θ (Ri) (17d)

where Fw ∼ [fmfε(1 − Ri/Pr)]1/3/Ri1/2, �θ ∼ (fdfh)1/2/
[fmfε(1 − Ri/Pr)]1/6, and Ri/Pr < 1.

Using (17d), we obtain from (17a)–(17c):

τ

U2
θ

= � t(Ri) (18a)

− H

Uθ Tθ

= �h(Ri) (18b)

σ w

Uθ

= �w(Ri). (18c)

It can be noted that �w ≡ 1/θ .
Again employing a dimensional analysis, we can generalize

(18) by stating that the non-dimensional products of
statistical moments X in the surface layer and the above
scales are expected to be universal functions �x of a single
dimensionless parameter Ri:

X

Ua
θ Tb

θ Lc
θ

= �x(Ri) (19)

3.4. The gradient-based master scaling

An alternative similarity scaling can be introduced by
using (5d), which involves the temperature gradient �,
the buoyancy parameter β and height z:

Us = κ z N (20a)

Ts = κ z� (20b)

Ls = κ z, (20c)

where κ the von Kármán constant was added for
convenience. As before, we will consider only cases when
the Brunt–Väisälä frequency N is sufficiently large. We will
refer to (20a, b, c) as master scaling.

Employing (20), we obtain from (1)–(4):

τ

U2
s

= Gt(Ri) (21a)

− H

UsTs
= Gh(Ri) (21b)

σ w

Us
= Gw(Ri) (21c)

σ θ

Ts
= Gθ (Ri) (21d)

where Gt ∼ fm/Ri, Gh = fh/Ri1/2, Gw ∼ [fmfε(1 −
Ri/Pr)]1/3/Ri1/2, Gθ ∼ (fdfh)1/2/[fmfε/(1 − Ri/Pr)]1/6, and
Ri/Pr < 1. It can be noted that Gt ≡ Ft , Gh ≡ Fh, Gw ≡ w,
Gθ ≡ �θ .

Analogous to the previous scaling cases, we can generalize
the above system by stating that the non-dimensional
products of statistical moments X in the surface layer and
the above scales must be universal functions of a single
dimensionless parameter Ri:

X

Ua
s Tb

s Lc
s

= Gx(Ri) (22)

Note that the temperature gradient � appears on both
sides of (22), within the similarity scales and in the definition
of the Richardson number. This fact implies self-correlation,
due to errors in the evaluation of �. However, it is reasonable
to expect that such errors are relatively small when the
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temperature gradient is sufficiently large, and thus the self-
correlations effects related to � do not represent a serious
issue.

The considered gradient-based and flux-based scaling
systems are related. Based on (11), (16) and (20) one can
obtain:

Uw

Us
= Tw

Ts
= Lw

Ls
= Gw (23a)

Uθ

Us
= Tθ

Ts
= Lθ

Ls
= Gθ (23b)

Uθ

Uw
= Tθ

Tw
= Lθ

Ls
(23c)

U∗
Us

= Ts

T∗
Gh = L∗

κLs

Gh

Gt
= G1/2

t (23d)

By employing (10a), (10b), and (23d), one can also
obtain the relationship between the Monin–Obukhov and
gradient-based functions:

Gt = 1

Riψm
2

(24a)

Gh = 1

Ri1/2ψmψh
(24b)

The master scaling does not involve any higher order
moments. Because of dependence only on gradients, its
application seems to be the most advantageous. Using
the master-scaling similarity functions, all other similarity
functions can also be derived.

4. Empirical evaluation

4.1. Data

The similarity functions formulated in the previous section
will now be examined using the data collected during
the Surface Heat Budget of the Arctic Ocean (SHEBA)
experiment. Detailed overviews of the SHEBA programme
and its data can be found in the papers of Andreas et al. (1999;
2003; 2006), Persson et al. (2002) and Grachev et al. (2005;
2007a; 2007b; 2008). Thus, herein, only brief information
about SHEBA instruments and data will be provided.

The experiment took place over Arctic pack ice, drifting in
the Beaufort Gyre to the north of Alaska (latitude from 74◦N
to 81◦N), from October 1997 through to September 1998.
The sub-polar site offered a number of advantages, especially
due to the stationarity of weather conditions, and the lack of
contamination by drainage or strong advective flows. Except
for rare periods, instruments ran almost continuously for
11 months and produced well over 6000 hours of useful
data, covering a wide range of stability conditions.

Turbulent and mean meteorological data during SHEBA
were obtained on the 20 m main tower (Grachev et al.,
2005). Observations were continuously collected at five
levels, located at 2.2 m, 3.2 m, 5.1 m, 8.9 m, and 18.2 or 14 m
above the surface. The variances and covariances at each level
were based on one-hour averaging, and derived through
frequency integration of both spectra and cospectra. To
prevent a possible flux loss caused by inadequate frequency

responses and sensor separations, a prerequisite that the
wind velocity U > 1 m/s has been imposed on the sample.
Data for the first level, which reflected a relatively large scatter
due to local surface effects, were not considered. In addition,
data with a temperature difference between the air at median
level and the snow surface of less than 0.5◦C were excluded
to avoid the large uncertainty in determining the sensible
heat flux. Vertical gradients of the mean wind speed and
the potential temperature were obtained by fitting a second-
order polynomial through the 1-hour profiles followed by
an evaluation of the derivative with respect to z for levels
1–5.

The data points presented in this paper are based on a bin-
averaging of the individual one-hour data at levels 2, 3, 4 and
5. For this purpose, data were first sorted into bins by using
the Richardson number Ri as the sorting parameter. Then,
the mean values of relevant parameters were computed for
each bin (e.g. Grachev et al., 2008).

It can be noted that in practice there is often a problem
with the differentiation between nearly neutral and very
stable regimes in cases when both temperature and wind
gradients are small. The number of outliers with high values
of Ri in nearly neutral conditions is often comparable with
the number of points that truly have high values of Ri in very
stable conditions. As a result, the Ri-outliers from the nearly
neutral range can significantly distort the picture in the very
stable regime. To resolve this problem, a special prerequisite
was applied to data in order to limit the influence of outliers
on the bin-averaging: 0.5Rie < Ri < 2Rie, where the value
of the Richardson number Rie was estimated based on an
equation analogous to (9), with the analytical form of the
Monin–Obukhov similarity functions ϕh and ϕm of z/L∗
obtained by Grachev et al. (2007a), and Grachev et al. (2008).
More specifically, if the actual value of a Richardson number
Ri = N2/S2 was not in the range defined by Rie, the data
point was rejected. Ultimately, this procedure removed
those cases for which there was an inconsistency between
the Richardson number calculated directly and analytically.

4.2. The master scaling

The dependence of the dimensionless fluxes, Gt = τ/U2
s and

Gh = −H/(UsTs) on the Richardson number Ri is shown
in Figure 1. The dimensionless moments Gw = σ w/Us and
Gθ = σ θ/Ts are depicted in Figure 2. A clustering of data
points in the figures is caused by the fact that the Richardson
number Ri is a sorting parameter. The vertical lines with
horizontal bars represent the confidence intervals, obtained
by perturbing the mean values evaluated at level 5 by one
standard deviation. Because the ordinate is logarithmic, the
confidence intervals are asymmetric.

The scatter in Figure 1(b) is larger than that in Figure 1(a).
This can be associated with thermal inhomogeneity around
the observational site (e.g. Kukharets and Tsvang, 1998;
Tsvang et al., 1998). The ice floe around the main tower
was multi-year pack ice, with varying degrees of thickness
and a heterogeneous surface of a different type and salinity,
snow with a different depth and age, melt-ponds, and even
leads (e.g. Sorbjan and Grachev, 2010). The various surface
‘patches’ were characterized by different albedo, thermal
capacity and conductivity and, therefore, by different
temperatures. Andreas et al. (1998) reported analogous
behaviour for the case of humidity statistics over a surface
with vegetation that was ‘patchy’ at metre scales.
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(a) (b)

Figure 1. Dependence of the bin-averaged values of the dimensionless (a) momentum flux Gt = τ/U2
s , (b) heat flux Gh = −H/(UsTs), on the Richardson

number Ri. The solid lines are plotted based on Eqs. (27a) and (27b). The vertical lines represent the confidence intervals evaluated at level 5. Data points
within the extremely-stable domain are marked by the shaded box.

In order to further evaluate the presented results, we
note that in nearly neutral conditions, the functions
fm, fh, fε , fd are constant, and that following from
(1)–(4) τ ∼ (κzS)2, σ w ∼ κzS, and also H ∼ (κz)2SN2/β,
σ θ ∼ κzN2/β . Combining these relations with (20)–(21)
and (23)–(24), we can conclude that for nearly neutral
conditions

Gt ∼ Ri−1 (25a)

Gh ∼ Ri−1/2 (25b)

Gw ∼ Ri−1/2 (25c)

Gθ ∼ Ri0 (25d)

Figures 1(a), 1(b) and 2(a) confirm the above predictions
for Ri < 0.01. However, the values of the dimensionless
temperature variance Gθ in Figure 2(b) are larger than
expected in the nearly neutral range. This fact implies that
the values of the temperature variance are overestimated for
these conditions. Analogous effects can be observed in all of
the figures that involve the temperature variance.

In the supercritical range, Ri > Ricr, the values of the
similarity functions in Figures 1 and 2 fall off in a coherent
fashion with the increasing values of Ri. This indicates the
presence of a self-similar regime in very stable conditions.
Unfortunately, the dimensional analyses do not allow for
the formulation of any constructive similarity prediction.
Therefore, we will assume, based on the presented empirical
evidence, that the similarity functions obey the following
power laws:

Gt ∼ Ri−4 (26a)

Gh ∼ Ri−7/2 (26b)

Gw ∼ Ri−3/2 (26c)

Gθ ∼ Ri−1 (26d)

with a validity range of approximately 0.1 < Ri < 0.7.
Above this range, the values of the similarity functions
are incoherent and scattered. Such behaviour suggests a
lack of any general similarity laws for these values of
Ri. Consequently, we will limit our analysis to the range
Ri < 0.7, and disregard the domain marked by the shaded
boxes in Figures 1–2 (and also in the remaining figures).

Taking (25) and (26) into consideration, we adopt the
following approximations of the similarity functions:

Gt ≡ τ

U2
s

= 1

Ri(1 + 300Ri2)3/2
(27a)

Gh ≡ − H

UsTs
= 1

0.9Ri1/2(1 + 250Ri2)3/2
(27b)

Gw ≡ σ w

Us
= 1

0.85Ri1/2(1 + 450Ri2)1/2
(27c)

Gθ ≡ σ θ

Ts
= 5

(1 + 2500Ri2)1/2
. (27d)

The above equations are represented in Figures 1 and 2 by
solid curves. The agreement of the curves with data points
is generally good.
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(a) (b)

Figure 2. Dependence of the bin-averaged values of the dimensionless standard deviations for (a) vertical velocity Gw = σ w/Us[≡ w = Lw/(κz)],
(b) temperature Gθ = σ θ/Ts [≡ �θ = Lθ /(κz)], on the Richardson number Ri. The solid lines are plotted based on Eqs. (27c) and (27d). Data points
within the extremely stable domain are marked by the shaded box.

Using (24a, b) and (27a, b), we also obtain:

ψm ≡ κz

U∗
S = 1

Ri1/2G1/2
t

= (1 + 300Ri2)3/4 (28a)

ψh ≡ κz

ϑ∗
� = G1/2

t

Gh
= 0.9

(1 + 250Ri2)3/2

(1 + 300Ri2)3/4
. (28b)

Further examination of the flux-based similarity functions
(28) may be found in the work of Sorbjan and Grachev
(2010), who used data collected during both the SHEBA and
the CASES-99 field programmes.

4.3. The σ w-scaling

Employing (14), (23) and (27) yields:

t ≡ τ

U2
w

= Gt/G2
w = 0.72

(1 + 450Ri2)

(1 + 300Ri2)3/2
(29a)

h ≡ − H

UwTw
= Gh/G2

w = 0.80 Ri1/2 (1 + 450Ri2)

(1 + 250Ri2)3/2

(29b)

θ ≡ σ θ

Tw
= Gθ /Gw = 4.25 Ri1/2 (1 + 450Ri2)1/2

(1 + 2500Ri2)1/2
(29c)

The dependence of the dimensionless fluxes, t and h,
on the Richardson number Ri is shown in Figure 3(a)
and (b).

Figure 3(a) indicates that the dimensionless momentum
flux t is constant for Ri < 0.03, slightly decreases in
the range of Ri from 0.03 to 0.1, and more quickly falls
off for Ri > 0.1. The dimensionless temperature flux h

in Figure 3(b) increases with an increasing Richardson
number in near-neutral conditions, and decreases for larger
values of Ri. At the value of Ri about 0.125, the negative
dimensionless flux reaches a maximum, equal to about
0.27. Taking into consideration that the dimensionless flux
Figure 1(b) is monotonic, this result may appear surprising.
However, further analysis indicates that the result is caused
by the inclusion of σ w in the definition of the velocity and
temperature scales.

4.4. The σ θ -scaling

Considering (18), (23) and (27), we obtain:

� t(Ri) ≡ τ

U2
θ

= Gt/G2
θ = 0.04

(1 + 2500Ri2)

Ri(1 + 300Ri2)3/2
(30a)

�h(Ri) ≡ − H

Uθ Tθ

= Gh/G2
θ = 0.044

(1 + 2500Ri2)

Ri1/2(1 + 250Ri2)3/2

(30b)

�w(Ri) ≡ σ w

Uθ

= Gw/G2
θ = 0.24

(1 + 2500Ri2)1/2

Ri1/2(1 + 450Ri2)1/2

(30c)

The dependence of the dimensionless fluxes, �t and −�h,
on the Richardson number Ri, is depicted in Figure 4(a) and

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1243–1254 (2010)



1250 Z. Sorbjan

(a) (b)

Figure 3. Dependence of the bin-averaged values of the dimensionless fluxes for (a) momentum t = τ/U2
w, and (b) heat h = −H/(UwTw), on the

Richardson number Ri. The solid lines are plotted based on Eqs. (29a) and (29b). The vertical lines represent the confidence intervals evaluated at level
5. Data points within the extremely stable domain are marked by the shaded box.

(b). The ordinate is in the range from 0.005 to 10. This range
is smaller than in the previous figures, as data points for
the smallest values of the Richardson number were excluded
due to their significant scatter.

The scatter of data points in Figure 4(a) and (b) allows for
only a tentative evaluation of the above expressions in the
nearly neutral range. Equation (30a), plotted in Figure 4(a),
has an inflection point around Ri = 0.025. Figure 4(b) shows
that expression (30b) possesses a local minimum at about
Ri = 0.013, and a local maximum at about Ri = 0.05. For
larger values of Ri, the dimensionless momentum and heat
fluxes monotonically decrease with an increasing Ri.

5. Discussion

All of the gradient-based scaling systems that were
considered in this paper are formally equivalent to each
other, as well as to the Monin–Obukhov similarity
approach in the stable case. There exists, however, an
essential difference between the flux-based approach and the
gradient-based formulations. The flux-based methodology
employs fluxes as external (specified) parameters. As a
result, the practical application of the flux-based expressions
requires inverting the similarity laws, and calculating surface
fluxes from the provided (measured) values of gradients in
the surface layer. This procedure is ill-posed in very stable
conditions due to the small values of the flux quantities.
Moreover, the effective use of the local similarity formulation
(8) requires that the fluxes be known a priori as functions of
height; often quite difficult to accomplish.

Within the gradient-based formulation, the gradients
themselves play the role of external parameters and avoid the

implied singularities associated with the fluxes. The gradient
value can be provided from measurements, or via the use
of the differential equations for momentum and heat (with
appropriate boundary conditions). As a result, the cross-
isobar angle and the depth of the boundary layer, which are
otherwise absent in the presented similarity formulations,
can be taken into consideration.

Let us consider the flux Richardson number Rf =
−βH/(τS). Employing (21a, b) and (27a, b), we obtain:

Rf = Gh

Gt
Ri1/2 = Ri

0.9

(1 + 300Ri2)3/2

(1 + 250Ri2)3/2
. (31)

The above expression is illustrated in Figure 5 as a solid
curve. In accordance with (31), Rf = 1.11 Ri in nearly
neutral conditions, and Rf = 1.46 Ri for large values of Ri.
Consequently, the curve in the figure only slightly differs
from a straight line.

Taking into consideration that Rf ≡ Ri/ Pr and by using
(31), we find that

Pr = 0.9
(1 + 250Ri2)3/2

(1 + 300Ri2)3/2
(32)

Equation (32) indicates that Prandtl number is 0.9 in
nearly neutral conditions, and 0.7 for larger values of
Ri. According to Ohya (2001), Grachev et al. (2007b),
Esau and Grachev (2007), Zilitinkevich et al. (2007) and
Anderson (2009), the Prandtl number increases with Ri in
supercritical conditions. However, the detailed analysis of
Grachev et al. (2007b) implies that such a result is spurious.
When one does not employ the outlier rejection discussed in
section 4.1, the resulting SHEBA data do indeed show that Pr
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(a) (b)

Figure 4. Dependence of the bin-averaged values of the dimensionless (a) momentum flux �t = τ/U2
θ , and (b) heat flux �h = −H/(Uθ Tθ ), on the

Richardson number Ri. The solid lines are plotted based on Eqs. (30a) and (30b). The vertical lines represent the confidence intervals evaluated at level
5. Data points within the extremely stable domain are marked by the shaded box.

increases with the increasing values of Ri. Conversely, when
the outliers are not included, the Prandtl number decreases
slightly, as discussed by Sorbjan and Grachev (2010).

Note that the steady-state, turbulent energy budget (3) can
also be expressed in the following form:

KmS2(1 − Rf ) = ε (33)

Since the dissipation rate ε is positive-definite, (33) allows
us to conclude that the steady state, which results from
the balance of shear production and buoyant-dissipative
destruction, takes place only for Rf < 1. As seen in Figure 5,
Rf = 1 at Ri = 0.7. Thus, for Richardson numbers exceeding
the value Ris = 0.7, steady-state turbulence would not
be present. In other words, at Ri > Rs, turbulence is
non-stationary, i.e. decaying or sporadic. The inequality
Ri < Rs = 0.7 is a necessary condition for the presence of
steady-state turbulence. It must be satisfied for steady-state
turbulence to take place.

Taking (27) into consideration, we derive the negative
correlation coefficient:

−rwθ ≡ − H

σ wσ θ

= Gh

GwGθ

= 0.2(1 + 2500Ri2)1/2 (1 + 450Ri2)1/2

(1 + 250Ri2)3/2
(34)

The values of −rwθ are depicted in Figure 6. The ordinate
in the plots spans the range from 0.005 to 10. We exclude
data points for the smallest values of the Richardson number
due to their significant scatter. The solid line based on (34)
agrees with observations. It implies that the coefficient −rwθ

tends to a constant value of 0.2 in the near-neutral regime,

reaches a local maximum of about 0.39 at about Ri = 0.08,
and monotonically decreases for larger values of Ri.

Figure 7 depicts the dimensionless components of the
doubled turbulent kinetic energy: Au = σ 2

u/q2, Av = σ 2
v/q2,

Aw = σ 2
w/q2, where σ 2

u, σ 2
v , σ 2

w are the velocity variances,
and q2 is the doubled turbulent kinetic energy. The
figure indicates that for nearly neutral conditions, all the
components are approximately constant, and Au ≈ 0.62,
Av ≈ 0.26, and Aw ≈ 0.12. In the range 0.01 < Ri < 0.1,
Au decreases to 0.5, and is approximately constant up to
Ri = 0.7. The component Av increases to about 0.4 at
Ri = 0.7. Consequently, one can observe that Au and Av have
a tendency to become nearly equal at Ri > 0.7. The vertical
component Aw increases and reaches maximum at Ri = 0.1.
Subsequently, it decreases for larger Ri. The vanishing values
of Aw at larger values of Ri can be interpreted as the rising of
an extremely stable–sporadic regime, in which turbulence
becomes horizontal and concentrated in vertically uniform
layers.

Referring now to the ensemble of Figures 1–6, one can
identify four sub-regimes in the stable boundary layer. As
shown in Figure 8, they can be listed in the following order:
nearly neutral (Ri < 0.02), stable (0.02 < Ri ≤ 0.12), very
stable (0.12 < Ri < 0.7) and extremely stable (Ri > 0.7). In
the nearly neutral regime, the master similarity functions
follow the power laws (25). The stable regime is the transition
between nearly neutral and very stable conditions. In the
very stable regime, the master similarity functions are
described by the empirical power laws (26). The potential
generality of any scaling laws in the extremely stable
conditions is doubtful. Figure 8 shows that when the wind
shear S increases, turbulence becomes stronger and the
turbulent regime less stable. On the other hand, when the
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Figure 5. Dependence of the bin-averaged values of the flux Richardson
number Rf on the gradient Richardson number Ri. The solid line is plotted
based on Eq. (31). The vertical lines represent the confidence intervals
evaluated at level 5. Data points within the extremely stable domain are
marked by the shaded box.

Brunt–Väisälä frequency N increases, turbulence weakens
and the turbulent regime becomes more stable.

6. Conclusions

Properties of the stably stratified boundary layer have been
examined through the use of a gradient-based similarity
approach. This formulation is formally equivalent to
the Monin–Obukhov similarity approach, but possesses
improved properties in very stable conditions. Specifically,
it avoids the singularity imposed by small values of scales
and, therefore, is less affected by self-correlation. While the
Monin–Obukhov similarity scales are based on two second-
order moments (momentum and heat flux), each of the
variance-gradient-based scaling systems is defined through
a single second-order moment (temperature or the vertical
velocity variance). The master scaling formulation does not
employ second-order moments, and thus its application is
most advantageous.

The gradient-based similarity functions for fluxes and
variances have been evaluated by using tower data collected
during the SHEBA field programme. We found that the
derived analytical expressions for the similarity functions
are consistent with these data. The analytical expressions for
the similarity functions that are conveyed in terms of the σ w

and σ θ scales can be derived from the master scale similarity
functions.

The flux Richardson number Rf is found to be propor-
tional to the Richardson number, with the proportionality
coefficient varying slightly with stability, from 1.11 to 1.47.

Figure 6. Dependence of the bin-averaged values of the negative correlation
coefficient −rwθ on the Richardson number Ri. The solid line is plotted
based on Eq. (34). Data points within the extremely stable domain are
marked by the shaded box.

Figure 7. Dependence of the bin-averaged values of the dimensionless
components of the doubled turbulent kinetic energy, Au = σ 2

u/q2,
Av = σ 2

v/q2, Aw = σ 2
w/q2, on the Richardson number Ri. The vertical

lines represent the confidence intervals evaluated at level 5.
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Figure 8. Sub-regimes of the stably stratified boundary layer.

The Prandtl number is 0.9 in nearly neutral conditions, and
0.7 for larger values of Ri. The negative correlation coef-
ficient between the vertical velocity and the temperature,
−rwθ , has a local maximum of about 0.39 at Ri ≈ 0.08,
and monotonically decreases at larger values of Ri. The
dimensionless components of the doubled turbulent kinetic
energy Au and Av have a tendency to become nearly equal
for Ri > 0.7. The vertical component Aw reaches maximum
at Ri ≈ 0.1 and subsequently decreases for larger values
of the Richardson number. The budget of the turbulent
kinetic energy indicates that at the Richardson number
Ri > Ris = 0.7, turbulence is non-stationary and decaying,
or sporadic.

Stable turbulence can be classified into four sub-
regimes: ‘near neutral’ regime for 0 < Ri < 0.02, the ‘stable’
regime for 0.02 < Ri < 0.12, the ‘very stable’ regime for
0.12 < Ri < 0.7, and the ‘extremely stable’ regime for
Ri > 0.7. In the nearly neutral regime, the master similarity
functions follow the exact power laws. The stable regime is
the transition between nearly neutral and stable conditions.
In the very stable-continuous regime, the master similarity
functions G can be described by empirical power laws. The
generality of any scaling laws in extremely stable conditions
is problematic. The specified regimes are controlled by
a local stability parameter Ri, and thus can generally
occur at any level within the stably stratified boundary
layer.
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