Model Evaluation in Central Greenland using a Comprehensive Set of Atmospheric and Surface Measurements

Nathaniel Miller (CU-ATOC, CIRES)

Matthew Shupe, Jan Lenaerts, Jennifer Kay, Ralf Bennartz, Ola Persson Christopher Cox, David Noone, Von Walden, David Turner, Konrad Steffen January 18, 2017

ICECAPS

Atmospheric State and Cloud Properties Shupe et. al. 2013, BAMS

Broadband Radiation

- Swiss Federal Institute (ETH)
- NOAA Global Monitoring Division

Summit Station

Subsurface temperature, 10m, 2m measurements

- Closing the Isotope Balance at Summit (CIBS)

10m, 2m measurements

- NOAA – Global Monitoring Division

Instrumentation

Parameters Measured [~heights]	Instrument	Project - Location
Atmospheric Temperature Profile	Vaisala RS92 Radiosondes	ICECAPS - MSF
Snow Temperature Profile	Campbell Scientific 107 Temp Probes	CIBS - 50m tower
Surface height	Campbell Scientific SR-50A Sonic Ranger	CIBS - 50m tower
Temperature [2m, 10m]	Logan RTD - PT139 special order	NOAA/GMD - met tower
	Vaisala HMP 155 Temp probes	CIBS - 50m tower
	Metek USA1 Sonic Anemometers	CIBS - 50m tower
Wind Speed [2m, 10m]	Metek USA1 Sonic Anemometers	CIBS - 50m tower
	MetOne 010-CA Cup Anemometers	CIBS - 50m tower
Relative Humidity [2m, 10m]	Vaisala HMP 155 RH probes	CIBS - 50m tower
Water Vapor Mixing Ratio [2m, 10m]	Picarro L2120 spectrometer	CIBS - 50m tower
Barometric Pressure	Setra 270	NOAA/GMD - met tower
LW \downarrow , LW \uparrow	Kipp and Zonen CG4 pyrgeometers	ETH - Radiation Station
	Eppley PIR pyrgeometers	NOAA/GMD - Radiation Station
$SW\downarrow$, $SW\uparrow$	Kipp and Zonen CM22 pyranometers	ETH - Radiation Station
	Kipp and Zonen CM22 pyranometers	NOAA/GMD - Radiation Station
Liquid Water Path	RPG Microwave Radiometers - HATPRO and HF	ICECAPS - MSF
Precipitable Water Vapor	RPG Microwave Radiometers - HATPRO and HF	ICECAPS - MSF
Cloud Occurence	Millimeter Cloud Radar - 35 GHz	ICECAPS - MSF

Temperature Profiles

Surface Energy Budget

- All components available for 1 year July 2013 – June 2014
- Broadband Radiation Swiss Federal Institute (ETH)
- Sensible heat Flux Bulk Aerodynamic method (Persson et. al. 2002, JGR) and Eddy Covariance method
- Latent Heat Flux Gradient 2-level method Stability Functions from Cullen 2003
- Conductive Heat Flux (C) Thermistor String
- Heat storage (S) Thermistor String

Annual Diurnal Cycle

- High year round cloud fraction 86%
 - Ice-clouds are important to CRF
- LW CRF magnitude corresponds to the presence of liquid-bearing clouds

Surface albedo important for CRF

Miller et. al. 2015, J. Climate Dong et. al. 2010, JGR Shupe and Intrieri 2004, J. of Climate Kay and L'Ecuyer 2013, JGR

Central Greenland is a unique Arctic location

Influence of Liquid-bearing Clouds and Insolation

Response to Forcing terms

Response to Forcing terms

Annual responses

SEB responses to CRF

ERA Interim comparisons

SEB Components

Forcing

ERA-I Responses

Community Earth System Model Beta07 – CAM6, CLM5

Climate Forecast System Reanalysis

Conclusions

- Highly emissive GIS corresponds to a large response of the surface temperature
 - Strong radiative cooling under clear skies
 - Clouds can induce a warming of the surface on the same order as that of insolation due to the GIS being highly reflective in the shortwave
- Response of the non radiative SEB terms
 - Ground heat flux is the largest response
 - SH flux response is fairly constant throughout the annual cycle.
 - LH flux response is largest in the summer
- Process-based relationships indicate where there are deficiencies in representing GIS surface temperature variability.
- Data available https://arcticdata.io/catalog/#view/doi:10.18739/A2Z37J

Thank you

- This research is supported by the National Science Foundation under grants PLR1303879 and PLR1314156.
- David Noone's project Closing the Isotope Balance at Summit (CIBS)
- The Swiss Federal Institute (ETH) provided the ETH broadband radiometer measurements.
- Additional broadband radiation measurements, and near- surface meteorological tower data are provided by the National Oceanic and Atmospheric Administration's Global Monitoring Division.
- Thanks to Polar Field Services and the various science technicians for their excellent support of the field experiments at Summit Station.