Basic turbulence data processing report, WFIP2 physics site 01 (PS01) June 27, 2017, BWB

The met tower at PS01 has sonic wind and bulk T/RH measurements at two levels, 3m and 10m. Fast water vapor and CO2 (Licor 7500) is included at the 3m level. In addition, the site has SODAR (Vaisala Triton), up/down solar and IR radiometers, and soil temperature / moisture measurements.

This note describes basic processing of turbulence, soil and radiation data for the period 24-Jun-2016 to 01-May-2017. Soil and radiation data are as-supplied by PSD/HOP, averaged to 30 min. Soil measurements have passed QA/QC.

Summary met and spectra plots are in ~/Cruises/WFIP2_2016/PS01/images_final/

Results are available in ~/Cruises/WFIP2_2016/PS01/processed_final/ Three file formats are available: as 139 variables in da_PS01_all_PF_rad_soil.mat; as raw, headerless matlab ascii text output in da_PS01_all_PF_rad_soil.txt; and as tab-delimited ascii with a single variable name header line in da_PS01_all_PF_rad_soil_hdr.txt.

Variable descriptions are given in *da_PS01_all_PF_rad_soil.README.txt*

Turbulence parameters and derived quantities are presented 'as is', but three logical arrays provide a data selection mask to remove outliers: good03 (3m sonic), good10 (10m sonic) and good_licor (good_licor = good03 & agc<60;). Note, the Notre Dame group has done preliminary QA/QC on the sonic data, removing most periods where wind direction is in the 90-180° sector, when measurements are subject to interference from the met tower.

Planar fit coefficients were derived from an analysis of raw UVW data at each level. A planar plot of the 3m level (next page) shows the expected positive bias in W when wind is from the W (i.e. blowing up hill). Note, V is positive to the East, U is positive to the North. The mean plane slopes in a different direction at the 10m level, which may be due to anemometer tilt. There are apparent outlier values, especially when wind speeds are low. A filter was applied to clip some of the outliers, removing 30 min values where \overline{W} is displaced by more than+/- 0.2 m/s from the mean plane, U > 6 m/s (strong southerly wind), or wdir is 90 – 180°.

ff = isfinite(uvw03(:,1)); sf03 = fit([uvw03(ff,1),uvw03(ff,2)],uvw03(ff,3),'poly11'); DiffW03 = abs(uvw03(:,3) - (sf03.p00 + sf03.p10*uvw03(:,1) + sf03.p01*uvw03(:,2))); good03 = (isfinite(uvw03(:,1)) & DiffW03<0.20 & uvw03(:,1)<6 & (dir03<90 | dir03>180));

Planar fit coefficients were determined from the filtered data at both levels and the subsequent rotation is shown in plots on p.3.

UVW Planar Plot, 10m rotated, Δ W<0.2, U<6, Dir<90 or >180

Following rotation into the plane, an azimuth rotation into the streamline was applied in 30 min segments for computing covariances.

Comparison plots for the double rotation and planar fit runs are in ~/cruises/WFIP2_2016/PS01/processed_final/PF/. Most comparisons show little difference except for increasing scatter at lower wind speeds. Cross-stream stress at the 10m level is the exception, where the double rotation method seems to give a more positive result.

For all data, the 10m drag coefficient is ~ 3 x 10^{-3} , giving $z_0 \sim 7 \times 10^{-3}$ m, which seems reasonable.

U m/s

Smoothed 30-min spectra and cospectra data are in the files *sp_PS01_all_PF.mat* or *sp_PS01_all_PF.txt*. The first column is a julian day-of-year timestamp but corresponds exactly to the dnum timestamp in *da_PS01_all_PF_rad_soil.mat*. See *specreader_WFIP2.m* for how to read, filter and plot spectra data from this file.

Structure function parameters are computed 2 ways: 1) "Method a", from the spectrum mean between Fx ~0.8 and 1.2 Hz (*Px(fmin:fmax)*),

Cx2 = mean(4*((2*pi/rwspd)^(2/3))*Px(fmin:fmax).*Fx(fmin:fmax).^(5/3));

2) "Method b", from a polynomial fit to the spectrum over Fx \sim 0.8 to 3 Hz, choosing a value where the slope is close to zero (<0.25),

```
logF = log(Fx(fmin:fmax));
logP = log(4*((2*pi/rwspd).^(2/3)).*Px(fmin:fmax).*(Fx(fmin:fmax).^(5/3)));
Zpoly = polyfit(logF,logP,4); % Then find point where Zpoly(4)<0.25</pre>
```

These could be recomputed from the spectra with different criteria if desired.

This is a list of parameters and computed quantities in the *da_PS01_all_PF_rad_soil* files.

30-min result array, 14976 rows x 139 columns 3m and 10m heights on tower PS01 - licor only at 3m column variable description dnum matlab datenum at start of 30 min interval 1 2 U03 m s NS wind speed vector, m/s (positive fromS), 3m 3 V03_m_s EW wind speed vector, m/s (positive from E), 3m Δ W03_m_s Vertical wind speed vector, m/s (positive upward), 3m T sonic03 C 5 sonic air temperature, C, 3m 6 wspd03 m s wind speed, m/s, 3m 7 wspd03_m_s_std std dev wind speed, m/s, 3m wind direction, deg, 3m 8 wdir03 9 wdir03_std std dev wind direction, deg, 3m air temp, C, 3m 10 Ta03 C rh03 relative humidity, %, 3m 11 12 Ta03 C std std dev air temp, C, 3m 13 rh03_std std dev rh, %, 3m 14 Ta03_C_min minimum air temp, C, 3m 15 rh03_min Ta03_C_max minimum rh, %, 3m 16 maximum air temp, C, 3m maximum rh, %, 3m rh03 max 17 licor co2 conc, mmol/m3, 3m 18 co2 mmol m3 19 h2o mmol m3 licor h2o conc, mmol/m3, 3m 20 P mb licor pressure, mb T licor_C 21 licor box temperature, C licor AGC QA parameter 22 agc co2_ppm 23 licor co2 conc, ppm or umol/mol, 3m 24 co2 mmol m3 std std dev licor co2 conc, mmol/m3, 3m h20 mmol m3 std std dev licor h20 conc, mmol/m3, 3m 25 26 P_mb_std std dev pressure, mb 27 T licor C std std dev licor box temperature, C 28 agc std std dev AGC 29 co2_ppm_std std dev licor co2 conc, ppm or umol/mol, 3m 30 co2_mmol_m3_min minimum licor co2 conc, mmol/m3, 3m 31 h2o_mmol_m3_min minimum licor h2o conc, mmol/m3, 3m minimum licor pressure, mb P mb min 32 33 T licor C min minimum licor box temperature, C minimum licor AGC QA parameter 34 agc_min 35 co2_ppm_min minimum licor co2 conc, ppm or umol/mol co2 mmol m3 max maximum licor co2 conc, mmol/m3 36 37 h2o mmol m3 max maximum licor h2o conc, mmol/m3 maximum pressure 38 P mb max maximum licor box temperature, C 39 T licor C max 40 agc_max maximum AGC 41 maximum licor co2 conc, ppm or umol/mol co2_ppm_max 42 q_g_kg specific humidity, g/kg, 3m 43 licor specific humidity, g/kg, 3m q_lic_g_kg 44q lic g kg std std dev licor specific humidity, g/kg, 3m 45 rho air03 moist air density, kg/m3, 3m 46 wu03 streamwise WU covariance, m2/s2 47 wv03 cross-stream WV covariance, m2/s2 48 wt03 Tsonic:W covariance, degC m/s 49 q:W covariance, g m/kg s wq03 50 hs03 sensible heat flux, moisture corrected, W/m2 latent heat flux, W/m2, NOT WEBB CORRECTED 51 h103 52 $1a\sigma 0.3$ lag points in W:q correlation 53 tauc03 wind stress by covariance, N/m2, 3m 54 usr03 u star by covariance, m/s, 3m 55 uvar03 U stream variance, 3m 56 V stream variance, 3m vvar03 57 wvar03 W stream variance, 3m 58 tsvar03 Sonic temperature variance, 3m

59	Ts_noise03	Sonic temp variance @ 10 Hz, 3m
60	Cu2a03	U structure function parameter, method a, 3m
61	Cu2b03	U structure function parameter, method b, 3m
62	Cw2a03	W structure function parameter, method a, 3m
63	Cw2b03	W structure function parameter, method b, 3m
64	Ct2a03	Ts structure function parameter, method a, 3m
65	Ct2b03	Ts structure function parameter, method b, 3m
66	Cg2a03	g structure function parameter, method a, 3m
67	Ca2b03	g structure function parameter, method b, 3m
68	U10 m s	NS wind speed vector, m/s (positive from S), 10m
69	V10 m s	EW wind speed vector, m/s (positive from E), 10m
70	W10 m s	Vertical wind speed vector, m/s (positive upward), 10m
71	T sonicl0 C	sonic air temperature C 10m
72	wspd10 m s	wind speed m/s 10m
72	wspd10_m_s_std	std day wind speed m/s 10m
74	wdir10	wind direction deg 10m
75	wdir10 std	std dev wind direction deg 10m
75	$\pi_{2}10$ C	sig dev wind direction, deg, iom
70	1a10_C rb10	all temp, C, IOM
70	$T_{\rm mall}$	atd dow air town C 10m
70	rh10_c_stu	std dev all temp, C, IOM
79	Inio_sta	sta dev III, 8, 10m
80	Tall_C_min	minimum air temp, C, 10m
81	rnio_min	minimum rn, %, 10m
82	Tall_C_max	maximum air temp, C, 10m
83	rh10_max	maximum rh, %, 10m
84	wu10	streamwise WU covariance, m2/s2, 10m
85	WV10	cross-stream WV covariance, m2/s2, 10m
86	wt10	Tsonic:W covariance, degC m/s, 10m
87	hs10	sensible heat flux, moisture corrected, W/m2, 10m
88	tauc10	wind stress by covariance, N/m2, 10m
89	usr10	u_star by covariance, m/s, 10m
90	uvar10	U stream variance, 10m
91	vvar10	V stream variance, 10m
92	wvar10	W stream variance, 10m
93	tsvar10	Sonic temperature variance, 10m
94	Ts_noise10	Sonic temp variance @ 10 Hz, 10m
95	Cu2a10	U structure function parameter, method a, 10m
96	Cu2b10	U structure function parameter, method b, 10m
97	Cw2a10	W structure function parameter, method a, 10m
98	Cw2b10	W structure function parameter, method b, 10m
99	Ct2a10	Ts structure function parameter, method a, 10m
100	Ct2b10	Ts structure function parameter, method b, 10m
101	U03_str	Mean U into streamline, 3m
102	V03_str	Mean V into streamline, 3m
103	W03_str	Mean W into streamline, 3m
104	Ts03_str	Mean Ts, 3m
105	U10_str	Mean U into streamline, 10m
106	V10_str	Mean V into streamline, 10m
107	W10_str	Mean W into streamline, 10m
108	Ts10_str	Mean Ts, 10m
109	U03_pl	Mean U PF rotation, 3m
110	V03 pl	Mean V PF rotation, 3m
111	W03 pl	Mean W PF rotation, 3m
112	U10 pl	Mean U PF rotation, 10m
113	V10 pl	Mean V PF rotation, 10m
114	W10 pl	Mean W PF rotation, 10m
115	wco203	CO2:W covariance, mmol/m2 s, 3m, NOT WEBB CORRECTED
116	good03	Logical mask for good turbulence data at 3m
117	good10	Logical mask for good turbulence data at 10m
118	good licor	Logical mask for good Licor data at 3m
119	rl dn	Downward Longwave Radiation (W/m^2)
120	rs_dn	Downward Short Wave Radiation (W/m^2)
121	rlup	Upward Longwave Radiation (W/m^2)
122	rs up	Upward Short Wave Radiation (W/m^2)
123	rnet	Net Radiation (W/m ²)

124	rl_dn_std	std deviations for radiation
125	rs_dn_std	
126	rl_up_std	
127	rs_up_std	
128	rnet_std	
129	Ts5	Soil Temperature (C) 5cm
130	Ts10	Soil Temperature (C) 10cm
131	Ts20	Soil Temperature (C) 20cm
132	Ts50	Soil Temperature (C) 50cm
133	Ts100	Soil Temperature (C) 100cm
134	Sm5	Soil Moisture (vol/vol) 5cm
135	Sm10	Soil Moisture (vol/vol) 10cm
136	Sm20	Soil Moisture (vol/vol) 20cm
137	Sm50	Soil Moisture (vol/vol) 50cm
138	Sm100	Soil Moisture (vol/vol) 100cm
139	rain_mm_hr	rain rate at wasco airport station (wco), mm/hr