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A consistent definition of ‘truth’ is presented to define the errors in a numerical
weather prediction (NWP) forecast, analysis and observations resulting from the
unresolved turbulent field. ‘Truth’ is defined as the convolution of the continuous
atmospheric variables by the effective spatial filter of an NWP model. Direct
measurements of atmospheric variables are represented as an instrument error and
a convolution of the continuous atmospheric variables by the observation sampling
function. This clearly separates the instrument error from the observation sampling
error that describes the mismatch between the NWP model effective spatial filter and
the observation sampling function. The ensemble average that defines error statistics
is defined by an infinite number of atmospheric realizations with statistically similar
random fluctuations in the unresolved model field. This results in large spatial
variations in the observation sampling errors due to the atmospheric variations
in turbulence statistics. Two approaches are discussed to describe these spatial
variations: one that defines observation error referenced to each model coordinate
and one that assigns observation error referenced to each observation coordinate.
The observation-error statistics depend on the observation sampling function, the
local spatial statistics of the turbulence field and the NWP model filter. The effects
of imprecise knowledge of the shape of the model filter on observation sampling
error are small for rawinsonde measurements and for observations that produce
a linear average along a track. The modifications to data-assimilation algorithms
(the maximum-likelihood (ML) method, minimum mean-square-error algorithms,
Kalman filtering, variational data assimilation and ensemble data assimilation)
to include the spatial variations in observation-error statistics are discussed. In
addition, the generation of ensemble forecast members should be consistent with
the spatial variations in total observation error. A rigorous definition of error
statistics is essential for evaluating the many different types of current and future
observing systems. Copyright c© 2011 Royal Meteorological Society
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1. Introduction

The goal of numerical weather prediction (NWP) is to
represent the future state of the continuous atmosphere
using a discrete representation of the equations of

motion. Early work assumed that the appropriate discrete
representation or ‘truth’ denoted by xt is an average of the
continuous state variables over each grid box and over the
time step (Lilly, 1962; Deardorff, 1970; Cohn, 1997; Pielke,
2002). Various types of discrete grids and approximations
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to the fluid equations have been developed as well as
subgrid parametrizations to include the contribution of
the unresolved scales (Pielke, 2002; Kalnay, 2003). The
concept of effective model resolution was investigated
by Pielke (1991, 2001, 2002) in terms of the effects of
the numerical schemes on wave solutions. Laprise (1992)
discussed the effective resolution of global spectral models
and effective resolution has been evaluated based on spatial
spectra and spatial structure functions of model output
(Skamarock, 2004; Frehlich and Sharman, 2004, 2008).
A quantitative description of the spatial filtering of the
continuous atmospheric field produced by the discrete
model is required for a rigorous definition of error statistics.
Recent evaluation of model spatial statistics reveals that
NWP models have an effective spatial filter that is larger
than a grid box average (Skamarock, 2004; Frehlich and
Sharman, 2004, 2008). Therefore, error should be defined
in terms of ‘truth’, i.e. a spatial average of the continuous
state variables based on the effective model filter (Frehlich,
2006). In addition, we assume that the model numerics and
all sources of spatial filtering are universal, i.e. the shape of
the filter is independent of the state of the atmosphere.

Data assimilation techniques estimate the true state of the
atmosphere based on various observations with different
spatial and temporal sampling and different instrumental
observation errors (Lorenc, 1986; Daley, 1991, 1997; Cohn,
1997; Kalnay, 2003). Rawinsonde measurements have low
instrument error (Benjamin et al., 1999; Jaatinen and Elms,
2000) but a large observation sampling error, since the point
observations do not represent the true spatial average of
any NWP model (Frehlich, 2001). Ground-based scanning
Doppler lidar can be processed to provide a better match
to the effective spatial filter of the NWP model as well
as providing better information on the unresolved scales
(Frehlich et al., 2006; Frehlich and Kelley, 2008) which are
essential for short-term forecasts of wind power. Space-
based Doppler lidar data will produce a larger spatial
average than rawinsondes and therefore will have superior
error statistics if the instrument error is sufficiently small
(Frehlich, 2000, 2001). The improved spatial sampling of
airborne Doppler lidar data provides significant impact
on NWP forecasts (Weissmann and Cardinali, 2007,
Koch et al., 2007) because of improved global coverage
and lower observation sampling error than rawinsondes.
New GPS profiling techniques have even larger sampling
volumes but can provide accurate temperature and humidity
observations (Kursinski et al., 1997). Radar profilers also
sample a larger region of the atmosphere and therefore have
a lower observation sampling error than rawinsondes. An
improved estimation of the total observation-error statistics
would also enhance the value of these data (Benjamin et
al., 2004). New satellite-based wind measurements provide
global coverage but with a larger spatial sampling volume
(Velden et al., 2005). The situation with indirect atmospheric
measurements such as space-based irradiance data is more
complicated, since radiative transfer code and inversion
algorithms are used to extract the atmospheric state variables
and the underlying spatial average is difficult to quantify
and include in the error statistics. Many data-assimilation
algorithms are developed based on minimizing analysis
error from all of these diverse measurement systems
(Daley, 1991; Kalnay, 2003). Ensemble data assimilation
and forecasting systems have become popular techniques,
since they produce an estimate of the state-dependent

forecast error statistics (Evensen, 1994; van Leeuwen and
Evensen, 1996; Houtekamer and Mitchell, 1998, 2001;
Burgers et al., 1998; Hamill and Snyder, 2000; Mitchell
and Houtekamer, 2000; Anderson, 2001; Bishop et al., 2001;
Mitchell et al., 2002; Zhang and Anderson, 2003; Lorenc,
2003; Kalnay, 2003; Zupanski, 2005; Ehrendorfer, 2007).
However, current data assimilation systems typically assume
that the observation errors are uncorrelated (Rabier, 2005)
with constant variance over large regions, especially for direct
observations of state variables (rawinsonde, aircraft, Doppler
radar, Doppler lidar). The magnitude of the observation
errors is determined from a long-term average of the spatial
forecast-error statistics (Hollingsworth and Lonnberg, 1986;
Lonnberg and Hollingsworth, 1986; Daley, 1992; Dee, 1995;
Dee and Da Silva, 1999; Dee et al., 1999) and therefore the
data assimilation is suboptimal since it does not include
the large spatial and temporal variations of the observation
errors (see figure 13 of Frehlich and Sharman, 2004). NWP
forecast performance is determined by various error statistics
and critical events such as hurricane tracks and severe storms.
A consistent definition of analysis error, observation error
and forecast error is required for optimal data assimilation
that includes the spatial variations in observation errors
with minimal assumptions, which therefore minimizes the
analysis error. In addition, this provides the foundation for
a correct interpretation of all error statistics.

A rigorous evaluation of error statistics requires three
inputs: a description of the ensemble members of the
process, a prescription for a subset of events and a mapping
(a measure) that defines the probability of these events
(Kolmogorov, 1933; Rao, 1995). These concepts have been
applied to many problems such as turbulence (Lumley, 1970;
Monin and Yaglom, 1975a, 1975b), engineering applications
(Papoulis, 1965), statistical optics (Goodman, 1985, section
3), geostatistics (Chiles and Delfiner, 1999) and others. The
careful evaluation of locally homogeneous, isotropic and
stationary turbulence by Monin and Yaglom (1975b) is
most closely related to the spatial and temporal variations
of error statistics in NWP. Note that ‘ensemble members’
are realizations of a continuous atmosphere with statistically
similar properties and not NWP ensemble forecast members.

The ensemble members for turbulent flow over a cylinder
in a wind tunnel (Monin and Yaglom, 1975a, section 3.2) are
defined by ‘the statistical ensemble of similar flows created
by some set of fixed external conditions’. The probability of
an event is the fraction of the ensembles that define the given
event (Lumley, 1970, chapter 1; Goodman, 1985, section 3)
which leads into the definition of the probability density
function (PDF) and joint PDFs. Various statistical averages
are then defined as an integral operator over the PDFs. The
main difference between statistical fluid mechanics and data
assimilation is the definition of ‘truth’ for the NWP model
values that are required for a description of error statistics.

Frehlich (2006) extended the definition of error statistics
to the NWP data assimilation and forecasting problem
by defining ‘truth’ as the convolution of the continuous
atmospheric state variables by the spatial filter of the NWP
model at each grid coordinate. This produces a description
of total observation error in terms of the instrument error
and the observation sampling error (related to the ‘error of
representativeness’ Lorenc, 1986; Daley, 1993; Cohn, 1997),
which describes the error produced by the difference between
the observation sampling pattern and the spatial average of
the model that defines ‘truth’. The total observation-error
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statistics are state-dependent since they depend on the local
turbulence statistics. Optimal data-assimilation algorithms
have been produced to include the spatial variations of the
total observation error based on the maximum-likelihood
(ML) method and using modifications to the classical
mean-square error techniques such as the Kalman filter
(Frehlich, 2006). To include the spatial variations in the
total observation error, two different definitions of error
were proposed: one defined for each model coordinate ra

and one based on the interpolation of the model coordinates
to each observation coordinate rk. These two definitions of
error have different ensemble members that define the joint
conditional probability density functions, i.e. conditioned
by the local turbulence statistics and consistent with the
definition of truth. The impact of imprecise knowledge of
the true shape of the effective model filter will be determined
for these optimal data-assimilation algorithms (Frehlich,
2006). Simple formulations will be used to introduce these
concepts. Only direct observations of atmospheric variables
(rawinsonde, aircraft, Doppler lidar, radar profilers, etc.)
are considered. Indirect observations such as satellite
irradiance data can also be used with the same formulation
if an inversion algorithm produces observations of the
atmospheric state variables with a known spatial average.
The notation of Ide et al. (1997) is used whenever possible.

2. Statistical description of the atmosphere and the
definition of ‘truth’

To simplify the presentation, we first consider the
assimilation of direct observations yo of the continuous
atmospheric state variables x for a fixed instant in time t
and at spatial coordinate r = (r1, r2, r3) where r1, r2 and r3

denote the east, north and vertical coordinates, respectively,
to produce the optimal analysis xa. Since the model time
steps are typically much smaller than the time-scale of the
atmospheric processes, the temporal filtering by the model
numerics is ignored in this work. ‘Truth’ for the discrete
representation xt

j (r) of the model state variable xj is defined
as the convolution of the continuous atmospheric variable
xj(r) by the spatial filter gm

j (s) of the NWP model, i.e.

xt
j (r) =

∫ ∞

−∞
gm

j (s − r)xj(s) ds (1)

and
∫ ∞
−∞ gm

j (s) ds = 1, where ds = ds1 ds2 ds3 denotes
three-dimensional integration. In many cases, the vertical
dimensions �r3 of the NWP model grid are much smaller
than the horizontal dimensions (�r1, �r2) and the problem
reduces to a two-dimensional analysis, i.e. ds = ds1 ds2 (see
the discussion in Frehlich, 2006).

Conditional statistics are required to describe correctly
the spatial variations of the total observation error produced
by the variations in the atmospheric turbulence statistics
(see figure 5 of Nastrom and Gage (1985), figure 13 of
Frehlich and Sharman (2004) and Figure 3). The calculation
of total observation error requires the conditional spatial
structure function (or equivalently the conditional spatial
covariance function) of variable xi and xj for a fixed altitude
(two-dimensional analysis) defined by (Monin and Yaglom,

1975b, p. 102)

D̃xixj (r, ra, �o(ra)) =
〈[

x
′
i(ra + r/2) − x

′
i(ra − r/2)

]

×
[

x
′
j(ra + r/2) − x

′
j(ra − r/2)

]〉
c

,

(2)

where the random perturbations are given by

x
′
i(r) = xi(r)− < xi(r) >c, (3)

<>c denotes the conditional ensemble average and �o(ra)
denotes the local turbulence parameters evaluated at the
coordinate ra (Frehlich, 2006). Similarly, the conditional
spatial covariance function is defined as (Monin and Yaglom,
1975b, p. 47)

C̃xixj (r, ra, �o(ra)) =
〈
x

′
i(ra − r/2)x

′
j(ra + r/2)

〉
c
. (4)

A critical issue for spatially varying statistics is the
meaning of <>c. For locally homogeneous random fields,
the conditional mean values < xi(ra) >c are assumed to be
independent of ra and the conditional covariance function
and conditional structure function are only a function of
the separation vector r. Then

D̃xixj (r, ra, �o(ra)) = 2[C̃xixj (0, ra, �o(ra))

−C̃xixj (r, ra, �o(ra))] (5)

is only a function of r. If the two state variables are the same
(xi = xj), then (Monin and Yaglom, 1975b, p. 103)

D̄xixi (r, ra, �o(ra))

=< [xi(ra + r/2) − xi(ra − r/2)]2 >c, (6)

which is the more familiar form of the conditional structure
function. However, a definition of the conditional ensemble
members is required to include the spatial variations
of observation error produced by the variations in the
turbulence field correctly.

The ensemble average structure function (the climato-
logical average over many years of stationary statistics)
is

Dii(r, ra) =< [xi(ra + r/2) − xi(ra − r/2)]2 >, (7)

where <> denotes an ensemble average over all realizations
of the atmosphere. The ensemble average structure function
can also be a function of location (latitude, longitude and
altitude), in which case the ensemble average is computed as
a time average and stationarity is assumed over a long time
period such as many years and the effects of climate change
are negligible. An empirical model for the average structure
function of the longitudinal velocity component DLL(r) (the
east component u of the horizontal velocity as a function
of the separation r in the east direction) from 40◦–50◦N
latitude over the Continental US (CONUS) determined
from aircraft data is (Frehlich and Sharman, 2010)

DLL(r) = a1r2/3[1 + (r/a2)a3−2/3]/[1 + (r/a4)a3 ], (8)

where r is in m, a1 = 0.0037049 m4/3 s−2, a2 = 109089 m,
a3 = 1.7680 and a4 = 1312407 m.
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Figure 1. Average longitudinal structure function DLL for the u velocity
component in the east–west direction from the GFS model (bullet), ACARS
aircraft data (dotted) and the theoretical prediction for a square effective
model filter with L = 150 km (line) for a pressure level of 250 hPa and
latitude 40◦–50◦N over CONUS. The r2 scaling at small lags is also shown.

The dimensions of the NWP spatial filter gm
j (s) have

been determined from comparisons of the spatial structure
function of model output and aircraft data (Frehlich and
Sharman, 2004, 2008), assuming a square spatial filter of
dimension L, i.e.

gm
j (r) = 1

L2
, −L/2 < r1 < L/2, −L/2 < r2 < L/2 .

(9)

An example is shown in Figure 1 for the Global Forecast
System (GFS) model at 250 hPa pressure altitude and a
latitude band of 40◦–50◦N over CONUS, which provides
the best match to the high-density ACARS aircraft data
over the same domain (note that past results (Lindborg,
1999) are based on unknown averaging domains which have
similar scaling laws). There is excellent agreement between
the predictions of the effective square filter with L = 150 km
and the GFS average structure function, even though the
GFS grid is not exactly square. However, it is difficult to
determine whether the GFS spatial filter is universal, since
more data are required to produce reliable conditional
structure functions. As will be shown later, it is also difficult
to determine the exact shape of the model spatial filter gm

j (r)
from the structure functions.

3. Statistical description of error referenced to the model
grid

There are several possible methodologies for defining
the observation-error statistics such that the spatial
and temporal variations are adequately described. The
two most appealing approaches define the observation
errors referenced to the numerical model grid or the
location of the observation (Frehlich, 2006). A rigorous
definition of the error statistics and ensemble average
permits a consistent foundation for error analysis and
the development of optimal data-assimilation algorithms.

However, simplifying approximations must be made to meet
operational requirements. The most basic approximation
is the assumption of locally homogeneous and stationary
turbulence, i.e. the relevant atmospheric statistics change
slowly in a small space–time volume around each model
grid coordinate and around each observation coordinate
(Monin and Yaglom, 1975b, section 21.2). This section will
develop the error statistics for observation error referenced
to the model grid coordinate.

The selection of the ensemble members � for defining
the probabilities for error statistics is an abstract concept
(Kolmogorov, 1933; Rao, 1995) which can be simplified by
assuming infinite measurement resources and a hypothetical
infinite number of similar earth systems or experiments
(Monin and Yaglom, 1975a; Frehlich, 2006). This concept is
consistent with recent interpretations of probability (Jaynes
2003), however, de Finetti (2008) has questioned the concept
of infinite realizations and frequentism. With infinite
measurement resources, the true state of the continuous
atmospheric state variable xj(r) and ‘truth’ for the discrete
model representation xt

j (r) defined by Eq. (1) can be
determined for each time t and therefore the truth can
be known. For a given NWP model with universal spatial
filter gm

j (r) for all state variables xj, the ensemble members
� are chosen as those realizations of an infinite number
of earth systems or experiments that satisfy the following
properties over the space and time domain of interest:

• the surface conditions (vegetation, sea surface, land
usage, etc.) and external forcing (solar radiation, forest
fires, man-made heat, etc.) are identical;

• the discrete model variables xt
j (r) (truth) are identical;

• the conditional turbulence statistics �o(r) are
identical.

Following the terminology of calculus, the term ‘identical’
means that the values are equal to within an infinitesimally
small interval δ. The probability P of an event F is defined
as the fraction of the infinite number of realizations �

satisfying event F. For example, the conditional probability
distribution function F̃T(t; r), the probability that a
temperature measurement T(r) from a perfect rawinsonde
observation at coordinate r is less than t, is defined as
the fraction of the realizations of � that have T(r) < t.
The conditional probability density function p̃T(t; r) is
the derivative of FT(t, r) with respect to t and defines
all statistical moments of T(r) at the coordinate r. Similarly,
the conditional joint probability distribution function
F̃TT(t1, t2; r1, r2) is defined as the fraction of realizations
of � that have T(r1) < t1 and T(r2) < t2. The conditional
joint probability density function p̃TT(t1, t2; r1, r2) is the
derivative of FTT(t1, t2; r1, r2) with respect to t1 and
t2 and defines the correlation statistics of T(r1) and
T(r2). For any two variables T and V , the conditional
joint probability distribution function F̃TV (t, v; r1, r2) is
defined as the fraction of realizations of � that have
T(r1) < t and V(r2) < v. Similarly, the conditional joint
probability density function p̃TV (t, v; r1, r2) is the derivative
of FTV (t, v; r1, r2) with respect to t and v.

The conditional joint PDF defines the conditional
expectation operator, i.e.

< f (t, v) >c=
∫ ∞

−∞

∫ ∞

−∞
f (t, v)pTV (t, v|�o) dt dv, (10)
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which is a linear operator that depends on the local
turbulence parameters �o. The most common joint PDF is
a joint Gaussian PDF p̃TV (t, v|C̃TV ) given by

pTV [t, v|C̃TV ] = 1

2πσ̃T σ̃V

√
1 − ρ2

× exp

{[
−(t− < T >c)2/σ̃ 2

T − (v− < V >c)2/σ̃ 2
V

+ 2C̃TV (r, ra)(t− < T >c)(v− < V >c)/(σ̃ 2
T σ̃ 2

V )
]

/2(1 − ρ2)

}
(11)

where (for consistency with Monin and Yaglom 1975b, pg.
117)

C̃TV (r, ra) = 〈
[T(ra − r/2)− < T(ra − r/2) >c]

× [V(ra + r/2)− < V(ra + r/2) >c]
〉
c

(12)

is the covariance of T and V centred on the analysis
coordinate ra, σ̃ 2

T = C̃TT(0, ra), σ̃ 2
V = C̃VV (0, ra),

ρ = C̃TV (r, ra)

σ̃T σ̃V
(13)

is the correlation coefficient and we have assumed the
turbulence statistics are homogeneous around ra, i.e.
C̃TV (r, ra) is only a function of r for each local coordinate ra.

For the joint Gaussian PDF Eq. (11), the conditional
ensemble average of f (T, V) = TV is

< T(ra − r/2)V(ra + r/2) >c

=
∫ ∞

−∞

∫ ∞

−∞
tvp̃TV [t, v|�o(ra)] dt dv

= C̃TV (r, ra)

+ < T(ra − r/2) >c< V(ra + r/2) >c, (14)

which is required for calculating all the conditional error
statistics.

To demonstrate these principles, examples of one-
dimensional realizations of a continuous velocity compo-
nent u(r1) are shown in Figure 2. These realizations are
produced with a computer simulation algorithm (Frehlich,
1997, Appendix C) that generates a Gaussian random process
with the spatial correlation given by the average structure
function of Eq. (8) (see Figure 1) and therefore completely
defines the conditional turbulence statistics. Model truth
ut(rk) is defined as the linear average of the continuous
velocity over the length L for a grid cell centred at rk. All
the continuous realizations u(r1) in Figure 2 have model
truth ut(rk) within δ = 0.01 m s−1 of the values indicated by
the horizontal red lines that are potential examples of truth,
e.g. based on a very accurate measurement of the velocity
u(r1) along a line using a research aircraft. Note that this is
only one possible realization to illustrate the variations of
the turbulent field around potential values of ‘truth’. The
random variations of u(r1) describe the unresolved scales
or subgrid processes that govern the observation sampling
error (Frehlich, 2001, 2006) (also related to the ‘error of
representativeness’). For the average structure function of
Figure 1, the observation sampling error for a rawinsonde
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Figure 2. One-dimensional realizations of the u velocity component with
model truth indicated by red lines for the atmospheric conditions of
Figure 1. For the L = 10 km case, truth is chosen as 8, 10 and 12 m s−1 and
for the L = 150 km case truth is 15, 20 and 25 m s−1.

measurement at the centre of the grid cell is represented
by the random scatter of the realizations at the centre of
each red line. Note that the larger effective resolution of
L = 150 km has a larger observation sampling error than
the case of L = 10 km.

Direct observation yo
j of the state variable xj (e.g.

temperature, velocity) can be written as (Cohn, 1997;
Frehlich, 2001)

yo
j (ro

j ) = ys
j (ro

j ) + ei
j(ro

j ) + BIASi
j(ro

j ), (15)

where ys
j is the spatial sampling of the observation with

centroid ro
j , ei

j is the random instrument error and BIASi
j is

the instrument bias following the convention of Ide et al.
(1997). The bias is assumed zero for the remainder of this
work, since most operational measurements of winds and
temperature now have small bias.

For most observations (rawinsonde, aircraft, lidar,
weather radar, sodar) the spatial sampling of the observation
can be written as

ys
j (ro

j ) =
∫ ∞

−∞
go

j (s − ro
j )xj(s) ds, (16)

where go
j (s) is a normalized spatial filter of the observation

(
∫ ∞
−∞ go

j (s) ds = 1) and ds denotes either one-, two- or
three-dimensional integration. The total instrument error is
then defined by

ei
j(ro

j ) = yo
j (ro

j ) − ys
j (ro

j ), (17)

and the statistics of the instrument error may depend on
the atmospheric conditions, especially for Doppler radar
(Doviak and Zrnic, 1993) and Doppler lidar (Frehlich, 2000,
2001).
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A numerically convenient definition of total observation
error for data assimilation is given by (Frehlich, 2006)

ej(ro
j , ra) = yo

j (ro
j ) − xt

j (ra), (18)

which defines observation error referenced to the nearby
analysis coordinate ra and defines the spatial variations in
error statistics based on locally homogeneous turbulence
centred on each analysis coordinate (Frehlich, 2006). The
more traditional definition of error based on interpolation
of model values to the observation coordinate is considered
in the next section.

Since the turbulent field is state-dependent, i.e. the
turbulent statistics vary both in space and time, the
total observation errors are also state-dependent and a
conditional ensemble average is essential for rigorous
evaluation of error statistics and for developing optimal data-
assimilation algorithms (Frehlich, 2006). If the turbulent
field is approximately homogeneous for all observations
yj(ro

k ) in the nearby vicinity of the analysis coordinate ra, the
elements of the conditional observation-error covariance
matrix R̃(�o) =< [yo − xt][yo − xt]T >c are defined by

R̃ij(�
o) =< [yo

i (ro
i ) − xt

i(ra)][yo
j (ro

j ) − xt
j (ra)] >c, (19)

where xt
i(ra) denotes the desired measurement or truth for

model variable xi at the analysis coordinate ra, yo and xt

denote vectors and T denotes the vector or matrix transpose.
Equation (19) can be written as (substituting xt

j (ra) −
xt

j (ra) = 0 and rearranging terms)

R̃ij(�
o) =< [ei(ro

i , ra) + es(ro
i , ra)][ei(ro

j , ra) + es(ro
j , ra)] >c,

(20)

where the observation sampling error is

es(ro
j , ra) = ys

j (ro
j ) − xt

j (ra), (21)

which depends on the distance to the analysis coordinate
|ro

j − ra|. If the instrument error and observation sampling
error are uncorrelated, the conditional observation-
error covariance matrix R̃(�o) = S̃(�o) + Ẽ(�o), where
Ẽ(�o) = Ẽ(�o) =< eieiT >c is the conditional instrument
error covariance, which may depend on the local turbulence
parameters �o, and S̃(�o) =< [ys − xt][ys − xt]T >c is the
conditional observation sampling-error covariance matrix
with elements

S̃ij(ra, �o(ra)) = S̃ji(ra, �o(ra))

=< [ys
i (ro

i ) − xt
i(ra)][ys

j (ro
j ) − xt

j (ra)] >c . (22)

The conditional ensemble average <>c is defined as the
ensemble average based on the ensemble members and
the corresponding conditional probability density function
defined earlier in this section. For example, using the
conditional operator Eq. (14), the term

< ys
i (ro

i )xt
j (ra) >c

=
∫ ∞

−∞

∫ ∞

−∞
go

i (p − ro
i )gm

j (s − ra) < xi(p)xj(s) >c dp ds

=
∫ ∞

−∞

∫ ∞

−∞
go

i (p − ro
i )gm

j (s − ra)C̃xixj (s − r, ra) dp ds

+X̄o
i (ro

i )X̄m
j (ra), (23)

where

X̄α
i (r) =

∫ ∞

−∞
gα

i (s − r) < xi(s) >c ds. (24)

Applying the conditional operator Eq. (14) to each of the
terms of Eq. (22) produces

S̃ij(ra, �o) = S̃ji(ra, �o)

= S̃
y
ij(ra, �o) − S̃c

ij(ra, �o)

−S̃c
ji(ra, �o) + S̃x

ij(ra, �o) + Z̄ij, (25)

where

S̃
y
ij(ra, �o) =

∫ ∞

−∞

∫ ∞

−∞
go

i (r − ro
i )go

j (s − ro
j )

×C̃xixj (s − r, ra, �o) dr ds, (26)

S̃c
ij(ra, �o) =

∫ ∞

−∞

∫ ∞

−∞
go

i (r − ro
i )gm

j (s − ra)

×C̃xixj (s − r, ra, �o) dr ds, (27)

S̃x
ij(ra, �o) =

∫ ∞

−∞

∫ ∞

−∞
gm

i (r)gm
j (s)

×C̃xixj (s − r, ra, �o) dr ds (28)

and

Z̄ij = [X̄m
i (ra) − X̄o

i (ro
i )][X̄m

j (ra) − X̄o
j (ro

i )] (29)

is the contribution from any variations in the conditional
mean value. If Z̄ij is negligible, i.e. if the local mean value
is constant, then Eq. (25) reduces to eq. (36) of Frehlich
(2006).

For locally homogeneous turbulence fluctuations (Eqs (5)
and (12) are only a function of r), the observation sampling-
error covariance for observations in the vicinity of the
analysis coordinate ra is given by

S̃ij(ra, �o(ra))

= S̃ji(ra, �o(ra))

= Q̃c
ij(ra, �o(ra)) + Q̃c

ji(ra, �o(ra))

−Q̃
y
ij(ra, �o(ra)) − Q̃x

ij(ra, �o(ra)) + Z̄ij, (30)

where

Q̃
y
ij(ra, �o(ra))

= 1

2

∫ ∞

−∞

∫ ∞

−∞
go

i (r − ro
i )go

j (s − ro
j )

×D̃xixj (s − r, ra, �o(ra)) dr ds, (31)

Q̃c
ij(ra, �o(ra))

= 1

2

∫ ∞

−∞

∫ ∞

−∞
go

i (r − ro
i )gm

j (s − ra)

×D̃xixj (s − r, ra, �o(ra)) dr ds, (32)
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Q̃x
ij(ra, �o(ra))

= 1

2

∫ ∞

−∞

∫ ∞

−∞
gm

i (r)gm
j (s)

×D̃xixj (s − r, ra, �o(ra)) dr ds. (33)

If the term Z̄ij is negligible, then Eq. (30) reduces to Eq. (43) of
Frehlich (2006). Eq. (30) is better suited for the troposphere
and stratosphere, which has well-defined scalings for the
structure functions, e.g. Eq. (8).

These results are valid for general observation sampling
patterns go

i (r) and any effective spatial filter gm
i (r). Simple

results are produced for rawinsonde observations at the
coordinates ro

i near the analysis coordinate ra [go
i (r) = δ(r),

where δ(r) is the two-dimensional delta function and gm
i (r)

is a square model spatial filter Eq. (9)]. Then

Q̃
y
ij(ra, �o(ra)) = 1

2
D̃xixj (ro

j − ro
i , ra, �o(ra)), (34)

Q̃c
ij(ra, �o(ra))

= 1

2

∫ L

−L
D̃xixj (r + ra − ro

i , ra, �o(ra)) dr, (35)

Q̃x
ij(ra, �o(ra))

= 1

2

∫ L

−L

∫ L

−L
D̃xixj (s − r, ra, �o(ra)) dr ds, (36)

where dr and ds denote two-dimensional integration and
the conditional parameters �o(ra) are defined by the local
turbulence statistics centred on the analysis coordinate ra.

4. Statistical description of error referenced to the
observation coordinate

The traditional interpretation of observation error assigns
fixed observation-error statistics to each measurement.
There are two common definitions of total observation
error:

ej(ro
j ) = yo

j (ro
j ) − H[xt

j (rk)], (37)

where H is the linear operator that interpolates the nearby
values of truth xt

j (rk) to the observation coordinate ro
j (Daley,

1993, Eq. (12); Dee, 1995, Eq. (19); Cohn, 1997, Eq. (2.13);
Kalnay, 2003, Eq. (5.4.16)) and

ej(ro
j ) = yo

j (ro
j ) − xt

j (ro
j ), (38)

where xt
j (ro

j ) is the definition of truth Eq. (1) evaluated at
the observation coordinate ro

j (Lorenc, 1986; Daley, 1991,
sec. 5.6). The second definition Eq. (38) clearly separates
the observation error from the error in the interpolation
operator H. For this definition of error, the atmospheric
ensembles are defined as in the previous section with the
following additional requirements:

• the discrete model variables xt
j (ro

j ) are identical and
• the conditional turbulence statistics �(ro

j ) are
identical.

The elements of the conditional observation sampling-
error covariance for the case of Eq. (38) are given by Eq. (22)
with modifications to include the spatial variations in the
turbulence parameters �(ro

i ) at each observation coordinate
ro

i , i.e.

S̃ij(�
o(ro

i ), �o(ro
j )) = S̃ji(�

o(ro
i ), �o(ro

j ))

=< [ys
i (ro

i ) − xt
i(ro

i )][ys
j (ro

j ) − xt
j (ro

j )] >c, (39)

where the conditional ensemble average <>c is based
on the ensemble members defined above. Substituting
Eqs (15) and (1) into Eq. (39) and simplifying by assuming
< x

′
i(s)x

′
j(r) >c=< x

′
j(s)x

′
i(r) >c produces

S̃ij(�
o(ro

i ), �o(ro
j )) = S̃ji(�

o(ro
i ), �o(ro

j ))

= Q̃c
ij(�

o(ro
i ), �o(ro

j )) + Q̃c
ji(�

o(ro
i ), �o(ro

j ))

−Q̃
y
ij(�

o(ro
i ), �o(ro

j )) − Q̃x
ij(�

o(ro
i ), �o(ro

j ))

+Ȳij, (40)

where

Q̃
y
ij(�

o(ro
i ), �o(ro

j ))

= 1

2

∫ ∞

−∞

∫ ∞

−∞
go

i (r − ro
i )go

j (s − ro
j )

×D̃xixj (s, r, �o(ro
i ), �o(ro

j )) dr ds, (41)

Q̃c
ij(�

o(ro
i ), �o(ro

j ))

= 1

2

∫ ∞

−∞

∫ ∞

−∞
go

i (r − ro
i )gm

j (s − ro
j )

×D̃xixj (s, r, �o(ro
i ), �o(ro

j )) dr ds, (42)

Q̃x
ij(�

o(ro
i ), �o(ro

j ))

= 1

2

∫ ∞

−∞

∫ ∞

−∞
gm

i (r − ro
i )gm

j (s − ro
j )

×D̃xixj (s, r, �o(ro
i ), �o(ro

j )) dr ds, (43)

Ȳij = [X̄m
i (ro

i ) − X̄o
i (ro

i )][X̄m
j (ro

j ) − X̄o
j (ro

j )] (44)

and

D̃xixj (r, s, �o(ro
i ), �o(ro

j ))

=< [x
′
i(r) − x

′
i(s)][x

′
j (r) − x

′
j(s)] >c (45)

is the structure function that describes the turbulent field
with parameters �o(ro

i ) and �o(ro
j ). Further assumptions

are required to simplify these calculations, since the spatial
variations in the sampling error are referenced to the two
turbulence statistics �o(ro

i ) and �o(ro
j ). The most obvious

solution is to assume locally homogeneous turbulence with
average turbulence statistics, i.e.

D̃xixj (r, s, �o(ro
i ), �o(ro

j )) = D̃xixj (r − s, �o
ave), (46)

where �o
ave is the average of the appropriate turbulence

statistics, e.g. the average of the conditional structure
functions centred on ro

i and ro
j . This approximation only

impacts the off-diagonal terms, i.e. i �= j.
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5. NWP model representation

There are various representations for the forecast xf (ti) of
gridded state variables at time interval ti. For a perfect initial
condition xt(ti−1) (Kalnay, 2003, Eq. (5.6.1))

xf (ti) = Mi−1[xt(ti−1)] + η(ti−1), (47)

where Mi−1 denotes the discrete representation of the
atmospheric model and η(ti−1) is the model error. The
forecast error is defined by

ef
i = Mi−1[xt(ti−1)] + η(ti−1) − Mi−1[xa(ti−1)], (48)

where xa(ti−1) is the analysis at time ti−1. These
representations are the foundations for many forecast
systems such as Kalman filters. However, a rigorous
definition of error statistics is required to evaluate any results
correctly. For example, the forecast error (innovation error)
statistics depend on the observation sampling errors and
therefore are a function of the local turbulence statistics,
which must be included in the analysis (Frehlich, 2008).

6. Maximum likelihood data assimilation for error
referenced to the model grid coordinates

The ML method is one of the most attractive estimation
algorithms since, for many applications, it achieves the
theoretical best performance described by the Cramer Rao
Bound (Helstrom, 1968; van Trees, 1968). Conceptually,
the ML estimate xML is the value of the desired parameters
xt that maximizes the joint probability density function
(likelihood) with respect to xt based on all the observations
yo and the forecast xb or background. However, for
geophysical applications the statistical foundations of the
joint probability density functions must be given, i.e. the
meaning of the ensemble members and probability density
functions. The formulation of error statistics referenced to
the model grid coordinates as described in section 2 is
applied to the ML method for optimal data assimilation that
includes the spatial variations in observation-error statistics.

A consistent ML estimator is produced by the following
assumptions (Frehlich, 2006).

• The desired parameters xt or ‘truth’ are the spatial
average of the continuous atmospheric variables at
each analysis coordinate using the effective model
filter gm (Eq. (1)).

• The observations yo in the vicinity of each analysis
coordinate ra are conditionally unbiased estimates
(< yo − xt(ra) >c=0).

• The errors for le observations in the vicinity of
each analysis coordinate ra defined by yo − xt(ra)
have a conditional joint Gaussian probability density
function given by

p̃(yo, xt|�o) = (2π)−le/2|R̃(�o)|−1/2

× exp[−1

2
(Yyo − Zxt)TR̃

−1
(�o)

×(Yyo − Zxt)], (49)

where Y selects the nearby observations, Z selects the
state variable of the observation and R̃(�o) is the
conditional observation-error covariance matrix.

• The forecast or first guess xb(ra) is conditionally
unbiased (< xb(ra) − xt(ra) >c=0).

• The forecast error defined by xb(ra) − xt(ra) has a
conditional Gaussian probability density function
given by

p̃(xb, xt|�b) = (2π)−lx/2|B̃(�b)|−1/2

× exp

[
−1

2
(xb − xt)TB̃

−1
(�b)(xb − xt)

]
, (50)

where B̃ is the conditional background-error covari-
ance matrix of dimensions lx × lx and �b are the
parameters that describe the conditional background
statistics.

• The observation errors and forecast errors are sta-
tistically independent and therefore the conditional
joint probability density function (likelihood func-
tion) of the observations and first guess is given by
p̃(yo, xb, xt|�o, �b) = p̃(yo, xt|�o)p̃(xb, xt|�b) .

The ML estimate xML for the analysis xa is the value of xt

that maximizes the conditional log-likelihood function and
is given by (Frehlich, 2006)

xML = (B̃
−1 + ZTR̃

−1
Z)−1(B̃

−1
xb + ZTR̃

−1
Yyo), (51)

which can be written as

xML = xb + (B̃
−1 + ZTR̃

−1
Z)−1ZTR̃

−1
(Yyo − Zxb) .

(52)

The conditional analysis-error covariance matrix is

Ã = < (xa − xt)(xa − xt)T >c

= Ã
T

= (B̃
−1 + ZTR̃

−1
Z)−1, (53)

which has the same functional form as previous results
(Daley, 1991; Kalnay, 2003). However, the observation-
error statistics are determined by the ensembles defined
in section 3 and depend on the local turbulence statistics,
which are a function of space and time.

The most promising estimates of the background-error
covariance B̃ are produced by ensemble data assimilation
systems (Evensen, 1994; van Leeuwen and Evensen, 1996;
Houtekamer and Mitchell, 1998, 2001, 2005; Hamill and
Snyder, 2000; Anderson, 2001; Zhang and Anderson, 2003;
Lorenc, 2003; Kalnay, 2003; Ehrendorfer, 2007). An estimate
of the conditional background-error covariance is given by

B̃(ti) ≈ 1

N − 1

N∑
k=1

[xf (ti, k) − x̄f (ti)][xf (ti, k) − x̄f (ti)]T,

(54)

where xf (ti, k) is the forecast for ensemble member k and

x̄f (ti) = 1

N

N∑
k=1

xf (ti, k) (55)

is the average forecast.
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7. Data assimilation for error referenced to the
observation coordinates

The majority of data-assimilation algorithms are based on
the definition of error assigned to each observation (Daley,
1991; Kalnay, 2003). Most of these algorithms assume a
spatially and temporally uncorrelated observation error
with an error variance that has a weak dependence on
altitude and latitude. The most common algorithms are
based on minimizing mean-square error and the ensemble
Kalman filter framework, which provides state-dependent
estimates of the background-error statistics (Daley, 1991;
Kalnay, 2003). Spatial variations in the total observation-
error statistics can also be included in all these formulations
(Frehlich, 2006) and the optimal analysis becomes

xa = xb + K(yo − Hxb), (56)

where K is the gain matrix given by

K = B̃HT(R̃ + F̃ + R̃oh + R̃ohT + HB̃HT)−1, (57)

H is the linear interpolation of the first guess xb to the
observation coordinates, R̃ =< eoeoT >c is the conditional
observation-error covariance matrix, F̃ =< ehehT >c is the
conditional forward interpolation-error covariance (the
elements of eh are eh

i (ro
i ) = xt

i(ro
i ) − Hxt), R̃oh =< eoehT >c

is the conditional cross-covariance matrix between the
observation error and forward interpolation error and
the conditional ensemble averages <>c are based on the
ensemble members defined in section 4. The conditional
analysis-error covariance becomes

Ã = (I − KH)B̃, (58)

where I denotes the identity matrix. Similarly, the 3D-Var,
4D-Var and extended Kalman filter formulation can be
modified (Frehlich, 2006) to include the state-dependent
observation-error statistics based on the definition of error
defined in section 4.

8. Implementation of advanced data-assimilation
algorithms

All of the data-assimilation algorithms require estimates of
the conditional observation-error covariance R̃(�o): either
around each analysis coordinate or around each observation
coordinate. These calculations require local estimates of the
turbulence parameters �o that define the local structure
functions of the model variables (see Eqs (2)-(7)). The
simplest approach is to assume that the local turbulence
statistics have a universal description where the shape and
scaling laws of the conditional structure functions are equal
to the climatology of turbulence, e.g. the average structure
function in Figure 1 provides the universal shape in the
given analysis domain of 40–50◦N. Then the turbulence
parameters �o are the level of the local structure functions,
i.e. a1 = 2ε2/3 in Eq. (8), where ε is the energy-dissipation
rate, which can be estimated from the local structure
functions of the ensemble forecast members with corrections
for the effects of the model spatial filter (Frehlich and
Sharman, 2004). The resulting statistics of turbulence are
consistent with the statistics from commercial aircraft data
(Wolff and Sharman, 2008).

Figure 3. Calculations of the observation sampling error for 14 December
2006 at 0000 UTC at an altitude of 10 km (Eqs (34)–(36) and Z̄ij = 0)
for one horizontal velocity component of a rawinsonde measurement
at the centre of a GFS grid cell based on local turbulence estimates of
energy-dissipation rate ε from the RUC model.

An example of the observation sampling error of
a rawinsonde observation of one horizontal velocity
component calculated from the local turbulence estimates
from the RUC13 model output for assimilation into the
GFS model with the L = 150 km square model filter (see
Figure 2) is shown in Figure 3. The large variations in the
observation sampling error reflect the large variations in
the local turbulence statistics �o (energy-dissipation rate ε)
related to the jet stream over Texas and the gravity waves
over the Northern Rockies. Similar results are produced
for temperature (Frehlich and Sharman, 2004) but with a
smaller magnitude compared with the 0.5 K random error
of a rawinsonde observation.

9. Simple example calculations

The fundamental issues concerning the definition of
observation-error statistics can be demonstrated by using
simple observation geometries. Simplified expressions are
produced using the first guess xb(ra) and the nearest
observation yo to the analysis point ra of the state variable x,
i.e. the ML analysis

xML(ra) = σ 2
o (ra)xb(ra) + σ 2

b (ra)yo

σ 2
o (ra) + σ 2

b (ra)
(59)

and the analysis-error variance

σ 2
A(ra) = σ 2

b (ra)σ 2
o (ra)

σ 2
b (ra) + σ 2

o (ra)
, (60)

where σ 2
b (ra) is the forecast-error variance and σ 2

o (ra) =
R̃xx(ra, �o) is the conditional observation-error variance
of the nearest observation. This is a convenient reference
calculation for evaluating data assimilation techniques.

The sensitivity of the data-assimilation algorithm and
various statistics to the shape of the model filter gm

j (r) is not
known but can be determined by calculations using different
model shapes. The two-dimensional model filter is given by
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Figure 4. Model filter functions g0(r)/g0(0) for various models: a square
(line), sine-taper model Eq. (61) with a/L = 0.25 (dotted line), a/L = 0.5
(dashed line) and a Gaussian model Eq. (62) (dot–dashed line).
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Figure 5. Average velocity structure functions for an NWP model (bullet)
with a 10 km grid with a Gaussian and sine-taper filter with a = 25 km and
L = 50 km. The best-fitting structure function assuming a square filter with
dimension Leff (line) and the average atmospheric model from ACARS data
(Eq. (8), dotted line) are also shown.

gm
j (r1, r2) = g0(r1)g0(r2), where

g0(r) = 1

L
for − L/2 + a < r < L/2 − a

= 1

2L
{1 + sin[π(r + L/2)/(2a)]}

for − L/2 − a < r < −L/2 + a

= 1

2L
{1 − sin[π(r − L/2)/(2a)]}
for L/2 − a < r < L/2 + a (61)

is a sine-taper function and a < L/2. A Gaussian function is
another convenient model, i.e.

g0(r) = 1√
πLG

exp(−r2/L2
G), (62)

where LG = is chosen such that g0(L/2)/g0(0) = 1/2, i.e.
L = 2LG

√
ln 2, which simplifies the comparison with the

sine-taper function as shown in Figure 4.
Examples of the resulting average model structure

functions for L = 50 km are shown in Figure 5 for the
atmospheric conditions defined by the ACARS data of
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Figure 6. Average spectrum from GFS (line) and predictions based on the
atmospheric model Eq. (8) for a sine-taper model filter (Eq. (61)) with
a = 60.5 km and L = 121 km, a square with L = 150 km and a Gaussian
filter (Eq. (62)) with LG=64 km.

Figure 1. Also shown is the best-fitting square model filter
size Leff based on the best-fitting structure function. The
different model functions g0(r) all have excellent agreement
with the average structure function calculated assuming a
square filter shape, and therefore it is difficult to determine
the exact shape of g0(r) with structure functions.

However, the spatial spectrum of model output has more
sensitivity to the effects of the model filter g0(r), as shown
in Figure 6. Here, the spatial spectrum of the u velocity
component corresponding to the data shown in Figure 2
is compared with predictions of various model filters g0(r)
assuming that the structure function (and therefore the
covariance function) from the ACARS data is the true
climatology of the in situ statistics. The results for the
square filter with L = 150 km from the best-fitting structure
function in Figure 1 fluctuate around the GFS spectra at
high spatial frequencies k. The sine-taper and Gaussian
model have smaller variations around the GFS spectra.
These results indicate that the effective filter g0(r) is closer
to the Gaussian model than the square model. However, at
the highest frequencies, the contribution from small-scale
model noise and numerical artefacts such as aliasing are
important and it is difficult to produce an accurate estimate
of the shape of g0(r). Therefore, the difference between
the calculations of a known filter shape and that of the
corresponding effective square filter should bound the error
in the calculation of observation sampling-error statistics
due to the unknown shape of g0(r).

The sensitivity of the model filter shape to the calculation
of the observation sampling error is determined for the
atmospheric case of Figure 1 and various filter shapes
g0(r) with L = 50 km (see Figure 4), which corresponds
to a mesoscale model with horizontal grid spacing of
approximately � = 10 km. For each filter shape, the effective
square filter size Leff is determined from the best-fitting
structure function (see Figure 5). The resulting square filter
dimensions Leff and the calculation of various observation
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Figure 7. Observation sampling error σu of the east velocity component u
versus a/L for a sine-taper model filter g0 (Eq. (61)) and the Gaussian model
filter Eq. (62) plotted at a/L = 0.6. The average atmospheric conditions of
Figure 1 and Eq. (8) are used in Eqs (30)–(33) (ra = ro

i = ro
j and Z̄ij = 0)

for a rawinsonde observation (open circle) at the centre of a grid cell and
an aircraft or lidar observation (bullet) sampled along a track of length
Ltrack = 50 km. Each model filter has L = 50 km and the effective square
model filter Leff (filled square) is determined from the best-fitting structure
function and is used to calculate the observation sampling error σuLeff for
the rawinsonde and average along the track.

sampling error statistics for velocity measurements are
shown in Figure 7. The observation sampling error
increases as a/L increases because larger scales of turbulence
contribute to the definition of ‘truth’. However, the ratio of
the sampling error based on the best-fitting square model
filter to that of the various filter shapes has a maximum
deviation of only 4% for the rawinsonde observation and
9% for an observation averaged along a track. Therefore,
the actual shape of the model filter that defines ‘truth’ has
a weak dependence on the calculation of observation-error
statistics. Since the actual model filter shape appears to be
closer to a Gaussian function or the sine-taper function with
a/L = 0.5 (Figure 6), very low errors would be produced
using either of these functional forms for g0(r).

10. Operational issues

There are many operational issues that will impact
efficient implementation of ensemble forecast systems
based on adaptive data assimilation techniques using state-
dependent observation-error covariances. These include
the initialization of the analysis, the generation of NWP
ensemble members and the estimation of the local
turbulence parameters that define the total observation-
error statistics.

The spatial variations in total observation error produced
by the large variations in observation sampling error
could result in an analysis field xa that deviates from
the background xb in those regions that have low
observation errors (see Figure 3). This is probably the most
important issue for implementing optimal data assimilation
techniques, and therefore careful initialization of the analysis
will be required to maintain balanced flows, especially for
regions that have sparse but accurate observations. An
attractive solution is the use of Digital Filter Initialization

(DFI) (Lynch and Huang, 1992; Huang and Lynch, 1993;
Chen and Huang, 2006), which may require iterations
to modify the background fields in the nearby data-void
regions.

Many techniques have been proposed for the generation
of the perturbed ensemble members (Toth and Kalnay,
1997; Houtekamer and Mitchell, 1998, 2001, 2005; Mitchell
et al., 2002; Snyder and Zhang, 2003; Tippett et al., 2003;
Zupanski et al., 2006; McLay et al., 2007; Whitaker et al.,
2008). To include correctly the effects of the spatial variations
in the total observation-error statistics, the generation of
perturbed observations consistent with the local estimates
of total observation error based on estimates of the local
turbulence statistics is an attractive option (Frehlich, 2006).
The ensembles can also be used to estimate the local
turbulence statistics ε (Frehlich and Sharman, 2004) for
the calculation of the observation-error covariance (see
Eqs (25) and (30)) based on turbulence scaling laws. This
is similar to recent techniques for variance reduction of
the background-error covariances with small ensemble sizes
(Heemink et al., 2001; Raynaud et al., 2008, 2009), since
the shapes of the error covariances are determined a priori
using simple empirical models, climatological shapes or
reduced rank covariance decompositions, and the spatially
filtered ensemble-variance estimates are used as scaling
constant. In addition, remote sensing data from a scanning
Doppler lidar (Frehlich et al., 2006; Frehlich and Kelley,
2008) can provide local structure-function estimates (see
Eq. (30)) or equivalently local covariance estimates (see Eq.
(25)) for improving short-term forecasts of wind power or
for input into nowcasting algorithms. In many cases, the
contribution of the terms X̄ from the conditional mean
values in Eqs (25) and (30) are negligible, especially for well-
defined boundary layer processes with a single-scale von
Kármán model (Frehlich et al., 2006; Frehlich and Kelley,
2008).

One metric for the performance of the chosen ensemble
members is the agreement of the long-term average
forecast-error covariance with various innovation-error
statistics (Hollingsworth and Lonnberg, 1986; Lonnberg and
Hollingsworth, 1986; Dee and Da Silva, 1999), which is one
of the common techniques to estimate the forecast-error
covariance assuming spatially uncorrelated observation
errors. However, this technique must include a rigorous
definition of error statistics as well as the climatology of the
atmospheric turbulence statistics (e.g. the structure function
of Figure 1) and the effects of the spatial filter of the forecast
model (Frehlich, 2008). This is especially important for data
products that have a large spatial average, such as GPS
occultation data (Kuo et al., 2004; Healy and Thépaut, 2006;
Chen et al., 2009), where the observation sampling error can
be large because of the large mismatch between the model
filter and the spatial average of the observation.

Another common technique for estimating the forecast-
error statistics, proposed at the National Meteorological
Center, is based on the differences of two forecasts valid at
the same time (Parrish and Derber, 1992; Rabier et al., 1998).
Under certain conditions, the covariance of the observation
error, forecast error and analysis error can be estimated
from the differences between forecasts and observations
(innovations), forecasts and analysis, and observations and
analysis (Desroziers et al., 2005). Recently, this approach
has been used to improve the ensemble Kalman filter
(Li et al., 2009) and to evaluate the sensitivity of an analysis
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in an ensemble Kalman filter (Liu et al., 2009). In addition,
covariance inflation algorithms can also be investigated
(Anderson, 2007). All of these methods average over the
spatial and temporal variations in the errors.

11. Summary and discussion

‘Truth’ xt(rk) is defined as the convolution of the continuous
atmospheric state variables by the effective spatial filter of
the NWP model for each discrete model coordinate rk

(Frehlich, 2006). Therefore, the error in a forecast xf (rk)
or initial state xa(rk) (analysis) is ef (rk) = xf (rk) − xt(rk)
or ea(rk) = xa(rk) − xt(rk), respectively. It is assumed
that with this definition of ‘truth’, a perfect model will
produce forecasts with the smallest error statistics. Since
direct observations of the state variables are affected
by the unresolved scales of the NWP model (subgrid
processes), the observation errors depend on the local
turbulence statistics and are a function of space and
time, i.e. state-dependent. Two definitions of observation
error were proposed (Frehlich, 2006) to include this state-
dependence: error referenced to the model grid coordinates
rk, i.e. eo(rk) = yo(ri) − xt(rk), and error referenced to
the observation coordinate eo(ri) = yo(ri) − xt(ri) where
ri denotes the centroid of the spatial sampling of the
observation.

The properties of the model spatial filter gm can be
investigated in a statistical sense by a comparison of
NWP model structure functions or spatial spectra that
produce an effective model resolution of approximately
five times the grid spacing. The structure functions do
not have the sensitivity to determine the actual shape of
gm, however the spatial spectra indicate that a Gaussian
function may be a better representation than a rectangle.
As a first approximation, we assume the spatial filter of
the NWP model is universal, i.e. the shape is constant
for all atmospheric conditions and therefore equal to that
determined from the average spatial statistics.

For most direct observations of state variables (raw-
insonde, aircraft, Doppler radar, Doppler lidar, etc.),
the total observation error consists of the instrument
error ei = yo − ys and the observation sampling error
es = ys − xt (Frehlich, 2001). In many cases, the instrument
error depends on the detector noise, estimation algorithms
and local turbulence conditions. The observation sampling
error depends on the mismatch between the observation
sampling function go and the effective model resolution
gm as well as the statistics of the local turbulent field (the
spatial structure function). Therefore, a rigorous calculation
of the observation-error covariance requires a description
of the ensemble members that faithfully reflects the con-
tribution of all the atmospheric random processes and is
consistent with the definition of ‘truth’. For error referenced
to the model grid coordinates, these ensemble members
were selected from an infinite number of earth systems
with the same forcing such that the values of xt and the
local turbulence statistics � were identical. As shown in
Figure 2, the random variations of the continuous atmos-
pheric variables over the ensemble members describe the
subgrid turbulence that defines the observation sampling
error. For error referenced to the observation coordinates,
the ensemble members have the added requirement that the
values of ‘truth’ and the local turbulence statistics at each
observation coordinate should be identical. These ensemble

members define all the important error statistics such as the
observation-error covariance in terms of the scaling laws for
the turbulent fields and the local turbulence statistics �o

(e.g. ε for the velocity field). There are large spatial varia-
tions in the observation sampling error as shown in Figure 3
for rawinsonde velocity measurements located at the cen-
tre of a model grid cell. Current techniques for estimating
observation-error statistics (Hollingsworth and Lonnberg,
1986; Lonnberg and Hollingsworth, 1986; Daley 1992; Dee,
1995; Dee and Da Silva, 1999; Dee et al., 1999) are based on
a climatological average over these variations and therefore
produce sub-optimal data-assimilation algorithms.

The maximum-likelihood technique produces an optimal
data-assimilation algorithm (Eq. (51)) using the definition
of observation error referenced to each NWP model
coordinate assuming that the observation error and the
first-guess error are statistically independent and have a
joint Gaussian probability density function. Similar results
are produced using the Kalman filter formulation or mean-
square error analysis with observation error referenced to
each observation coordinate (see Eqs (52) and (56)). The
spatial variations in the observation-error statistics for the
diagonal elements of the covariance matrix are determined
by the local turbulence parameters of each observation.
The off-diagonal elements require an approximation such
as using the average of the local turbulence statistics of
the two observation coordinates. The effects of the linear
interpolation to the observation coordinates should be
small, since the NWP model filter produces a nearly linear
dependence of state variables for adjacent grid points because
the structure functions of the model variables have an r2

dependence at small lags (see Figure 1 and Frehlich and
Sharman, 2004, 2008).

The definition of ‘truth’ for error statistics depends on
the NWP model filter gm(r1, r2) = g0(r1)g0(r2), which is
well approximated by a square filter based on spatial
structure function comparisons (see Figure 5). However,
the spatial spectra indicate that the shape of the model
filter g0 is closer to a Gaussian filter or a sine taper (see
Figure 6). Calculations of the analysis error for rawinsonde
observations and observations averaged along a line (aircraft
data or space-based lidar data) using the effective-square
filter function have little error (Figure 7) for all the filter
shapes considered. Therefore, the actual shape of the NWP
model filter has a minor effect. Assuming a Gaussian shape
may provide the most accurate calculation of error statistics
but more work is required to characterize the spatial filter
of NWP models.

There are many operational issues that should be revisited
to include the spatial variations in the total observation-error
statistics correctly. The selection of the members (perturbed
observations or ensemble square-root filters) of ensemble
forecast systems should be investigated with state-dependent
observation errors included in the analysis. Similarly, the
various procedures for initializing the analysis to maintain
balanced fields is an even more pressing problem, since
observations that have small total observation error (see
Figure 3) could produce an analysis with regions with large
deviations from the first-guess field.

The value of the many different observing systems can be
determined using a consistent definition of error statistics
and the scaling laws for the local turbulence to describe the
observation sampling errors. Rawinsonde observations have
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the simplest description, since the instrument error is well-
documented and the observation sampling error is a simple
calculation (see Eqs (34)–(36)). Observations along a track
(some aircraft data and Doppler lidar measurements from
space) are also numerically tractable for the calculation
of observation sampling error (Frehlich, 2001), but the
instrument error may depend on atmospheric turbulence
and shear, especially Doppler lidar measurements from
space. Doppler radar observations are more complex, since
both the instrument error and the observation sampling
error depend on local turbulence and shear over a three-
dimensional volume (Doviak and Zrnic, 1993; Fathalla et
al., 2008; Lu and Xu, 2009). More research is required to
calculate Doppler-radar error statistics correctly.

Observing System Simulation Experiments (OSSEs)
(Rohaly and Krishnamurti, 1993; Baker et al., 1995; Atlas,
1997; Liu and Rabier, 2003; Snyder and Zhang, 2003;
Riishojgaard et al., 2004; Stoffelen et al., 2005; Tong and
Xue, 2005; Marseille et al., 2008; Lu and Xu, 2009; Ma et al.,
2009) have been used to evaluate the performance of various
observations and data assimilation systems. However, OSSEs
must correctly represent the true spatial variability of the
total observation errors (instrument error plus observation
sampling errors) (Marseille and Stoffelen, 2003; Chen et al.,
2009; Lu and Xu, 2009) and must also include optimal data-
assimilation algorithms. This requires improved estimates
of the local turbulence parameters (Frehlich and Sharman,
2004) and better calculations of the total observation-error
covariance.

Finally, a rigorous analysis of the spatial variations of the
total observation error produced by the spatial variations
in the statistics of the turbulence field requires a better
understanding of the turbulent processes. Fortunately, for
many atmospheric conditions (Gage, 1979; Nastrom and
Gage, 1985; Lindborg, 1999; Wikle et al., 1999; Cho and
Lindborg, 2001; Lindborg and Cho, 2001; Lenschow and
Sun, 2007; Riley and Lindborg, 2008) there is a robust
scaling of turbulence in the horizontal plane that connects
the resolved scales of the NWP models to the subgrid
scale turbulence statistics. More work is required to extend
these results to other atmospheric conditions, such as the
night-time residual layer and stable boundary layers.
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