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Abstract. High-resolution balloon-borne temperature measurements have been made in the 
troposphere and stratosphere during late fall over the western plains of the United States. In 
one such experiment the data are of remarkable quality and quite suitable for investigating 
methods of separating organized and turbulent features from a geophysical data stream, 
exploring atmospheric dynamics, and estimating VHF radar backscatter. We are 
particularly interested in the mechanisms creating aspect sensitivity, i.e., a nonunity ratio of 
vertical to well off-vertical radar backscatter. We find that very steep positive vertical 
temperature gradients, as high as 40.0 K/km, can be supported. On the other hand, negative 
gradients are limited to values near the marginal stability boundary. The structures are thus 
anisotropic and similar to ramp cliff features found in other fluids. We use wavelet analysis 
to isolate the organized components of the signal and, after subtraction, the residual signal is 
investigated to determine its character. The Fourier transform of the residual is 
Kolmogorov in nature, unlike that of the original data stream, and yields Cn 2, the refractive 
index structure parameter, in good agreement with the higher-order structure function 
approach; this supports the success of our partition. We calculate the Fresnel reflection 
coefficient using the wavelet coefficients; the turbulent scatter is found using Cn 2. The ratio 
between the Fresnel scatter and the turbulent scatter, i.e., the aspect sensitivity, is -! 0 
decibels in the troposphere and over 20 decibels in the stratosphere, in agreement with 
published observations and supporting our assumption that the organized features have 
horizontal extent exceeding the Fresnel scale. 

1. Introduction 

Radio waves are scattered in the lower atmosphere 
by variations in pressure, temperature, and humidity 
that produce variations in the refractive index [e.g., 
Booker and Gordon, 1950; Bean and Dutton, 1966; 
Balsley and Gage, 1980; Balsley, 1981]. It has been 
observed that at MF/HF/VHF frequencies, this radar 
backscatter is aspect sensitive; in other words, the ra- 
tio of the backscatter power in the vertical direction 
versus that in an off vertical direction is greater than 
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unity [e.g., Hooper and Thomas, 1995; Tsuda et al., 
1997, and references therein]. It is generally thought 
that there are three scattering mechanisms creating 
this aspect sensitivity: Fresnel reflection, Fresnel 
scatter, and anisotropic turbulent scatter. Fresnel re- 
flection, also termed partial specular reflection, is 
caused by vertical gradients of refractive index that 
are long lived and have horizontal dimensions larger 
in comparison to the first Fresnel zone. Scatters with 
horizontal dimensions less than the first Fresnel zone 
are known as Fresnel scatterers. On the other hand, 
turbulent structures with the scale size equal to one 
half of the transmitted wavelength can create echoes 
observable by high power radar systems such as the 
Arecibo Observatory (AO) and the Jicamarca Radio 
Observatory (JRO). 
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The Air Force Research Laboratory (AFRL) and 
the Naval Research Laboratory (NRL) have made a 
push toward high-resolution measurements of atmos- 
pheric temperature structures and turbulence for the 
purpose of characterizing the changes in atmospheric 
refractive index and their effects on a laser beam. 

Such a high-resolution balloon measurement of lower 
atmospheric temperature was taken at Wichita, 
Kansas on March 5, 1995. However, we can use this 
same in situ measurement to help us understand the 
atmospheric structures causing the aspect sensitive 
backscatter. In this paper, we will closely examine 
this high-resolution temperature data set. 

We first present the instrument setup and the re- 
corded data. Our attention is particularly focused on 
the sharp temperature gradients associated with po- 
tential temperature steps observed in the data. The 
potential temperature, the Brant V•iis•il•i frequency, 
and the gradient Richardson number reveal the at- 
mospheric stability associated with the potential tem- 
perature steps. A Fourier analysis is then performed 
on the data set. 

We believe the data have three components: local- 
ized, organized structures; turbulence; and instrument 
noise. We use wavelets to examine the validity of 
this proposal. Since wavelets can isolate features that 
are highly localized and have very high spatial fre- 
quency components, wavelet analysis is a more suit- 
able analysis tool for data such as ours, which exhibit 
localized structures. We use wavelets to isolate the 

organized component of the signal and, after subtrac- 
tion, the residual signal is investigated to determine 
its character. We also compute Cn 2 from the Fourier 
spectrum of the residual signal and compare it with 
the higher-order structure function approach. Once 
the edge dominant features are isolated, we show that 
the residual signal can be interpreted for evidence of 
quasi-homogenous turbulence [Mallet and Zhong, 
1992; Hagelberg and Gamage, 1994; Alcala et al., 
2001]. 

We compute the backscattered signal the radar 
would measure from a series of layers formed by 
these sharp gradients, where the gradients are char- 
acterized by the wavelets. This initial wavelet-based 
scattering model assumes that the layers have a hori- 
zontal correlation length longer than that of the first 
Fresnel zone. Our approach is similar to that applied 
by Alcala et al. [this issue] and Alcala and Kelley 
[this issue] to the problem of polar mesosphere sum- 
mer echoes (PMSE). We use the turbulent residual 

signal to calculate the turbulent backscatter by first 
computing the refractive index structure parameter 
Cn 2, a measure of refractive index fluctuations in- 
duced by the turbulence, which can be related to the 
radar volume reflectivity [Panofsky, 1968; Bals!ey 
and Gage, 1980; Gage et al., 1980]. We compare the 
computed turbulent scatter to the calculated Fresnel 
scatter to determine the theoretical aspect sensitivity 
a 50 MHz radar may observe under the conditions 
given by the balloon sounding. 

2. Experiment Background 
2.1. Flight Conditions 

The balloon launch occurred at 0100 LT on March 

5, 1995 at Wichita, Kansas during the declining phase 
of a mild winter snowstorm. The sky was 100% 
overcast with light, dry snow up through the cloud 
top at the 1.3 km boundary layer inversion. The 
snow declined throughout the night and stopped by 
0300 LT with clear conditions developing around 
sunrise. The surface temperature at launch was 0øC. 
Because of the light snow, there was some concern 
that ice could form on the probes, degrading opera- 
tion or breaking the probes. This did not occur be- 
cause of the very dry snow conditions and the cold 
temperature. Surface winds were light,--1 m/s or 
less. The tropopause occurred at 10 km with rela- 
tively strong winds from the southwest at 30 m/s at 
10 km and 12 km. 

2.2. Instrumentation 

The balloon payload consisted of two thermal tur- 
bulence sensors utilized in conjunction with a com- 
mercial VIZ 9000 microsonde system. The first was 
an uncoated 100 ktm bead thermistor with 18 ktm wire 
leads that had a temperature response time of 30 ms 
near the surface that increased to 90 ms in the strato- 

sphere as the air density declined. The thermistor 
sampled every 1.25 s with an analog to digital con- 
verter resolution of 15-16 bits. This gave a tempera- 
rare resolution of between 0.005-0.01 K. This rela- 

tively low-speed sensor provided absolute reference 
temperatures for the high,speed thermal turbulence 
sensor and larger-scale (>5 m) thermal turbulence 
data. 

The high-speed thermal turbulence sensor was de- 
veloped during 1994-1995 at the U.S. Naval Post- 
graduate School for the U.S. Air Force (USAF) Air- 
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borne Laser (ABL) program. It utilized a differential 
thermocouple pair with different thermal time con- 
stants DC coupled through an instrumentation ampli- 
fier and a 500 Hz analog bandpass filter. These fed a 
12-bit analog to digital (A-D) converter operating at 
310 samples per second. The digital serial bit stream 
fed a frequency shift keying (FSK) modulator that 
created a 130-150 kHz, amplitude-modulated subcar- 
rier on the 304 MHz balloon telemetry signal. 

The primary sensor in the thermocouple pair is a 
12 •tm thermocouple with a measured time constant 
of 5 ms at launch that increased to 15 ms in the 

stratosphere. The second thermocouple is construc- 
ted of a 24-gauge wire having a time constant of 10 s 
that increased to 30 s. The differential connection of 

the two thermocouples removed the common mean 
temperature while still responding to the turbulent 
thermal fluctuations. The differential operation of the 
high-speed temperature sensor suppressed the large- 
scale fluctuations that were handled by the independ- 
ent bead thermistor. 

Measurements of optical turbulence in the tropo- 
sphere and stratosphere require a temperature resolu- 
tion of 0.001-0.01 K. The 80 K temperature change 

from launch to the tropopause with a 0.001 K tem- 
perature resolution imposes a 17-bit dynamic range 
on the system. We handle this large temperature dy- 
namic range by removing the large-scale fluctuation 
by the thermocouple and then oversampling the data 
at 310 Hz. 

Wind speed was measured with a height resolution 
of 130 m via a LORAN (long-range navigation) sys- 
tem. Relative humidity information was not avail- 
able. 

3. Data Presentation 

The low-resolution temperature data are presented 
in Figure 1 (left). The lapse rate in the troposphere is 
7.1 K/km, less than the adiabatic lapse rate, whereas 
it is 0.53 K/km in the stratosphere. The tropopause is 
located at-10 km. Even in the low-resolution data, 
considerable structure is evident in the temperature 
profile, a result upheld by the high-resolution meas- 
urement of the temperature fluctuation shown in Fig- 
ure 1 (fight). The data contain asymmetrical struc- 
tures that are characterized by a sudden increase in 
temperature followed by a gradual decrease. These 
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Figure 1. (left) Low-resolution temperature data as measured by a radiosonde over the skies of 
Wichita, Kansas on March 5, 1995. The tropopause is at-10 km. (fight) High-resolution temperature 
fluctuation. Asymmetrical structures, which are characterized by a sudden increase in temperature 
followed by a gradual decrease, are prevalent in the entire data set. 
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Figure 2. (left) Potential temperature. Many vertical potential temperature steps in the troposphere 
and the stratosphere. (fight) Potential temperature gradient. 

organized structures appear roughly every kilometer 
in the troposphere; similar structures are somewhat 
less obvious in the stratosphere but exist them as 
well. The positive temperature gradients are quite 
steep. Gradients as steep as 40 K/km are found in the 
stratosphere, while the steepest gradient in the tropo- 
sphere is roughly one third of that value. On the 
other hand, the negative gradients are shallower, sel- 
dom dropping to less than -10 K/km. If isotropic 
turbulence does exist in our data set, and later we 
show that it may, it is overshadowed to the eye by 
anisotropic, large-scale structures. 

In Figure 2, we plot the potential temperature (0) 
along with its derivative. The potential temperature 
is defined in terms of temperature (T), pressure (p), 
the universal gas constant (R), the dry air specific 
heat at constant pressure, and a reference pressure 
(p•), as 

O- r(p• /p)•/cp . (1) 

By definition, 0 is the temperature that a parcel at 
pressure p would have when it is moved adiabatically 
to the reference pressure p•, which we take to be 1000 
mbar. We also see numerous examples of nearly 

vertical potential temperature steps. The anisotropic 
structures that we noticed in the temperature profile 
in Figure 1 correlate to the edges of the potential 
temperature steps. For this particular balloon sound- 
ing, these potential temperature steps are on the order 
of 100-1000 m thick in both the troposphere and the 
stratosphere. 

The potential temperature gradient (A0/fiz), plotted 
in Figure 2 (fight), contains stability information 
about the atmosphere. The atmosphere is statically 
stable for positive values of the potential temperature 
gradient, unstable for negative values, and marginally 
stable when the gradient is zero [e.g., Holton, 1992]. 
We see that the average value of AO/Az is -2.54 
K/km in the troposphere and -16.35 K/km in the 
stratosphere. As expected, the tropopause forms the 
boundary between the slightly stable troposphere be- 
low and the very stable stratosphere above. The 
higher A0/Az in the stratosphere corresponds to the 
higher stability of the region. In both regions of the 
atmosphere, A0/Az sometimes becomes negative, in- 
dicating a parcel of heavier air overlying lighter air, 
creating an unstable situation. The center of the po- 
tential temperature steps, with A0/Az - 0, indicates 
marginally stable adiabatic parcels of air that are ho- 
mogeneously mixed. 
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Figure 3. Square of the Brunt-V•iis•il•i frequency. In the 2 -4 2 . 2 stratosphere, N=5.1x10 [rad/s] and is N=7.13x10 -5 
[rad/s] 2 in the upper troposphere, which translates to a 
Brunt-V•iis•il•i period of 4.64 min and 12.40 min, respec- 
tively. 

This point is made clear in Figure 3, in which we 
calculate the square of the Brunt-V•iis•il•i frequency, 

N2 = g dO (2) 
0dz 

where g is gravity. This is another way of looking at 
the hydrostatic stability of the atmosphere. N 2 is a 
measure of the frequency of oscillation for a verti- 
cally displaced parcel of air. This oscillation is the 
result of the buoyancy force restoring the vertically 
displaced parcel back to its original location. If this 
parcel were in a highly stratified layer of atmosphere, 
the stratification would limit the vertical displace- 
ment of the parcel and increase the oscillation fre- 
quency. In other words, large positive values of N 2 
imply a stably stratified atmosphere, while negative 

stability yields N 2 < 0. The average N 2 in the strato- 
sphere is 5.1x10 -4 [rad/s] 2 and is 7.13x10 -5 [rad/s] 2 in 
the upper troposphere, which translates to a Brunt- 
V•iis•il•i period of 4.64 min and 12.40 min, respec- 
tively. This again indicates the strong stability of the 
stratosphere and the marginal stability of the tropo- 
sphere. Note that N 2 peaks near the edges of the tem- 
perature steps. 

We display in Figure 4 the wind condition for this 
particular radiosonde sounding, with the wind mag- 
nitude in the left-hand panel and the wind direction in 
the fight-hand panel. The wind was basically west- 
ward and steadily increased in speed up to the tro- 
popause, remained steady near 25 rn/s up to 15 km, 
and then decreased quickly with height. We can use 
this wind information in combination with the Brunt- 

V•iis•il•i frequency to compute the gradient Richard- 
son number, 

N 2 

Ri = (clU/dz)2 , (3) 
which is a measure of shear instability [Bertin et al., 
1997; Werne and Fritts, 1999, and references 
therein]. In this equation, U is the magnitude of the 
horizontal wind. Ri is a measurement of the ratio of 

the stabilization effect of the stratification, as signi- 
fied by N 2, to the destabilization effect of the wind 
shear. We plot this in Figure 5. However, our meas- 
urement of the wind shear does not have a resolution 

as good as our temperature measurements and hence 
cannot give us a good indication of where shear in- 
stabilities occur. Nonetheless, on some occasions, it 
is clear that Ri is small in the regions where N 2 is near 
zero and/or the vertical shear is large and certainly is 
less than the stability boundary value of 0.25. 

For a closer look at the asymmetrical structures 
seen in Figure 1 and to see how they tie in with po- 
tential temperature, we have magnified two of these 
asymmetrical structures. We also plot their associ- 
ated potential temperature and N 2. The top row of 
Figure 6 shows an example in the troposphere where 
the sawtooth-like temperature fluctuations correlate 
to the edges of an almost vertical potential tempera- 
ture step. Both AO/Az and N 2 hover around zero near 
the center of the steps, implying a marginally stable 
condition where the air is very well mixed. We see a 
similar behavior in the stratosphere, as seen in the 
plots in the bottom row of Figure 6. 

Passive temperature fluctuations which exhibit a 
characteristic structure (often termed ramps, triangu- 
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Figure 4. Wind profile measured on March 5, 1995. We see a westward wind with increasing velocity 
up to 10 km. The velocity is nearly constant between 10 km and 15 km and then decreases with height. 

lar, or sawtooth patterns after their obvious geometri- 
cal signatures) have been observed in atmospheric 
turbulent shear flows, the ramps being effectively the 
signature of the large-scale structure of the flow [e.g., 
Taylor, 1958; Antonia and Atkinson, 1976; Antonia et 
al., 1977; Van Atta, 1977]. The distinctive sawtooth 
feature is a result of large temperature jumps across 
sharp shear zones at the outer boundary of large-scale 
eddies. They also indicate that one important conse- 
quence of the ramp characteristic is the possible re- 
sulting anisotropy of small-scale scalar fluctuations 
[Antonia et al., 1977]. KaimaI and Businger [1970] 
identified the ramp structure in the atmospheric 
boundary layer with individual convecting thermal 
plumes being sheared by the mean velocity gradient. 
On the other hand, the atmospheric temperature 
ramps may be interpreted as the signature of an or- 
ganized large-scale motion rather than a necessary 
consequence of the presence of buoyant plumes 
[Antonia et al., 1977]. In the propagation of optical 
and electrical magnetic radiation through the atmos- 
phere these temperature ramps will account for a sig- 
nificant fraction of signal degradation [Antonia et al., 
1977]. 

Such anisotropic ramp structures have been re- 
ported earlier in the stratosphere and troposphere on 
the basis of the balloon data [Barat, 1982; Barat and 
Bertin, 1984; Dalaudier et al., 1994]. In this context, 
the terms layers and sheets have been used to de- 
scribe the temperature structure. Bertin et al. [1997] 
studied stratosphere sheet structures with high-reso- 
lution temperature and wind shear measurements and 
showed that low gradient Richardson numbers indeed 
occur in the regions of small negative potential tem- 
perature gradients, as we conjecture above. 

However, according to work by Werne and Fritts 
[1999] and Gibson-Wilde et al. [2000] the vertical 
potential temperature steps are indicative of a dy- 
namic instability, specifically, a Kelvin-Helmholtz 
(KH) type. KH instability is a shear instability. It 
initially begins as a small perturbation on a vertical 
shear where Ri < 0.25. As the instability develops, 
the amplitude of the motion increases and individual 
wave crests break, forming turbulent cores which 
concentrate the vorticity of the initial shear layer, 
forming the well-known cat's-eye pattern. As the 
turbulent energy decays, these billows become nearly 
horizontal stratified layers where the center of the 
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Figure 5. Gradient Richardson number (Ri). The resolu- 
tion of this calculation is limited by the 130 m height 
resolution of the wind measurement. The arrow marks the 

line where Ri = 0.25, the marginally stable condition. 

layer is marked by homogeneity, while the edges are 
indicated by sharp gradients. The results from Werne 
and Fritts [ 1999] are similar to those reported here. 

4. Data Analysis 
We turn to mathematical transforms in the hopes 

of understanding the atmospheric structures revealed 
by the in situ measurements. The popular Fourier 
analysis is first applied to the high-resolution tem- 
perature data. We also apply wavelet analysis to our 
data steam. There has been a great interest in using 
the recently developed wavelet transform technique 
for data analysis [e.g., Alcala et al., this issue; Alcala 
and Kelley, this issue, and references therein]. 
Wavelets are able to analyze asymmetrical structures; 
hence it is reasonable to apply wavelet analysis to the 
temperature structures seen in Figures 1 and 6. We 

want to use the property of wavelets to parse the data 
into its components: the coherent atmospheric signal, 
turbulence, and instrument noise. 

Before we begin our data analysis, however, we re- 
alize that the troposphere and the stratosphere can be 
looked upon as two fluids, the latter being more dy- 
namically stable. This motivates us to parse the high- 
resolution data set at the tropopause (-10 km) into 
the stratosphere and the troposphere segments before 
we analyze the data set. 

4.1. Fourier Analysis 

We computed the Fourier spectrum of these high- 
resolution data and display the results in Figure 7. A 
least squares fit to a power law was performed on 
certain parts of the spectrum, the results of which are 
also illustrated in Figure 7. Note that these parts of 
the tropospheric and stratospheric sections both dis- 
play a power law for the range 10 -2 < k - 1/A < 0.5 
with indices of-1.91 and-2.27, respectively. Both 
are considerably steeper than the -5/3-power law ex- 
pected for isotropic turbulence in the inertial 
subrange [e.g., Ottersten, 1969b]. We see two domi- 
nant harmonics in both spectra at/• = 2.5 km and A = 
1 km. The 2.5 km component is a factor of two lar- 
ger in magnitude in the stratosphere than in the tropo- 
sphere. 

A noise floor does not appear in either Fourier 
spectrum. It is quite possible for a signal to be 
greater than noise at all frequencies sampled. There 
is still the possibility that isotropic turbulence is pre- 
sent but too weak to be revealed by this type of 
analysis. 

We believe that the result of the Fourier analysis is 
dominated by the large-scale, localized anisotropic 
structures, possibly with small-scale, isotropic turbu- 
lence and instrument noise superimposed. These ani- 
sotropic structures, we believe, caused the tempera- 
ture spectrum to follow a steeper power law than the 
Kolmogorov -5/3 law. Hence, if we could isolate the 
localized components of our data, we might be able 
to separate them and search for the embedded iso- 
tropic turbulence, thereby enabling us to independ- 
ently estimate radar backscatter from the edge and the 
turbulent component of the temperature profile. To 
do this, we turn to wavelets. 

4.2. Wavelet Analysis 

The wavelet transform is an integral transform lo- 
calized in both space (time) and wave number (fre- 
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quency). It differs from the Fourier transform in that 
instead of mapping the function of interest from 
space (time) to wave number (frequency), the wavelet 
transform maps the function from space (time) to 
space (time) and scale. In short, the wavelet trans- 
form divides the signal into different scale, analogous 
to different frequency, components and then studies 
each with a resolution to match its scale [Daubechies, 
1992]. The transform thereby achieves the ability to 
locate and analyze short-lived, transient events such 
as the anisotropic structure in our atmospheric tem- 
perature measurement. 

The basis function used gives the wavelet trans- 
form its time (space) and wave number (frequency) 
localization. We construct the basis functions by 
scaling and translating a reference function, i.e., a 
wavelet, tlffx) [Kumar and Foufoula-Georgiou, 1994; 
Torrence and Compo, 1998], forming 

ß (4) 
The scale parameter ,• dilates (or compresses) the 
wavelet, whereas b translates the wavelet. The 
wavelet transform of a function f(x) is essentially the 
convolution of the wavelet with f(x). For purposes 
shown later, the first derivative of a Gaussian, also 
known as the Canny edge detector, is our choice for a 
wavelet basis. It is defined as 

u/(x):[-1/•/FO/2)• e-x2/2. (5) 

The gamma function appears for normalization pur- 
poses [Torrence and Compo, 1998]. We illustrate in 
Figure 8 the behavior of the Canny edge detector in 
both the space and wave number domain. In formal 
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mathematical terms, the wavelet transform of a func- 
tion f(x) is defined as the integral transform 

Wf(/•,x)= I f (u)•z'x(u)du ' •' > O, (6) 

where •Z,x(U)is the complex conjugate of •Z,x(U). 
Wf(•,, x) is the wavelet coefficient at Z. As we in- 
crease the scale •, we dilate the wavelet so that the 
wavelet focuses in on the long-term behavior of f(x) 
and vice versa [e.g., Daubechies, 1992; Torrence and 
Compo, 1998]. This property allows us to study the 
structure of the signal across different scales. 

To demonstrate how wavelet decomposes the data, 
we have wavelet-transformed the temperature data 
and show an example of the result in Plate 1. Plate 1 
(bottom panel) shows the normalized wavelet scalo- 
gram of a detrended temperature data from z = 3.6 
km to 4.0 km. The normalized scalogram, which dis- 
plays the normalized wavelet coefficient at each Z, 
shows us the partitioning of signal energy between 
the various scale sizes. It allows us to visually track 
features in the data from large to small scales. The 
scalogram also preserves the sign of the amplitude 
because of the asymmetry of the analyzing wavelet. 

By comparing the scalogram with the original data 
we see that positive coefficients, denoted by red, de- 
scribe a negative gradient in the temperature profile. 

We can identify several different types of features 
in the temperature data from the scalogram. The 
main feature is the strong gradient just above 3.7 km. 
The strong gradient, or edge, is part of a sawtooth- 
shaped anisotropic temperature structure. The gradi- 
ent contains structures in the large scale of the order 
of tens of meters down to scales comparable to the 
VH• Bragg wavelength. Only large-scale structures 
are detected from the downward sloped portion of the 
temperature structure. The data also contain several 
other strong features that maintain their coherency 
over multiple scale sizes, such as the ones near 3.68 
km and 3.83 km. We suspect that these structures are 
responsible for the Fresnel reflection component of 
the radar backscatter. Moreover, weaker high-fre- 
quency oscillations ("fuzz"-shaped structures) exist 
throughout the data stream. These weaker structures 
typically have structure only at scales smaller than a 
few meters. They also tend to be homogeneously 
distributed throughout the data, suggesting the pres- 
ence of a nonlocal phenomenon such as instrument 
noise or atmospheric turbulence. 
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Figure 8. Time series of the Canny edge detector and its Fourier power spectrum. 

4.3. Edge Tracking 

We want to extract information about the edges 
and turbulence in the data to determine their contri- 

bution to the scattered power received by a radar. 
The temperature gradient at 3.7 km is a clear example 
of an edge component. In contrast, turbulent mixing 
is a statistical process where different eddies appear 
and disappear randomly over some volume and have 
homogeneous properties over the range of the data 
considered. To do this, we need to separate the two 
components in the signal, relying on the fact that the 
edge components are coherent structures with local- 
ized structures persisting over multiple scale sizes. In 
other words, we can isolate the edges by requiring 
that wavelet coefficients must track down from the 

larger scales. Using this method, we will be able to 
separate the coherent from the turbulent component 
of the data set. This method of signal processing 
forms the basis for several data compression and 
noise suppression algorithms [Mallat and Zhong, 
1992; Saito, 1994]. In addition, Hagelberg and 
Gamage [1994] use a similar technique to detect co- 
herent structures in velocity and temperature meas- 
urements in the atmospheric boundary laye• during 
turbulent events. Alcala et al. [this issue] and Alcala 
and Kelley [this issue] applied a similar technique to 

remove the instrument noise from an in situ electron 

density measured in a PMSE event. 
As an example, we apply this edge-tracking algo- 

rithm to the tropospheric section of data examined in 
Plate 1. We plot the original data in the top panel and 
the reconstructed data via edge coefficients in the 
second panel. We obtain the contribution of the tur- 
bulence and noise by subtracting the reconstructed 
data from the original data. As Plate 1 clearly illus- 
trates, the edge-tracking algorithm is able to remove 
the fuzz-like component from the data. We suspect 
that turbulence is the cause for this fuzz; as we will 
show later, this is substantiated with a Fourier analy- 
sis result. Plate 2 shows the result of the edge-track- 
ing algorithm applied to a portion of the data in the 
stratosphere. 

Satisfied with the wavelet analysis results thus far, 
we proceed to apply the edge-tracking algorithm to 
the entire tropospheric and stratospheric data sets and 
to plot the Fourier power spectra of the turbulence re- 
siduals from the data set in Figure 9. Both spectra 
follow a power law near the predicted by K01mo- 
gorov's theory for isotropic turbulence. We believe 
this result is evidence for a background turbulent at- 
mosphere. There are indications for a noise floor, 
particularly for 1/Z > 0.1, indicating a limitation in 
the instrument resolution. 



CHEN ET AL.: WAVELET ANALYSIS OF TEMPERATURE DATA 915 

Detrended Ternperoture 
0.20 

0,15 
010 

0.05 
0,00 

-0.0• 
-O.lO , 

3.60 / 3..70 3LBO 3.g0 • DO Altitude (km) 

Reconstructed Doto 

0.2oB= ....... : ......... • ...... : ...... , .' ...... ..,..--, ...... i- •'"'.. :' '' 
o.,•- ........... i ................ :: ...... ;'.'r',•:' ......... • ............... ;• ............. ! ............. : .... 
o.,o•--. ............. • ......... i -• ..... •: ..... :: ..... : ...... ; ............ • ........ '=4 o.os ............ :: ................ :-- : ............ : ............... ; ........... : .... 

g :Oo:?• ø ............ : .... 
5.60 3,.70 3.80 3.90 4.00 

NfJlude (km) 
Doto - Reconstruction 

o.o•oj• ............ •. ;..:..:..;...!..., , ,..: •. ß •., ,": !.., .".,...: _; ":.:..:..,:._!...:..:..':".'..:..;.'..:.;:'. ' '.,• o0•0 ............. : ............ : ............................. : ............ ' ................ : ............ :. ..... ' •., .... .d.L ....... •lt ............ : .............. ; ..... , ...... •-, .......... ,-,--:- ............... : ..... ,--- 
O.000 "' ' ' ' ' ' . I • ' 

-o. mo ............................................. 
............ • ................ : ................ ..' ............. : ......... • ........... :- ..... ..-. . .. 

-0.020, 

3.60 3.70 3.80 3.00 4130 
Altitude (km) 

Normolized Scoloqrorn , 

• 25.53- 
v 12.76- 

N 6.58- 
._ 

• 3.19 - 
• 1.60- 

u• 0.80- 
0.40 

1 

3.so 3 70 3.so 3.9o ß oo 
AIt;tude (km) 
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Figure 9. Fourier power spectrum of the tropospheric and stratospheric component of the residue re- 
moved from the original data by the edge-tracking algorithm. Note that both power spectra are con- 
sistent with a-5/3 power law of the Kolmogorov isotropic turbulence theory. 

Further evidence for the existence of a turbulent 

component is provided in section 6, where we calcu- 
late Cn 2 from both the Fourier transform of the tur- 
bulence residual and the higher-order structure func- 
tion. 

5. Fresnel Reflection From Horizontally 
Stratified Media 

The next goal of this paper is to calculate and com- 
pare the turbulent and edge components of the radar 
backscatter that a radar could generate under the con- 
ditions of the balloon temperature sounding. Now 
that we have parsed the data into edge and turbulent 
components, we want to develop a model that can 
compute the reflection coefficient for a given edge. 

We can determine the magnitude of the electric 
field reflected from a scattering layer with a refrac- 
tive index greater than unity. Defining p as the ratio 
of the reflected electric field to the incident field, 
Wait [1962] gives /9 from a horizontally stratified 
layer obtained from the generalized WKB solution, 

p = n , (7) 

where k0 = 2•z/)• and ), is the radar wavelength. For 
the lower atmosphere the refractive index depends on 
a combination of water vapor and density fluctuations 
[Balsley and Gage, 1980]. 

It is important to use a smooth function to repre- 
sent the discontinuities in the refractive index. Alcala 
et al. [this issue] showed that the discontinuities in 
n(z) can overestimate the backscatter power. Our 
wavelet basis functions satisfy this smoothness re- 
quirement. In addition, our model assumes that all 
reflections are Fresnel reflections. In other words, 
the layers causing the reflection have a horizontal ex- 
tent larger than the first Fresnel zone. 

We model the refractive index fluctuations speci- 
fied by the derivative of a Gaussian, first proposed by 
Hocking [1987] and then used by Alcala and Kelley 
[this issue], for calculating theoretical PMSE echoes, 
given a rocket sounding electron density profile. 
Following Alcala and Kelley [this issue], we assume 
that the index of refraction is defined as 

n(z) = 1 + An(z), (8) 

where An(z) << 1. We model An(z) as a wavelet. In 
other words, we define an index fluctuation centered 
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at an altitude Zo at a scale size h as 

An : no.•-de-(Z-Zo)2 /4h 2 
dz 

= --no e_(Z_Z ø )2 / 4h 2 
2h 

(9) 

with the reflection coefficient 

P(Zo) = 

_4•/-•(koh)2( no ) e-(dø / 2err )2 _4ko2h2 . (10) e e -2Jkøzø ' 

where no is the amplitude of a refractive index fluc- 
tuation as modeled by a wavelet, do is the distance 
between Zo and the center of a range gate, and ao is 
the full width at half-max of the antenna pattern. We 
have tacitly assumed that An(z) has a infinite hori- 
zontal correlation length. Modeling An(z) as a 
wavelet allows us the convenience of using the 
wavelet coefficients to calculate the Fresnel scatter- 

ing as dictated by the in situ temperature profile. 
Via the Born approximation, we can apply (10) to 

scattering from multiple layers in a given range gate. 
The total refractive index fluctuation of N layers is 
simply the sum of the fluctuation from each layer. 
Extending this concept to reflection coefficients, the 
total reflection coefficient from N layers is 

N-1 

/)total =•Pi(Zoi), (11) 
i=0 

where Pi is the reflection coefficient caused by layer i 
centered at Zoi. The summation arises because the re- 
flection coefficient, and therefore the reflected elec- 
tric field, is a linear function of the refractive index 
fluctuations. 

We show the calculated square of the magnitude of 
the reflection coefficient versus altitude for our in situ 

temperature profile and the Canny edge detector us- 
ing the dashed curve in Figure 10. To do this, we 
isolate a segment of data equivalent to the vertical 
depth of the radar range gate. The edge-tracking al- 
gorithm then gives us the location of the edges as 
well as the associated wavelet coefficients which, via 
(9), (10), and (11), give us/9total. In this calculation, 
we assume that our radar is operating at 50 MHz and 
a range resolution of 300 m, parameters typical for a 
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Figure 10. The predicted Iol 2 that a radar may observe in 
the atmospheric condition described by 2the temperature profile in Figure 1. Dashed curve is Iol predicted from 
our wavelet model of a refractive index perturbation as- 
suming an infinite horizontal correlation length. Solid 
curve is I012 predicted from our wavelet model of a re- 
fractive index perturbation assuming a finite horizontal 
correlation length computed from the observation in Sato et 
al. [1985]. Starred curve is the predicted Iol 2 from iso- 
tropic turbulence. 

VHF radar such as the middle and upper atmosphere 
(MU) radar and the Jicamarca Radio Observatory 
(JRO). Furthermore, we make the dry air approxi- 
mation, as the relative humidity data are not avail- 
able; gradients in the relative humidity will affect the 
index of refraction and hence the radar backscatter 
[Balsley, 1981]. 

Information on the horizontal correlation length of 
the scatterer improves our reflection coefficient pre- 
diction. We can compute the horizontal correlation 
length from the aspect sensitivity echoes. Sato et al. 
[1985] made aspect sensitivity measurements at the 
MU radar which yielded an aspect sensitivity of-5 
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Plate 2. Wavelet analysis performed on a sample stratospheric component of our data. This plot fol- 
lows the same format as in Plate 1. 
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decibels in the troposphere and-15 decibels in the 
stratosphere. To compute the horizontal correlation 
length from the aspect sensitivity, we first need to 
compute Os, which is a more general parameter that 
quantifies the degree of aspect sensitivity described 
by Hooper and Thomas [1995] and Hocking et al. 
[1986, 1990]. Os for a truly specular reflector ap- 
proaches 0 ø, whereas for isotropic scatterers Os ap- 
proaches infinity; in practice, any value in excess of 
-20 ø can be regarded as almost isotropic. We com- 
pute Os by first assuming that a scatterer at any par- 
ticular height has a backscatter polar diagram of the 
type 

exp (- 02/0•). (12) 

Os is then determined by comparing the backscatter 
power, P(0), received for two zenith angles 0• and 02: 

/, 
Os = • ln[P(O• )/P(02 )] -0•, (13) 

where 00 is the half-power half width of the radar 
beam. For the experiment described by Sato et al. 
[1985], 00 = 2 ø, 0• = 0 ø, and 02 = 15 ø. This gives us 
Os = 13.5 ø for the troposphere and Os = 7.2 ø for the 
stratosphere. With an additional assumption that the 
scatterer is an ellipsoid with a vertical depth of h -- 
0.2J,, one can show that the horizontal correlation 
length is given by [Hocking et al., 1986] 

•'= O. 13X/sinOs. (14) 

For the MU radar, •'- 3 m in the troposphere and •'- 
5.6 m in the stratosphere. 

Alcala and Kelley [this issue] derived an expres- 
ß ß 2 

sion companng I pl from a scatterer of finite hori- 
zontal correlation length with scatterer of an infinite 
horizontal correlation length. The ratio is 

2 

8koA2h 2 
/z + 64k oAh 

(15) 

whei-e ko = 2•J,, A = (/h, z is the range to the scat- 
terer, and h -- 0.2J, is the vertical scale length of the 
most effective backscatter [Briggs and Vincent, 
1973]. As a consistency check, we see that as •' in- 
creases, the ratio of I pl 2 approaches unity. We will 

use this result to improve our scattering calculation so 
that it accounts for the horizontal correlation length 
of the scatterer as determined from the aspect sen- 
sitivity measurement. We then define a "corrected" 
Ipl2as 

ipl corrc,_ IP("l -IP(øøl 2 Ip12ofiginal, (16) 
where I pl 2 computed for a scatterer original is the I p[ 2 
with an infinite horizontal correlation length. Our re- 
sult is plotted as the solid curve in Figure 10. We see 
that the assumption of the infinite horizontal extent of 
the scatterer can lead to an overestimate of radar 

backscatter by an order of magnitude. The starred 
curve is discussed below. 

VHF radars have been used to measure the Fresnel 

reflection coefficient in the troposphere the lower 
stratosphere [e.g., Green and Gage, 1980; Dalaudier 
et al., 1989, 1994]. Our calculated reflection coeffi- 
cient profile compares well with the measured results. 

6. Radar Scatter From Turbulence 

The radar backscatter from isotropic turbulence de- 
pends on Cn 2 a measure of refractive index fluctua- 
tions induced by the turbulence. We can calculate 
Cn 2 via one of two ways. Cn 2 can be determined from 
a high-order structure function as defined by a 
higher-order difference, an esoteric method to calcu- 
late Cn 2 that has been verified experimentally 
[Walters, 1995]. Cn 2 can also be formed from the 
Fourier spectrum of a turbulence-affected passive 
scalar, e.g., temperature. Hence, in this second 
method, we calculate Cn 2 by Fourier transforming the 
turbulent component of the temperature data set as 
isolated by the edge-tracking algorithm. This method 
is new. We want to compare the Cn 2 calculated using 
the two methods as a verification of the ability of the 
edge-tracking algorithm to parse the data into the 
edge and turbulent components. This result will then 
be applied to a radar scattering calculation. 

6.1. Calculation of C,• 2 Using the Structure 
Function 

Over the past two decades, balloon-borne mi- 
crothermal probes have collected high-resolution at- 
mospheric Cn 2 profiles. The measurement method 
involves launching meteorological balloons equipped 
with sensors that measure the microstincture of the 

thermal field during the free flight ascent from 
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ground level up to ~25-30 km [e.g., Buffon et al., 
1972; Coulman et al., 1995; Walters, 1995]. Typi- 
cally, the Cn 2 data come from temperature differences 
measured by fluctuations in the resistance of two 
fine-wire platinum or tungsten probes separated hori- 
zontally by ~ 1 m. 

The theoretical basis of such a measurement origi- 
nates from the Kolmogorov structure function. An 
nth order structure function is defined as the mean of 

the nth power of the difference of the values of a 
variable at the distance r apart [e.g., Panofsky, 1968]. 
More specifically, the conventional structure function 
Dx • is of the form 

Dxn(r•, r2) = ([X(r•) - X(t'2)]n), (17) 

where X is an atmospheric scalar parameter such as 
the temperature or index of refraction, r• and r2 are 
position vectors of two points in space, and the an- 
gled brackets imply an ensemble average. Equation 
(17) may follow a power law, allowing one to write 

where 

Dxn( I r2 - r, l) = Cxnr m, (18) 

Ir2-r• l = r (19) 

and 0 < m <_ 2. The structure parameter Cx n is a pro- 
portionality constant. The second-order Kolmogorov 
structure function has been used for turbulence study. 
Over sufficiently small regions, of the order of milli- 
meters to meters in size, for which the turbulence is 

locally homogeneous and isotropic, the atmosphere 
can have just such a Kolmogorov structure function 
dependence with m = 2/3. The turbulence sensor ex- 
amines temperature, a scalar parameter, via D•r) by 
measuring the root-mean-square (RMS) temperature 
difference between two thermometers separated by 1 
m; in other words, r = 1. Within these constraints, a 
passive additive such as the atmospheric index of re- 
fraction structure parameter becomes [Tatarskii, 
1961; Doviak and Zrnic, 1984] 

2/3 ' (20) 
F 

Cr 2 is the temperature structure function coefficient. 
We relate Cr 2 to Cn 2, the refractive index structure 
function coefficient, via the pressure and temperature 
measurement with the standard formula [e.g., Coul- 

man et al., 1995] 

Cn 2 /7.9x10_ 5 p )2 = 7rr 

Humidity affects the relationship between Cr 2 and 
Cn 2 via F, which is unity for dry air. In our analysis, 
since we do not have relative humidity information, 
we will use the dry air approximation. In short, an in 
situ instrument can provide us the atmospheric Cr2; 
however, Cn 2 is the relevant parameter needed to 
compute backscattered power. 

However, one can also compute Cn 2 directly and 
indirectly from atmospheric temperature measure- 
ments. One can compute Cn 2 from a higher-order 
structure function as defined by a higher-order differ- 
ence, a more esoteric method. This has been verified 

experimentally by Walters [1995]. Cn 2 is also pro- 
portional to the Fourier spectrum of a turbulence-af- 
fected passive scalar, e.g., temperature. Hence, in 
this second method, we calculate Cn 2 by Fourier 
transforming the turbulent component of the tem- 
perature data set as isolated by the edge-tracking al- 
gorithm. The relationship between C• 2 and the Fou- 
rier spectrum of a turbulent scalar parameter was de- 
veloped in the late 1960s [e.g., Ottersten, 1969a, 
1969b]; using wavelet analysis as part of this process 
is new. We examine the C• 2 computed from these 
two methods. As an application, we will use C• 2 to 
calculate a theoretical turbulence backscatter that a 

radar may experience given the atmospheric condi- 
tion as specified by the temperature sounding and re- 
late this to observations of aspect sensitivity. 

6.2. Calculation of Cr 2 Using the Higher-Order 
Structure Function 

Collecting Cr 2 profiles with multiple microthermal 
probe pairs carded by a balloon tends to be awkward 
and expensive. To simplify the atmospheric Cr 2 ver- 
tical profile measurement, Walters [1995] investi- 
gated the use of vertical temperature differences ob- 
tained from a vertical sequence of data collected from 
a single temperature probe carded by a balloon. To 
circumvent large amplitude, low-frequency trends in 
the vertical temperature data, the data reduction pro- 
cedure involved using the pth-order differences of a 
random process on the temperature measurements 
[Yaglom, 1987]. This combination of a single probe 
with the pth-order difference provides results that are 
equivalent to those collected with conventional, hori- 
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zontal differential temperature probes [Walters, 
1995]. 

Yaglom [1987] introduced the generalized structure 
functions for pth order, stationary random processes 
in terms of the pth-order differences. In other words, 
a pth-order, self-similar, stationary random process 
X(r) has a pth-order difference expressed as 

A•rX (O) = •(-1) • X(o-kr ) . 
k=0 

(22) 

Following Walters [1995] and Yaglorn [1987], the 
mean square of (22) gives the pth-order structure 
function 

(23) 

DtP)(r) is a pth-order structure function having the 
form 

D(P)(r) = COø)I r I (24) 

where r is as defined in (19) and C © is the pth-order 
structure parameter. For turbulence applications, rn = 
2/3. Equation (24) is analogous to the conventional 
Kolmogorov structure function, as seen in (17). 

Walters [1995] shows that one can relate C © to 
Cr 2 by 

C(p) : CT 2 P (_ 1)P+l(p_ j),n. (25) 

The structure 2Parameter for the first-order difference 
is equal to Cr, while for higher-order differences the 
structure parameter C © is directly proportional to 
Cr 2. In other words, for atmospheric vertical tem- 
perature data we can use (22) to remove the large- 
scale, inhomogeneous components of the temperature 
data, computing Cr 2 via (25) and Cn 2 via (21). 

We have computed the first- and second-order 
structure parameter of the temperature data in Figure 
11. The sums are carried out over the entire data set 

while setting r = 1 rn and then averaging the result 
over 5 rn before plotting. As was also found by 

2 
Walters [1995], Cn calculated from the first-order 
vertical temperature difference as defined by (12) 
overestimates Cn 2 by two orders of magnitude. We 
show this as the dashed curve. The structure pa- 
rameter from the second-order vertical temperature 
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Figure 11. ½n 2 calculated from the higher-order tempera- 
ture difference. Dashed curve is Cn 2 calculated from the 
first-order temperature difference. Solid curve is Cn 2 from 
the second-order temperature difference. 

difference is almost indistinguishable from the results 
of the higher-order difference. We show this as the 
solid curve. This is powerful evidence that the 
higher-order structure functions successfully isolate 
the turbulent component. On basis of the published, 
experimentally measured values of Cn 2 [e.g., Coul- 
man et al., 1995; Walters, 1995; Hocking and Mu, 
1997, and references therein] the typical values of Cn 2 
range from a lower limit of-•10 -19 m -2/3 to an upper 
limit of-•10 -14 111-2/3. The Cn 2 values calculated here 
are near the lower bound. 

6.3. Calculation of C• 2 via the Fourier Power 
Spectrum 

For isotroP2ic turbulence in the inertial subrange we 
can relate Cn to the one-dimensional spectrum of the 
passive scalar via 
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Figure 12. An example of the turbulence spectrum evaluation. (left) An example of the turbulence re- 
sidual extracted from the temperature data via the edge-tracking algorithm. (fight) The power spectral 
density (PSD) of the turbulence residual. Dashed curve has a-5/3 slope. 

I 2 -513 
Sn(k)=TCnk , (26) 

where Sn is the one-dimensional Fourier spectrum of 
the refractive index as measured by a sensor moving 
through the medium and k is the radian wave number 
corresponding to the spatial wavelength 2r[k 'l [Otter- 
sten, 1968]. 

We can apply (26) to the residual signal, which we 
believe includes the turbulent component of the data 
to calculate Cn 2. In detail, we first parse the turbulent 
data into segments 300 m in length. We then calcu- 
late the Fourier spectra of that data segment, fit a line 
following a-5/3 slope to the spectrum, and evaluate 
the spectrum at k = 2rd3•, where 3, = 50 m, which is in 
the inertial subrange and is such that Sn(k) is well 
above the noise level. We show an example of this in 
Figure 12. The result of the Cn 2 calculation is plotted 
in Figure 13 as the dashed curve. The values of Cn 2 
computed from the Fourier analysis of our residual 
signal are similar to that derived from the higher-or- 
der vertical temperature differences (solid curwe). 
The two profiles, in fact, match each other quite well 
in the troposphere; in the stratosphere, Cn • derived 

from our residual signal is usually lower than the one 
given by the Walters' [1995] method. This not only 
verifies the effectiveness of the edge-tracking algo- 
rithm in isolating the coherent structures in the tem- 
perature data but also confirms that turbulence does 
exist in the data! Note that if S•(k) had been directly 
calculated from the original Fourier spectrum given 
in Figure 7, C• 2 would have been several orders of 
magnitude larger than was found with the residuals. 

6.4. Turbulence Scatter 

The calculated Cn 2 will give us turbulent radar 
backscatter with which we can compare the back- 
scatter from Fresnel scatter and derive the radar as- 

pect sensitivity. For radars with wavelengths from 
meters to centimeters, where the spatial scale L = 
2•k 'l = 0.5/• and /• is the radar wavelength, deter- 
mining the backscattering will generally fall within 
the inertial subrange. Under this assumption, Otter- 
sten [1968, 1969a, 1969b] derives a relationship of 
the reflectivity of a scattering volume to the one- 
dimensional Fourier spectra of the turbulent refrac- 
tive index Sn, 
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Figure 13. Cn 2 calculated from two different approaches. 
Solid curve is Cn • calculated from the higher-order tem- 
perature difference. Dashed curve is Cn • as determined 
from the Fourier spectrum of the residual signal. The two 
results agree very well, particularly in the tropospheric re- 
gion of the atmosphere. 

rl(k) = (5/3)(7'dS)k2Sn(k) [m2/m3l, (27) 

This, with (26), gives 

•(•) = 0.38Cn2,• '113 [m2/m3]. (28) 

The volume reflectivity is a measurement of reflec- 
tivity caused by a volume of scatters in contrast to the 
reflection coefficient p, a measurement of the reflec- 
tion coefficient from a slab structure. Since we have 

already made a postulation of p on the basis of Fres- 
nel scatter from the steep edges in the data set, we 
need to relate r/ to p in some way. Fortunately, 
ROttger and La Hoz [1990] have compared the re- 
flected power based on p and the reflected power 
based on r/and have obtained the following conver- 
sion factor, 

where Ar is the range resolution of the radar, Ae is the 
effective area, and g is the radar wavelength. We can 
use this to convert our r/from turbulence to an effec- 
tive p and then compare this effective p to the p we 
calculated from Fresnel scattering. Again, it is neces- 
sary to go through this conversion to compare the ef- 
fectiveness of radar backscatter caused by two differ- 
ent mechanisms, one being an edge scattering 
mechanism while the other is a turbulent volume 

scattering. To perform the conversion, we have taken 
the parameters of the MU radar, with g = 6.45 m, Ar 
= 300 m, and Ae = 8330 rn 2. We use the MU radar 
because the MU radar and the observed balloon data 

are both located at midlatitudes. Furthermore, the 
MU radar has been used to measure the aspect sensi- 
tivity of the lower atmosphere [Tsuda et al., 1997]. 
We plot the result as the starred curve in Figure 10 
using the Walters [1995] value of Cn 2, which we be- 
lieve to be more reliable in this case than the turbu- 

lence residuals. In this turbulence scattering calcula- 
tion, to compute C, 2 from the residuals, one needs to 
compute the Fourier power spectrum, a calculation 
that has difficulty dealing with data gaps and uneven 
sampling, and great care must be taken to avoid 
spectral leakage. Structure functions, the foundation 
of Walters' method, do not have such problems and 
are easily computed. The turbulent component is 
clearly well below the edge component for this event, 
which is characteristic of the aspect sensitivity of ra- 
dar scatter from the atmosphere, as discussed in sec- 
tion 7. 

7. Aspect Sensitivity Calculation 
The aspect sensitivity of the radar backscatter 

power has been examined for the troposphere and 
lower stratosphere by many researchers. It has been 
shown that the effect is more pronounced in the more 
stable, lower stratosphere than in the troposphere 
[e.g., Gage and Green, 1978; ROttger, 1980; Tsuda et 
al., 1986, 1997]. Since our balloon data were ob- 
served in midlatitudes, we have investigated the 
measured aspect sensitivity at similar locations. 
Hooper and Thomas [1995] made radar observations 
in Wales of the backscattered signal in the vertical di- 
rection and at zenith angles of 4.2 ø , 6 ø , 8.5 ø , and 12 ø . 
The radar operates at a frequency of 46.5 MHz with 
Ar = 150 rn and A, = 11,000 rn 2. At a zenith angle of 
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Figure 14. The predicted aspect sensitivity that the MU 
radar may observe from this temperature sounding. We 
have used the Cn 2 from the higher-order difference to cal- 
culate the equivalent reflection coefficient of isotropic tur- 
bulence. We see that the aspect sensitivity is -15 decibels 
in the troposphere and 25 decibels in the stratosphere. 

12 ø the backscattered power is ~10 decibels below 
the vertical power at 6 km and 20 decibels less at 14 
km. Sato et al. [1985], using the MU radar in Japan, 
studied the characteristics of specular echoes re- 
flected from stratified layers in the troposphere and 
lower stratosphere and found similar aspect sensitiv- 
ity characteristics. In a more recent measurement, 
Tsuda et al. [1997] found that radar backscatter 
power initially decreases as a function of zenith angle 
but gradually reaches a constant level between 15 and 
25 decibels down at 0 > 20 ø. This constant level is 

interpreted as the isotropic turbulence scattering 
level. We use the ratio of vertical scatter power to 
off-vertical isotropic turbulence scatter power as our 
measure of aspect sensitivity. 

In Figure 14 we plot the ratio of the reflected 

power on the basis Fresnel scattering, accounting for 
the measured horizontal correlation length, to the 
value we predicted for turbulent scatter for the MU 
radar as if it had been operating on the night of the 
balloon flight on March 5, 1995. Similar to experi- 
mental observations, the ratio of vertical Fresnel 
scatter power in the lower stratosphere to the iso- 
tropic component is -15 decibels. Similarly, we find 
the aspect sensitivity to be ~10 decibels or less in the 
troposphere. We contribute aspect sensitivity < 0 to 
the fact that we had assumed the horizontal correla- 

tion length in the troposphere to be constant (~3 m), 
which is adequate for a back-of-the-envelope calcu- 
lation. We suspect that the higher aspect sensitivity 
in the stratosphere is related to the greater stability of 
that part of the atmosphere. 

8. Conclusion 

We have analyzed a high-resolution temperature 
measurement of the lower atmosphere. What catches 
our attention are the potential temperature steps and 
the sharp temperature gradients observed at the edges 
of these steps. For a better understanding of the at- 
mospheric dynamics, we wavelet-analyze the data 
and parse it into its edge and turbulence components. 
Wavelets seem to be a promising tool with which to 
study coherent structures in the atmosphere. In addi- 
tion, once the coherent structures are removed, the re- 
sidual signal seems to well represent the turbulent 
component of the atmospheric structure. The latter 
statement is supported by the comparison of Cn • 
found from the Fourier analysis of the residual signal 
and Cn • determined with the high-order structure 
function. Prediction of VI-IF scatter from the coher- 

ent and turbulent structures is in good agreement with 
observations, as are our estimates of the aspect sensi- 
tivity. 

The atmospheric structures, which yield the strong 
scatter in the vertical direction, are similar to the so- 
called ramp-cliff features reported in boundary layer 
and temperature sheets in the troposphere and strato- 
sphere. In our case, the steepest gradients and 
strongest scatter are found to have positive tempera- 
ture gradients, i.e., the cliff component. The ramp 
portion has corresponding potential temperature gr.a- 
dients near zero, corresponding to the stability 
boundary for convective turbulence and, most likely, 
to a gradient Richardson number near 0.25, as may 
well result from a dynamic instability. 
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