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ABSTRACT

An automated procedure for forecasting mid- and upper-level turbulence that affects aircraft is described.
This procedure, termed the Graphical Turbulence Guidance system, uses output from numerical weather
prediction model forecasts to derive many turbulence diagnostics that are combined as a weighted sum with
the relative weights computed to give best agreement with the most recent available turbulence observa-
tions (i.e., pilot reports of turbulence or PIREPs). This procedure minimizes forecast errors due to uncer-
tainties in individual turbulence diagnostics and their thresholds. Thorough statistical verification studies
have been performed that focused on the probabilities of correct detections of yes and no PIREPs by the
forecast algorithm. Using these statistics as a guide, the authors have been able to intercompare individual
diagnostic performance, and test various diagnostic threshold and weighting strategies. The overall perfor-
mance of the turbulence forecast and the effect of these strategies on performance are described.

1. Introduction

Commercial, air taxi, and general aviation (GA) air-
craft encounters with turbulence continue to be a
source of occupant injuries, and in the case of GA,
fatalities and loss of aircraft. Although the number of
fatalities related to commercial airline turbulence en-
counters have been very low (only three in the last 10
yr), turbulence encounters do account for a significant
percentage (about 65%) of all weather-related com-
mercial aircraft incidents. The average number of air
carrier turbulence-related injuries is about 45 per year
according to the National Transportation Safety Board
(NTSB), but these are of course only those cases that
were reported to the NTSB. The actual number is prob-
ably much higher: one major carrier reported almost
400 injury-causing turbulence encounters over a 3-yr
period; another estimated about 200 turbulence-related
customer injury claims per year. Over the last 12 yr, the
average number of moderate-or-greater and severe-or-
greater encounters of turbulence actually reported and

recorded amounts to over 63 000 and 5000 per year,
respectively. Costs to the airlines are difficult to estab-
lish, but a vice president for one major air carrier, in a
presentation delivered at the National Aeronautics and
Space Administration–Federal Aviation Administra-
tion (NASA–FAA)-sponsored Aircraft Turbulence
Accident Prevention First Users’ and Technologists’
Workshop in Hampton, Virginia, in 1998, estimated
that it pays out “tens of millions per year“ for customer
injuries, and loses about 7000 days in employee injury-
related disabilities. The vast majority of air carrier tur-
bulence incidents occur above 10 000 ft, where passen-
gers and flight attendants are more likely to be unbuck-
led.

A large number of these turbulence encounters
might be avoided if better turbulence forecast products
were available to air traffic controllers, airline flight
dispatchers, and flight crews. In fact, previous studies
(e.g., Fahey 1993) have shown that for commercial air
carriers, strategic planning to avoid turbulence encoun-
ters can lead to a reduction in cabin injuries and costs.
However, current forecasting methods have not gener-
ally provided acceptably high detection rates and at the
same time acceptably low false alarm rates to achieve
significant reductions. The term “acceptable” does not
have a universal quantitative definition, but the Turbu-
lence Joint Safety Implementation Team, a team of rep-
resentatives from the FAA, NASA, various federal
laboratories, and end users, recommended probabilities
of moderate or greater (MOG) turbulence detection
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should be �0.8 and probabilities of null detection
should be �0.85 for turbulence forecasts to be most
useful. These goals are currently not achievable by ei-
ther automated or experienced human forecasters.

The turbulence forecasting difficulty is due in large
part to the fact that, from the meteorological perspec-
tive, turbulence is a “microscale” phenomenon. In the
atmosphere, turbulent “eddies” are contained in a spec-
trum of sizes, from 100s of kilometers down to centi-
meters. But aircraft bumpiness is most pronounced
when the size of the turbulent eddies encountered is
about the size of the aircraft; for commercial aircraft
this would correspond to eddy dimensions of �100 m. It
is impossible to directly and routinely forecast atmo-
spheric motion at this scale, now or even in the fore-
seeable future. Fortunately, it appears that most of the
energy associated with turbulent eddies on this scale
cascade down from the larger scales of atmospheric mo-
tion [e.g., Dutton and Panofsky (1970) and more re-
cently Tung and Orlando (2003) and Koshyk and Ham-
ilton (2001)], and these larger scales may be resolved by
current weather observation networks and numerical
weather prediction (NWP) models. Assuming the
large-scale forecasts are sufficiently accurate, the tur-
bulence forecasting problem is then one of identifying
large-scale features that are conducive to the formation
of aircraft-scale eddies.

Empirically based linkages between large-scale at-
mospheric features (i.e., observable by routine meteo-
rological observations and resolvable by NWP models)
and aircraft-scale turbulence (i.e., forecasting “rules of
thumb”) have been developed over the years by Na-
tional Weather Service (NWS) and airline meteorologi-
cal forecasters. The successful application of these
rules, however, depends on the forecaster, and any per-
ceived skill diminishes rapidly with forecast lead time.
Because there is now a tremendous amount of meteo-
rological data available to forecasters, more than can be
digested in a reasonable length of time, automated tur-
bulence forecasting tools could aid humans in making
decisions about where to locate regions of potential
turbulence that may be hazardous to aircraft.

To address the need for an automated turbulence
forecasting tool, the Research Applications Laboratory
at the National Center for Atmospheric Research
(NCAR/RAL) and the National Oceanic and Atmo-
spheric Administration’s (NOAA) Earth System Re-
search Laboratory/Global Systems Division (NOAA-
Research-ESRL/GSD), under sponsorship from the
FAA’s Aviation Weather Research Program, have
been developing and testing a completely automated
turbulence forecasting system. This system was origi-

nally dubbed the Integrated Turbulence Forecasting
Algorithm (ITFA; Sharman et al. 1999, 2002) and con-
centrated only on the prediction of clear-air turbulence
(CAT) related to jet streams and fronts at upper-levels
[flight pressure altitudes � 20 000 ft MSL or “flight
levels”1 (FLs) � 200]. The term “integrated” was used
to describe the blending of NWP model based turbu-
lence diagnostics with available turbulence observa-
tions used to produce the forecasts. The ITFA system
became operational for qualified meteorologists and
dispatchers to use as a guide for making turbulence
avoidance decisions in March 2003 and at that time was
renamed the Graphical Turbulence Guidance (GTG)
product. The two Gs emphasize the nature of the tur-
bulence product: “graphical” because, as opposed to
traditional AIRMET (Airmen’s Meteorological Infor-
mation) and SIGMET (Significant Meteorological In-
formation) polygons, the output is provided as Web-
based contours of turbulence potential, and “guidance”
stresses that the output should be used as a decision
support tool in addition to other information that may
not be available to GTG (e.g., satellite imagery). The
first generation GTG, or GTG1, provides gridded CAT
forecasts stratified by flight levels with graphical dis-
plays of turbulence potential provided on NOAA’s
Aviation Digital Data Service (ADDS) Web site: (in-
formation online at http://adds.aviationweather.gov/
turbulence). An example GTG1 image from the ADDS
Web site is provided in Fig. 1.

This has been followed up by a second version,
GTG2, which expands the capabilities of GTG1 by ex-
tending the turbulence forecasts down to FL100 and
includes some diagnostics for mountain wave–related
turbulence. The FL100–FL200 altitude band is espe-
cially significant for air taxis. Thus, in the new system,
there are turbulence predictions at both upper
(�FL200) and midlevels (FL100–FL200).

Both subjective and objective evaluations of the
ITFA/GTG system based on comparisons with avail-
able turbulence reports (or pilot reports, PIREPs) have
been an integral part of the algorithm’s development
since its inception. Independent subjective evaluations
include those from the Aviation Weather Center
(AWC) for the 2000–2003 winter seasons (Kelsch et al.
2004), Delta Airlines’s Meteorology Department (win-
ter 2001), United Airlines’s Meteorology Department
[winter 2002 and 2003; Kelsch et al. (2004)], Comair
Dispatch (winter 2002), and the FAA’s William J.

1 Flight levels are actually isobaric surfaces that correspond to
a particular geopotential altitude according to the U. S. Standard
Atmosphere.
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Hughes Technical Center (winter 2000) severe case
studies (Passetti et al. 2000; Weinrich and Sims 2002).

Objective evaluations based on comparisons with
PIREPs have been on going by both the developers and
an independent verification team composed of re-
searchers from NOAA-Research-ESRL/GSD and
NCAR/RAL. Results of evaluations from previous
years can be found in Brown et al. (2000). Complete
objective evaluations in the form of probability of de-
tection (POD) statistics are also available on a daily
basis on NOAA-Research-ESRL/GSD’s Real-Time
Verification System (RTVS) (see Mahoney et al. 2002
for a description) Web site (http://www-ad.fsl.noaa.gov/
fvb/rtvs) since 1999.

This paper describes the current GTG algorithm
(GTG2) and provides some statistical evaluations of its
performance. The GTG methodology will be described
in section 2. GTG performance derived from 1 yr
(2003) of evaluations against turbulence PIREPs is pre-
sented in section 3. Development and tuning is an on-
going task, and current problem and work areas are
outlined in section 4.

2. GTG procedure

The GTG process starts by automatically ingesting
gridded NWP data, which are supposed to accurately
represent the large-scale features of the atmosphere
that may be related to aircraft-scale turbulence. In prin-

ciple, any NWP model could be used, but the National
Centers for Environmental Prediction’s (NCEP’s)
Rapid Update Cycle (RUC-2) model was chosen be-
cause of the higher effective vertical resolution pro-
vided by the isentropic vertical coordinate system at
upper levels in the model (Benjamin et al. 2004). The
essence of the GTG forecasting method is to integrate
a combination of many separate turbulence diagnostics,
with each diagnostic weighted to get the best agreement
with available observations (i.e., PIREPs). This idea of
using a weighted combination of diagnostics to provide
turbulence forecasts is not in itself a new one. For ex-
ample, Dutton (1980) evaluated the performance of 11
diagnostics compared with pilot reports of CAT over
the North Atlantic and parts of Europe. He found the
weighted sum of the vertical and horizontal wind shears
provided the best agreement with his observations.
Also Clark et al. (1975) used a set of five weighted
diagnostics, where the set used depended on elevation
bands and the weights were determined by the best fit
to data from several XB-70 stratospheric turbulence
encounters over the western United States. Similar pro-
cedures have been used by Russian investigators. For
example, Leshkevich (1988) used a weighted sum of 12
diagnostics, and Buldovskii et al. (1976) used a
weighted combination of horizontal temperature gradi-
ent and vertical wind shear to predict CAT, again with
the weights determined by best agreement to available
observations. However, all of these studies were based
on a limited set of observations and the weights deter-
mined by the best fit to this limited set. These weights,
once established, are static; that is, they never change.
The GTG procedure also obtains weights for a set of
diagnostics based on the best fit to observations, when
a sufficient number of PIREPs are available in real
time, and are determined dynamically and updated
with every RUC model update. Alternatively, a set of
climatologically derived static weights can be used
when the number of observations is insufficient for ro-
bust assessment of the dynamic weights. In particular,
PIREPs undergo a strong diurnal period with consid-
erably fewer at night, roughly 0200–1300 UTC (see Fig.
2), making it difficult to use the dynamic weighting
method during those times. In the following, the GTG
version that makes use of the dynamic weighting strat-
egy will be referred to as GTGD, and the version that
uses the climatological weights will be referred to as
GTGC. The entire GTG process involves a six-step
procedure described in the following sections.

a. Step 1

In step 1 a set of n turbulence indices or diagnostics
Dn (e.g., a local Richardson number) is computed from

FIG. 1. Sample of GTG1 6-h forecast of CAT potential for 0000
UTC 25 Oct 2005 at FL300 as provided on the operational ADDS
Web site (http://adds.aviationweather.gov/turbulence). Color
table for contours is provided at the bottom of the image. For this
particular situation no turbulence is predicted over most of the
western and midwestern United States, with some light to mod-
erate turbulence regions expected on both the east and west
coasts, and possibly a small region of moderate to severe turbu-
lence off the northern California coast.
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the native resolution NWP output at each grid point in
the model domain at the current analysis time. Most of
the current diagnostics used are intended to diagnose
regions of high turbulence potential due to the presence
of upper-level fronts and jet streams, but some are de-
rived from turbulence theory and therefore should be
valid for any turbulence source. The suite of diagnostics
selected depends on the overall performance of each
diagnostic. In addition, the set of diagnostics is selected
to ensure that the indices appropriately represent the
variety of atmospheric processes that may be contrib-
uting to the existing turbulence conditions (i.e., to en-
sure that the diagnostics are uncorrelated with each
other). In general, the diagnostic performance is highly
variable; see, for example, the box plots in Fig. 2 of
Tebaldi et al. (2002). We have tried as many as 40 dif-
ferent turbulence diagnostics, but currently use a subset
that has demonstrated minimum scatter and therefore
the best overall performance. The algorithms in this
subset are listed below with appropriate references, and
the algorithmic expressions for these and others in the
GTG suite are provided in appendix A. At upper levels,
the following 10 algorithms are used:

1) Colson–Panofsky index (Colson and Panofsky
1965);

2) Richardson number (Ri; e.g., Endlich 1964; Krone-
bach 1964; Dutton and Panofsky 1970);

3) diagnostic turbulent kinetic energy (TKE) formula-
tion (DTF3; Marroquin 1998);

4) frontogenesis function (isentropic coordinates; e.g.,
Bluestein 1993);

5) unbalanced flow diagnostic (Knox 1997; McCann
2001; Koch and Caracena 2002);

6) horizontal temperature gradient (Buldovskii et al.
1976);

7) Turbulence Index 1 (TI1; Ellrod and Knapp 1992);
8) North Carolina State University index (NCSU1;

Kaplan et al. 2004);
9) structure function–derived eddy dissipation rate

(EDR; Frehlich and Sharman 2004a; Lindborg
1999); and

10) structure function–derived sigma vertical velocity
(SIGW; Frehlich and Sharman 2004b).

And at midlevels the nine algorithms used are

1) TI1 (Ellrod and Knapp 1992);
2) wind speed � horizontal deformation (Reap 1996);
3) Absolute value “inertial advection � centrifugal

wind” (ABSIA; McCann 2001);
4) horizontal temperature gradient (Buldovskii et al.

1976);
5) wind speed (e.g., Endlich 1964);
6) NCSU1 (Kaplan et al. 2004);
7) structure function–derived EDR (Frehlich and

Sharman 2004a; Lindborg 1999);
8) structure function–derived SIGW (Frehlich and

Sharman 2004b); and
9) frontogenesis function (pressure coordinates) (e.g.,

Bluestein 1993).

b. Step 2

In step 2 Dn is interpolated to common flight levels
(in increments of 1000 ft) and mapped to a common
turbulence intensity scale 0 � D*n �1, where 0 corre-
sponds to no turbulence (null) and 1 corresponds to
extreme turbulence. This same scale is also used for
PIREP intensities to allow quantitative comparisons. A
required input for combining the various turbulence
diagnostics is the set of threshold values that distinguish
the null-light, light-moderate, moderate-severe, and se-
vere-extreme turbulence categories. These thresholds
are derived by comparing the PIREP values with the
index values for many index–PIREP pairs (essentially a
climatology), and computing the median index value
corresponding to each turbulence intensity category.
The median values of null, light, moderate, severe, and
extreme are in turn associated with values of 0, 0.25, 0.5,
0.75, and 1.0, respectively, on the common turbulence
intensity scale. The mapping process is performed using
a piecewise linear function as shown schematically in
Fig. 3. The breakpoints at which the derivative (slope)
of the function changes are the thresholds and are given

FIG. 2. Diurnal variation of the average number of total and
MOG turbulence PIREPs at upper levels (above 20 000 ft MSL)
derived from the 3-yr period 2002–2004.
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in appendix B for each index in the current GTG suite.
Linear interpolation is performed within each range.

c. Step 3

When using the dynamic weighting strategy, each di-
agnostic is compared with the available observations
(PIREPs) within a time window (currently �90 min)
around the current NWP model time. For each altitude
band of interest, a “score” is determined that measures
the relative error between the turbulence intensity as
predicted by each diagnostic and the available turbu-
lence PIREPs. There are a number of options available
for scoring, but based on previous verification studies
of icing and turbulence (e.g., Brown et al. 1997, 2000;
Tebaldi et al. 2002), a particularly robust method is to
score using probabilities of detection. In this method a
contingency table of observations (PIREPs) and fore-
casted turbulence index values is formed and a PODY,
representing the probability of detection of a moderate-
or-greater (MOG) event (“yes”), and a PODN, repre-
senting the probability of detection of a null or smooth
event (“no”), are computed. As shown by Brown et al.
(1997) and Brown and Young (2000), combinations of
PODY and PODN are preferable to the use of the false

alarm ratio in assessing statistical performance since
they are less susceptible to the relative frequencies of
yes and no PIREPs, that is, reporting biases.

Another important performance metric is the MOG-
forecasted volume occupied by the diagnostic. Based
on various atmospheric sampling programs, small
MOG volumes are expected at any given time. An ex-
ample is given in Fig. 4. This is a plot of the distribution
of binned eddy dissipation rate (actually �1/3) auto-
mated measurements (Cornman et al. 1995) from about
85 United Airlines (UAL) B757 aircraft in cruise col-
lected over a 3-month period. Note that 99.6% of the
measurements fall in the first bin. Since this bin con-
tains what corresponds to both null and light turbulence
PIREPs, the fraction of the atmosphere at upper levels
containing MOG turbulence should be 1% at most.
These percentages are consistent with the results of
Dutton (1980).

Therefore, an appropriate metric for evaluating the
overall skill of each turbulence diagnostic should in-
clude PODY, PODN, and the fraction of the grid vol-
ume occupied by MOG turbulence forecasts compared
with the computational grid volume fMOG. Similar ar-
guments were made by Brown et al. (1997) for evalu-
ating icing forecasts. A simple scoring function that in-
volves these quantities is

FIG. 3. An index mapping diagram where the raw values of the
index are read along the abscissa, with specified thresholds T1
corresponding to the index value for null, T2 for light, T3 for
moderate, T4 for severe, and T5 for extreme turbulence values.
These are mapped to a 0–1 scale as indicated on the ordinate, with
0.25 being the light, 0.5 the moderate, 0.75 the severe, and 1.0 the
extreme threshold. Note that raw index values �T1 are always
mapped to null, and raw index values �T5 are always mapped to
extreme. The threshold values T1–T5 are given in Table B1 for
each turbulence index.

FIG. 4. Distribution of binned �1/3 median (lower bar) and peak,
i.e., 95th percentile (upper bar) values from UAL B757 aircraft
over a 3-month time period using the Cornman et al. (1995) al-
gorithm. The open circles are estimates of the distribution based
on an assumed lognormal distribution with parameters derived
from the RUC-2 NWP model (Frehlich and Sharman 2004a). The
difference may reflect the ability of commercial air carriers to
successfully avoid turbulence.
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� � � 1.1 	 TSS

1 	 CfMOG
p �, 
1�

where the constants C and p can be used to adjust the
relative importance of fMOG. In the results to be pre-
sented here, C � 1 and p � 0.25. In the numerator of
Eq. (1), the true skill statistic TSS � PODY 	 PODN
� 1, and ranges in value from �1 to 	1, with 	1 indi-
cating the diagnostic has perfect skill at classifying yes
and no PIREPs, and values less than 0 indicating nega-
tive skill (0 represents no skill). The TSS is computed
by comparing the maximum value of the turbulence
diagnostic values D*n at the four grid points surrounding
each PIREP. Using the average of the four points pro-
duces similar results. The thresholds used in evaluating
the TSS are given in appendix B (see Table B1). How-
ever, not all PIREPs available during the scoring time
period are actually used. The goal of the current GTG
is to predict turbulence not related to convection.
Therefore, a turbulence PIREP that is convectively re-
lated should not be used for scoring. Since a PIREP
does not specify the source of turbulence, convectively
induced turbulence encounters must be identified by
indirect means. This is accomplished by comparing
each PIREP location with cloud-to-ground (CG) light-
ning flash data from the National Lightning Detection
Network. If the PIREP is within a certain radial dis-
tance of a CG lightning flash and is within a certain
time window (currently 50 km and 40 min), it is dis-
carded and not used for scoring.

d. Step 4

Once the scoring function �n has been computed
from step 3, a set of weights Wn can be formed from
each diagnostic n:

Wn � � �n


�n
�2

. 
2�

Because the number of PIREPs available at any given
time is still a small number (for a three hour time win-
dow this may be anywhere from less than 10 to as many
as 250 depending on the situation), it is not possible to
form weights regionally or vertically, so the weights
assigned are constant throughout the domain of inter-
est.

e. Step 5

The (dynamically or statically) weighted diagnostics
are combined to form the GTG combination. At this
point all the diagnostics have been computed and
remapped to the 0–1 scale at the initialization time at
each grid point (i, j, k). The GTG diagnostic is now

computed for the initialization time as the simple
weighted sum of the diagnostics:

GTG
i, j, k� � 

n

WnD*n
i, j, k�. 
3�

f. Step 6

The GTG forecasts are formed. When using the dy-
namic weighting method, an assumption must be made
about the temporal variability of the weights. The sim-
plest assumption is that they are constant in time
throughout the maximum forecast duration (12 h for
RUC-2). This essentially is equivalent to assuming that
the state of the atmosphere responsible for turbulence
generation processes persists for this length of time.
This may be on the long side; Vinnichenko et al. (1980)
estimate that the probability of a turbulence patch per-
sisting for longer than 6 h is no more than 50%. In the
current GTGD implementation though, the weights are
reevaluated every major RUC update cycle, that is, ev-
ery 3 h, so that the change in large-scale behavior is at
least captured at these intervals. In addition, advection
(and perhaps growth and decay) of turbulence genera-
tion zones should be handled to some extent by the
NWP forecast.

Assuming the weights are constant for a given model
run, the GTGD forecast procedure is simple. The NWP
gridded data are obtained for all forecast times (3, 6, 9,
and 12 h), the same set of diagnostics is computed from
the forecast fields, and the weights derived from the
analysis time are used in Eq. (3) to get the GTG fore-
cast.

Currently, the entire cycle repeats with every major
NWP update; for RUC-2 this is every 3 h. The process
is performed separately for midlevels and upper levels,
and the results are merged at the FL200 boundary. This
was necessary since it was found that

1) the best set of turbulence diagnostics was not the
same at midlevels and upper levels,

2) their optimum threshold values were not the same,
and

3) the number of available PIREPs was substantially
less at midlevels than at upper levels.

When using climatological weights within GTGC,
steps 3 and 4 are bypassed and a constant set of weights
are used for the analysis time and all forecast times. The
procedure for deriving the climatological or default
weights is given in the next section and their current
values are provided in appendix B.

3. GTG2 performance statistics

In this section various performance statistics are pro-
vided for GTG and its component diagnostics. The
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computed performance is based on inputs from the
RUC-2 NWP model, in its 2003 configuration (roughly
20-km horizontal resolution and 50 vertical levels). Al-
ternative methods of combining the individual diagnos-
tics are also examined, and sensitivity studies are pro-
vided to estimate the effects of uncertainties in the veri-
fication data sources. Here, performance statistics are
derived from comparisons with the only routine obser-
vations of aircraft-scale atmospheric turbulence avail-
able: verbal reports of turbulence by pilots, or PIREPs.
This verification source, although not ideal, has been
used in other aviation weather verification studies of
both icing (e.g., Brown et al. 1997) and turbulence
(Brown et al. 2000; Tebaldi et al. 2002; Lee et al. 2003).

a. PIREPs

PIREPs provide information about a turbulence en-
counter (time, latitude, longitude, altitude, and sever-
ity). A fairly comprehensive review of PIREP reporting
and dissemination practices is given in Schwartz (1996).
The PIREPs used in this study are received through the
NWS’s Family of Services communication gateway (see
http://www.nws.noaa.gov/datamgmt/fos/fospage.html
for a description) and augmented by proprietary re-
ports from two major airlines. The raw textual PIREPs
are decoded automatically with some data checking to
remove reports with one or more invalid parameters
and to discard duplicates. These duplicate and bad data
records were a very small percentage of the total
(�1%). It should be noted that, because of pilot report-
ing and recording biases, the distribution of PIREP in-
tensities is not what would be expected from Fig. 4; we
find the reported intensity distribution is about 55%
null, 27% light, 17% moderate, and 1% severe based
on 12 yr of turbulence PIREPs between FL100 and
FL450.

As noted by Schwartz (1996), PIREP inaccuracies in
time, position, and intensity can lead to some uncer-
tainty in the verification results that will be quantified
here to the extent possible when presenting the final
results. Further, it must be realized that a report is
based on a turbulence experience along a flight path,
that is, along a line, but is usually reported as a single
point value. If the model-derived diagnostics are sup-
posed to be a grid volume average, the correspondence
to a line is not necessarily direct.

Position and time uncertainties in PIREPs were
evaluated by comparing the locations of positive UAL
in situ turbulence measurements using the automated
Cornman et al. (1995) algorithm with PIREPS from the
same aircraft. We found that, based on about 450 com-
parisons over a 4-month period, the median uncertainty
was about 50 km horizontally, 200 s in time, and 70 m

vertically. These time and vertical position differences
are well within the windows used for verification. The
horizontal position uncertainty of 50 km corresponds to
about two to three RUC-2 grid points, and since the
resulting turbulence forecast fields are fairly smooth
both horizontally (cf. Fig. 1) and vertically, this uncer-
tainty should have a negligible effect on the results.

To assess the uncertainty in PIREP turbulence inten-
sities, the intensity values reported by two aircraft close
together in space and time (using the 50-km uncertainty
found above, at the same flight level, and within a time
window of 600 s) were compared using 12 yr of PIREP
data at the flight levels assessed in this study (FL100–
FL200 and FL200–FL450). For the upper-altitude band
this provided about 8200 pairs for comparison, with the
results that roughly 84%, 68%, 85%, and 86% agree on
intensities of smooth, light, moderate, and severe, re-
spectively, regardless of aircraft weight class. For the
midlevel altitude band about 3600 pairs were compared
giving percentage agreements of 64%, 46%, 75%, and
77%, respectively, for the major intensity categories.
The larger discrepancies at midlevels are probably be-
cause of the greater mix of aircraft types at lower flight
levels. The relative uncertainty in the light intensity
values is understandable given the wide range of air-
craft sizes and weights reporting, and it is for this reason
they are not used for verification. However, at least
statistically, turbulence PIREPS seem to have accept-
able position and timing errors, and the null and MOG
reports are very consistent. These numbers bolster our
confidence in the use of PIREPs for verification, and
provide a means for assessing the uncertainty in the
results to be presented.

b. GTG2 performance

In previous studies that used PIREPs for both icing
(e.g., Brown et al. 1997) and turbulence (e.g., Brown et
al. 2000; Tebaldi et al. 2002; Lee et al. 2003) verifica-
tion, one metric used to evaluate performance was the
area contained under the PODY–PODN curves, simi-
lar to receiver (or relative) operating characteristic
(ROC) curves. In this procedure a set of thresholds is
assumed for each diagnostic, and for each threshold the
diagnostic performance based on comparisons with
available turbulence PIREPs is evaluated by computing
both a PODN and a PODY. These curves essentially
measure the ability of a forecast algorithm to discrimi-
nate between yes and no observations. For small values
of the chosen threshold, PODY will be high, near unity,
while PODN will be low, near 0, and vice versa for large
values of the chosen threshold. For the range of thresh-
olds selected, higher combinations of PODY and
PODN, and therefore larger areas under the PODY–
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PODN curves, imply greater skill in discriminating be-
tween null and MOG turbulence events. The area un-
der the curve (or AUC) ranges from 0.5 for no skill to
1.0 for perfect skill. For a more complete discussion of
the use of the AUC as a discrimination metric, see, for
example, Hanley and McNeil (1982), Mason (1982),
Kharin and Zwiers (2003), and Marzban (2004).

Samples of PODY–PODN statistical performance
derived for GTG2 as described above are provided in
Fig. 5 (for upper levels) and Fig. 6 (for midlevels). The
curves are based on 1 yr (2003) of PIREP comparisons
for 0-h analyses and 6-h forecasts. The 0-h results give
some indication of the ability of the individual turbu-
lence diagnostics and the GTG combinations to ac-
count for the observed turbulent state of the atmo-
sphere. The 6-h forecast was chosen for assessment be-
cause it is an adequate lead time for route planning
purposes for almost all continental U.S. (CONUS)
flights. All 0-h analyses are taken at 1800 UTC with the
GTGD weights formed based on the performance of
the individual diagnostics computed from the RUC
1800 UTC analysis. The 6-h forecasts are derived from
diagnostics computed from the 6-h RUC forecast, ini-
tialized at 1800 UTC, valid at 0000 UTC the next day,
and with weights provided from the 1800 UTC analysis
(GTGD). These times were chosen because both times
correspond to daylight hours over the CONUS where
air traffic density is sufficient to provide large numbers
of PIREPs for both initialization and verification.

Figures 5 and 6 demonstrate that both the GTGD
and GTGC combinations are superior to the individual

diagnostics as measured by the ROC AUC metric. As
expected, the AUC is higher for the analysis time
(GTGC AUC is 0.878 for upper levels and 0.818 for
midlevels) than for the 6-h forecasts (0.852 and 0.792,
respectively). For both times the upper-level perfor-
mance is slightly better than the midlevel performance.
This is probably because of the fewer PIREPs available
to fit at midlevels and to the experience derived from
the GTG1 development, which has allowed formula-
tion of better turbulence diagnostics for upper levels.

For comparison, the AIRMET performance is also
shown. AIRMETs are the operational forecasts of tur-
bulence produced by the AWC every 6 h and are valid
for up to 6 h (refer to http://aviationweather.gov/exp/
product_overlay/help/p-airmets.html for a description)
but may be amended as needed between the standard
issue times. They are textual products that describe as
three-dimensional polygons the regions of forecasted
turbulence. Since the polygons are necessarily rela-
tively simple, and are assumed valid for the entire 6 h
(although we did allow for amendments), the compari-
son here is not exact; nevertheless, AIRMETs are the
current operational product, and some comparisons
must be made to assess the ability of automated fore-
casts to provide benefit to the aviation community. The
AIRMET performance (with amendments) was re-
trieved from the RTVS archives for the same time win-
dow (centered at 2100 UTC) as the model-based algo-
rithms. They are competitive with some of the indi-
vidual diagnostics, but are not as good as either of the
GTG combinations by this measure. Comparisons with

FIG. 5. Individual diagnostics and the GTG2 PODY–PODN performance statistics (indi-
vidual diagnostics as thin gray, GTG combination as heavy black solid, and GTG combination
using climatological weights as heavy black dashed) derived from 1 yr (2003) of (a) 1800 UTC
analyses (0-h forecasts) using 37 878 PIREPs and (b) 1800 UTC 6-h forecasts (valid 0000
UTC) using 49 703 PIREPs, for upper levels (FL200–FL460). For comparison, the no skill line
is also shown as the diagonal line, and the 2003 average AIRMET performance (with amend-
ments) at upper levels centered on 2100 UTC is shown as a heavy dot in (b).
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turbulence SIGMETs were not attempted because they
are usually based on observations of severe turbulence,
most of which tend to be related to convection.

For GTGC, consistent with Eq. (2), the static weights
are proportional to the ROC AUC squared for each
diagnostic. Note from Figs. 5 and 6 that the use of cli-

matological weights degrades the performance only
slightly for the analysis time, and is nearly identical in
performance for the 6-h forecast.

An equivalent representation of the relative perfor-
mance of the individual diagnostics and the GTGD
combination is provided by plots of the probability den-

FIG. 6. PODY–PODN curves as in Fig. 5 but for midlevels (FL100–FL200): (a) 1800 UTC
analyses (0-h forecasts) using 6575 PIREPs and (b) 1800 UTC 6-h forecasts (valid 0000 UTC)
using 8063 PIREPs.

FIG. 7. Probability density curves for five different diagnostics within the GTG combination: (a) TI1, Eq. (A15); (b) horizontal
temperature gradient, Eq. (A23); (c) DTF3, Eq. (A6); (d) divergence tendency (UBF), Eq. (A30); (e) eddy dissipation rate, Eq. (A7);
and (f) the GTG combination based on 6-h upper-level forecast index–PIREP correlations. In each panel the furthest left curve
provides the null distribution and the furthest right curve provides the MOG distribution, and the curves have been normalized to
contain the same area. The vertical lines place the medians of the distributions.
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sity functions (PDFs) for both null and MOG turbu-
lence encounters. These are shown in Fig. 7. A perfect
diagnostic would have no overlap between the null and
MOG PDF curves, and so the amount of overlap is a
measure of the PODs. Qualitatively, there is substantial
overlap for all indices, but the overlap is clearly mini-
mized with the GTG combination, reinforcing the over-
all robust nature of the GTG approach.

Other performance measures are shown in Table 1,
namely, the 6-h forecast average PODN, PODY, TSS,
root-mean-square error (rmse) per PIREP, fMOG, �,
and dynamic weight for each turbulence diagnostic; the
GTG combinations; and AIRMETS. By almost any
measure, the GTG combinations provide superior per-
formance for both mid- and upper levels. From the
average weights given in Table 1, the single best diag-
nostic is the frontogenesis function [Eq. (A9)] evalu-
ated in isentropic coordinates at upper levels and evalu-
ated on constant pressure surfaces [Eq. (A10)] at
midlevels. Consistent with Figs. 5 and 6 the AIRMET
performance has similar skill to some of the individual
diagnostics in terms of both statistical error and fraction
of MOG airspace forecasted.

c. Sensitivity studies

As stated earlier there are reporting biases, as well as
position, timing, and intensity errors associated with
PIREPs, consequently the verification performance
statistics are subject to some amount of uncertainty. To
attempt to quantify this uncertainty, we have per-
formed two sensitivity studies. The first study addresses
the irregular nature of the PIREPs distribution (in fre-
quency and location) by degrading the quality of the
data distribution by randomly resampling only a frac-
tion of the available PIREPs and using that fraction for
verification. Specifically, from the full set of PIREP–
GTG forecast data pairs, five subsets of 1/2, 1/3, 1/4, 1/5,
and 1/6 of the available pairs were used for scoring.
Two hundred subsets were used, and for each subset a
ROC curve was computed. The solid curves in Fig. 8
show the derived envelope of “uncertainty” around the
original GTG ROC 6-h forecast curves. The results
plotted are for GTGC, but identical results were ob-
tained with GTGD. The uncertainty bands are very
tight for high levels (about �2%), but are somewhat
wider for midlevels (about �6%) because of the

TABLE 1. Average 6-h forecast performance metrics for the individual diagnostics and the GTG combination derived from 1 yr (2003)
of 1800 UTC 6-h forecasts (valid 0000 UTC). The PODY, PODN, and TSS values are computed using the thresholds given in appendix
B. The column labeled “Eq.” refers to the equation number in appendix A.

Index name Eq. Rmse/PIREP PODY PODN TSS fMOG � Avg wt

Upper levels (49 703 PIREPs)
�Ri (A1) 0.0643 0.591 0.832 0.423 0.180 0.782 0.101
CP (A4) 0.0643 0.370 0.884 0.254 0.128 0.689 0.088
DTF3 (A6) 0.0761 0.452 0.824 0.276 0.078 0.751 0.100
EDR (A7) 0.0620 0.440 0.872 0.311 0.068 0.845 0.106
SIGW (A8) 0.0863 0.525 0.788 0.313 0.188 0.738 0.090
F� (A9) 0.0525 0.548 0.889 0.437 0.095 0.882 0.119
TI1 (A15) 0.0672 0.589 0.846 0.434 0.104 0.878 0.113
|�HT | (A23) 0.0735 0.633 0.798 0.431 0.199 0.809 0.095
UBF (A30) 0.0687 0.372 0.865 0.237 0.110 0.726 0.085
NCSU1 (A36) 0.0761 0.536 0.831 0.367 0.101 0.832 0.103
GTGD (3) 0.0397 0.530 0.926 0.456 0.069 0.968 —
GTGC (3) 0.0397 0.527 0.926 0.453 0.071 0.961 —
AIRMETs — — 0.501 0.852 0.353 0.134 0.905 —

Midlevels (8063 PIREPs)
EDR (A7) 0.1189 0.619 0.714 0.333 0.109 0.812 0.119
SIGW (A8) 0.1444 0.660 0.655 0.315 0.170 0.761 0.107
Fp (A10) 0.0807 0.455 0.829 0.284 0.058 0.848 0.124
TI1 (A15) 0.0891 0.534 0.770 0.304 0.104 0.781 0.114
|�HT | (A23) 0.1096 0.570 0.710 0.280 0.133 0.724 0.102
|v| (A24) 0.1270 0.514 0.746 0.260 0.180 0.648 0.096
|v| DEF (A28) 0.0985 0.581 0.787 0.369 0.110 0.817 0.116
ABSIA (A34) 0.0913 0.580 0.744 0.324 0.110 0.784 0.110
NCSU1 (A36) 0.0858 0.380 0.846 0.226 0.057 0.819 0.112
GTGD (3) 0.0541 0.614 0.813 0.439 0.078 0.956 —
GTGC (3) 0.0528 0.623 0.816 0.427 0.079 0.961 —
AIRMETs — — 0.464 0.815 0.279 0.083 0.8971 —
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smaller number of PIREPs available at midlevels. Note
that the lower bound of the uncertainty curve still pro-
vides significantly better PODY–PODN performance
than AIRMETs. A comparison with the best single in-
dex was also performed (not shown) by computing the
difference between these curves for each subset of
PIREPs at the highest point on the curves correspond-
ing to the best TSS value, across the 200 randomized
subsets. The 95% confidence interval for this difference
(GTG-best index) is always positive for both PODN
and PODY. These results are consistent with those of
Kane and Brown (2000) using an earlier version of
GTG.

The second study addresses the uncertainty in the
reported intensity values of the PIREPs. This problem

was discussed in section 3a, and there it was stated that,
climatologically, the percentage agreement in intensi-
ties reported by nearby aircraft was somewhere be-
tween 70% and 80% on average. Based on these re-
sults, a “perturbation” experiment was performed by
assuming that 25% of the verification PIREPS may be
incorrectly reported by one full intensity category (e.g.,
from light to moderate). The sensitivity to PIREP in-
tensity uncertainty was then assessed by either ran-
domly increasing or decreasing by one intensity level
25% of the available verification PIREPs. The process
was repeated 200 times for different subsets of the veri-
fication PIREPS.

The dashed curves in Fig. 9 show the results in terms
of an envelope of “downgraded” ROC curves. Note

FIG. 8. GTGC PODY–PODN plots for 6-h forecasts at (a) upper levels and (b) midlevels
accounting for two measures of uncertainty. The heavy solid curve in both figures uses the
entire set of verification PIREPs unperturbed in intensity (cf. Figs. 5b and 6b). The thin
dashed lines represent the uncertainty bounds obtained by resampling 200 subsets of the
available PIREPs. The dashed lines represent the uncertainty bounds obtained by randomly
modifying 25% of the PIREP intensities by one full intensity category and repeating 200 times.

FIG. 9. PODY–PODN plots for the 6-h upper-level forecasts as in Fig. 5 but comparing four
different regression strategies for combining the diagnostics: GTG (solid), logistic (dashed),
decision tree (dotted), and neural network (dash–dot), using a training set corresponding to
PIREPs available from (a) one analysis time and (b) 14 analysis times.
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that the degradation (from about �5% to �6%) in the
upper-level ROC curves is greater than for the midlevel
ROC curves (from about �1% to �3%). This may be
due in part to the greater inherent uncertainty in
PIREP intensities at midlevels noted above in section
3a, and in part by the finer GTG tuning achieved at
upper levels compared with midlevels making the up-
per-level results more sensitive to degradation. Still the
ROC curve for GTG significantly outperforms the un-
perturbed AIRMETS and the single indices’ curves
(not shown), as confirmed through the computation of
the differences as described above in the resampling
exercise.

This is a rather severe test; when the process was
repeated by perturbing the PIREPs by only a one-half
intensity category (e.g., from light to light-moderate)
the resulting GTG ROC curves were almost indistin-
guishable from the original.

d. Other combinatorial methods

Other methods for combining the indices were also
tested. In particular, three well-established statistical
models for forecasting a binary outcome (with null en-
counters of turbulence being 0s, and MOG encounters
being 1s) were investigated and their predictive perfor-
mance compared with the GTG method:

(a) logistic regression,
(b) tree classification, and
(c) neural networks.

Logistic regression fits a linear combination of the
diagnostics to the probability of a positive (i.e., MOG)
outcome. For a description of the method, see, for ex-
ample, McCullagh and Nelder (1989). The estimation is
likelihood based, so that the optimal solution for the
coefficients of the linear combination maximizes the
probability of the training set of data, under the as-
sumption of a binomial distribution; namely,

P
PIREP � MOG|D1, D2, . . . , DN�

�

exp��0 	 

n�1

N

�n 	 Dn�
1 	 exp��0 	 


n�1

N

�nDn� ,

where Dn is the value of diagnostic n matched to each
PIREP and �n is the derived coefficient for Dn.

Classification based on recursive binary partitions
(tree classification) is another popular model for pre-
dictions (see, e.g., Breiman et al. 1984). Starting with
the full set of observation–individual diagnostic “pairs,”
the algorithm looks at every diagnostic in turn, in order
to determine an optimal value for splitting the dataset.

The value must be such that the two subsets of PIREPs
thus created (PIREPs matched to values of the diag-
nostic less than the splitting threshold, and PIREPs
matched to values of the diagnostic greater than the
splitting threshold) are as homogeneous as possible
within and as heterogeneous as possible between. Ide-
ally, if a diagnostic were a perfect discriminator of null
versus MOG turbulence encounters, a value of that di-
agnostic would exist that would separate the PIREP set
into two groups perfectly homogeneous “within” (all
nulls on one side, all MOGs on the other) and thus
perfectly heterogeneous “between.” After the first split
is performed, the algorithm is applied independently to
the two groups of observations thus formed. Each split
chooses a diagnostic and a value within the diagnostic
range. The algorithm may separate the data perfectly
by splitting the groups until only one observation is left
in each of the “leaves” of the tree. However the split-
ting rules thus defined are bound to be too ad hoc with
respect to the training set, and would certainly consti-
tute a bad model for forecasting purposes. Thus, tree
classification algorithms must be optimized in order to
achieve a balance between fitting the training set of
data and performing accurate prediction on an inde-
pendent set.

Neural networks are flexible regression methods that
substitute a nonlinear combination of diagnostics for
the linear form assumed by logistic models. Similar to
tree models, a balance has to be found between ex-
tremely flexible structures that are able to fit the train-
ing set almost perfectly, and a more parsimonious rep-
resentation that has better generalization ability. For a
more complete discussion, see, for example, Ripley
(1996).

Each of the three statistical models was executed us-
ing the R, version 2.0 (see Ihaka and Gentleman 1996
for a description), statistical analysis package (routines
glm, rpart, and nnet for logistic regression, decision
trees, and neural nets, respectively). The performance
for each is based on the same set of observations as
used to obtain the GTG results. PIREP–diagnostic
“pairs” from the analysis time were used to train the
models, and then evaluated on the 6-h forecast. As the
curves in Fig. 9a demonstrate, GTG does outperform
the estimates derived from all three competing meth-
ods. This is probably because of the relative scarcity of
the training data available, which is insufficient for ro-
bust estimations using highly multivariate models.

The performances become very close (almost undis-
tinguishable for logistic and neural networks, still sub-
par for tree regression) as the training set is increased
to include 14 days of PIREP–diagnostic pairs, as Fig. 9b
shows. By increasing the number of cases in the training
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set, the estimates of the many parameters in the statis-
tical models stabilize and are not so susceptible to
small, nonrepresentative (at least in terms of the func-
tional forms that are being fitted) groups of observa-
tions. Evidently, the functional form used in the GTG
optimization procedure is simple enough, and tuned
explicitly to the POD performance measure, to allow
an effective estimation on the basis of a single day of
training, thus offering an extremely manageable solu-
tion to the operational implementation of the algo-
rithm. Obviously, it would be much more expensive
from a storage and computational perspective if a
longer set of training data had to be processed at every
forecast issue time.

4. Summary and conclusions

In summary, the overall performance of GTG seems
to be skillful enough to provide useful information to
meteorologists and dispatchers for strategic planning
for turbulence avoidance. In particular the following
points have been shown.

• The GTG combination provides superior PODY–
PODN performance over that available by using a
single turbulence diagnostic or by AIRMETS.

• Although the dynamic weighting method gives the
best nowcast performance, the use of a set of static
climatologically derived weights provides forecast
performance comparable to the dynamic weighting
method, making it an attractive alternative for use in
data-sparse (PIREPs) regions.

• The simpler weighting strategies used within the
GTG framework provide performance comparable
to more complicated procedures, such as neural net-
works, and generally requires less “training.”

• In this investigation, based on the average dynamic
weights chosen by GTGD (see Table 1) the single
best diagnostic at both midlevels and upper levels is
the frontogenesis function.

At this point a few caveats should be stated. The
results presented here are based on inputs from the
RUC-2 NWP model, in its 2003 configuration (roughly
20-km horizontal resolution with 50 vertical levels).
The use of a different NWP model and/or different
vertical or horizontal resolutions may be expected to
change some of these results, including the relative per-
formance of the individual turbulence diagnostics and
the GTG combinations. Further, the analyses are based
on the performance derived from an entire year of data
over the entire RUC-2 computational domain. Daily,
seasonal, and regional dependencies would be expected
in the performance statistics.

The ability to provide still more accurate aircraft-

scale turbulence nowcasts and forecasts is hampered by
several fundamental difficulties. First, the resolution of
current NWP models (several 10s of km) is about two
orders of magnitude too coarse to resolve aircraft-scale
turbulence (roughly 100s of m). Therefore, aircraft-
scale turbulence diagnoses and predictions must be
based on resolvable- (by the NWP) scale features.
However, and this is the second difficulty, the perfor-
mance of turbulence diagnostics is hampered by our
current lack of understanding of the linkage between
NWP resolvable-scale features and aircraft-scale turbu-
lence. An implicit assumption underlying the use of all
these diagnostics is that turbulence-generating mecha-
nisms have their origin at resolvable scales and that
energy cascades down to aircraft scales, but it is unclear
what the exact cascade mechanism is. Recent high-
resolution simulations by Lane et al. (2004, 2005) indi-
cate that the linkage is related at least in some cases to
gravity wave production by features such as upper-level
fronts and convection, and subsequent breakdown of
the waves into turbulence. Third, even if it is true that
aircraft-scale turbulence has its origins at the resolvable
scales, the turbulence forecast system has all the inher-
ent NWP errors associated with the resolvable scales.
Fourth, it is not clear that the current suite of turbu-
lence diagnostics is in fact capturing all the relevant
information that the larger-scale representations can
provide.

Then there is the difficult matter of model fitting and
verification. The GTG system uses PIREPs for tuning
and verification. But as shown, an individual PIREP is
subject to spatial, temporal, and intensity misrepresen-
tations. The quantitative automated in situ turbulence
reporting system (Cornman et al. 1995, 2004) should
eliminate most of the uncertainty associated with
PIREPs but will still not alleviate the nighttime under-
reporting bias. The advantages of this data for GTG are
obvious. First, the data will be more accurate than
PIREPs, for both intensity and position. Second, the
amount of data will be vastly increased, since the cur-
rent plan is to relay turbulence every minute in cruise.
This will provide a much more complete mapping of the
turbulent state of the atmosphere (at least at upper
levels), and will allow GTG to fit that state much more
precisely than has been possible using the current set of
scattered PIREPs. Just as the accuracy of upper-level
winds in NWP models has increased with the use of
Aircraft Communications Addressing and Reporting
System wind data (e.g., Schwartz et al. 2000), the GTG
upper-level forecasts should become more accurate
with the ingest of in situ data.

Efforts continue to provide a better turbulence fore-
casting system through the following research areas.
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• Better diagnostics—this is a continued research area
at major laboratories and universities. But any diag-
nostic must be judged by its overall performance, not
just on a few select cases. In addition, information
about when a particular diagnostic performs well and
when it does not could be used in dynamically assign-
ing its weight within the GTG framework. Hopkins
(1977) and Lester (1994) describe synoptic conditions
that are known to be conducive to CAT, and these
could be developed into automated algorithms. Al-
though some of the current diagnostics are indepen-
dent of the source of turbulence (e.g., Ri), most are
tuned for CAT associated with upper-level fronts and
enhanced wind shears in the vicinity of jet streams.
Diagnostics for other known sources of turbulence,
for example, those related to deep convection, must
be developed, tested, and implemented into future
versions of GTG. Turbulence related to convection
has been shown by Kaplan et al. (2005) to be coinci-
dent with some particularly severe turbulence en-
counters. Nevertheless, the current version of GTG
does capture some turbulence cases related to con-
vection, if the convection is associated with mid- to
upper-level disturbances that may be identified by
one or more of the current diagnostics.

• “Local” fits—within the current GTG framework,
the best fit of diagnostics is determined for the entire
volume of atmosphere between the altitude bands of
interest. Better fits are probably attainable in subvol-
umes that could be overlapped to give smooth tran-
sitions from one subvolume to another. Although the
number of PIREPs available for regional or local fits
is probably insufficient at the current time, the use of
the turbulence in situ measurements may allow for
local fits, both horizontally and vertically.
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APPENDIX A

GTG Turbulence Diagnostics

This appendix lists the current suite of turbulence
diagnostic algorithms within GTG. Although all these

are or have been computed and evaluated, only a (user
selectable) subset is actually included in the GTG com-
bination. Note that in some cases the constituent com-
ponents of a diagnostic may themselves be used as a
turbulence index.

a. Richardson number and its components

The Richardson number and its components are
well-known turbulence diagnostics (e.g., Endlich 1964;
Kronebach 1964; Dutton and Panofsky 1970, etc.).
Theory and observations have shown that at least in
some situations clear-air turbulence patches are pro-
duced by Kelvin–Helmholtz instabilities. This occurs
when Ri becomes small. Therefore, theoretically, re-
gions of small Ri should be favored regions of turbu-
lence, where

Ri �
N2

SV
2 , 
A1�

with

N2 �
g

�

��

�z
or

g

�e

��e

�z

A2�

and

SV � ��v
�z�� ���u

�z�
2

	 ���

�z�
2�1�2

. 
A3�

Here, � is potential temperature, �e is equivalent po-
tential temperature, g is the acceleration due to gravity,
z is the vertical direction, and v is the horizontal wind
vector with components u and � in the east–west and
north–south directions, respectively.

b. TKE

TKE formulations are based on the TKE balance
equation, assuming horizontal homogeneity and sta-
tionarity. The Colson–Panofsky index (CP; Colson and
Panofsky 1965) uses dimensional arguments in a stable
atmosphere to estimate clear-air turbulence intensi-
ties as

CP � �2SV
2 �1 �

Ri
Ricrit

�, 
A4�

where � is a length scale, taken as the local value of
vertical grid increment �z, and Ricrit is an empirical
constant (�0.5).

Laikhtman and Al’ter-Zalik (1966; also Vinnichenko
et al. 1980) developed a similar equation but with a
different prescription for the length scale:

TKE � C	3�2
d	�dz��1, 
A5�

JUNE 2006 S H A R M A N E T A L . 281



where C is an adjustable constant and

	 � SV
2 � 
N2 � 0,

where � � 1/Pr � KH/KM is taken as another adjustable
constant, Pr is the turbulent Prandtl number, and KH

and KM are the eddy diffusivities of heat and momen-
tum, respectively.

Marroquin (1998) diagnostic TKE formulations
(DTF) used k–� closure equations (e.g., Stull 1988) and
other simplifications to derive diagnostics for TKE and/
or �, giving, for example, for DTF3,

� � KM�c1

c3
SV

2 �
c2

c3

N2

Pr�, 
A6�

where c1 � 1.44, c2 � 1.0, and c3 � 1.92 (Stull 1988, p.
219), and KM and Pr are taken as adjustable constants
to get the best agreement with observations.

c. Eddy dissipation rates

Eddy dissipation rates are estimated from second-
order structure functions (Frehlich and Sharman
2004a,b). The one-dimensional structure function of
variable q(x) is defined as

Dq
s� � �[q
x� � q
x 	 s�]2�,

where s is the separation distance and � � denotes an
ensemble average. The structure functions of the veloc-
ity components parallel or normal to the displacement
vector s � (x, y, z) can be related to turbulence inten-
sity � (for q � u, �) or �w

2 (for q � w, the vertical
velocity component) through

Dq
s� 
 Cq
s� �2�3DREF
s� 
A7�

and

Dw
s� 
 Cw
s��w
2 , 
A8�

where Cq(s) and Cw(s) take into account NWP model
specific spatial filtering effects and DREF is given by
Lindborg (1999); for small separations s it is propor-
tional to s	2/3. In the text and tables the relation (A7) to
derive �1/3 is indicated as EDR and relation (A8) to
derive �w is indicated as SIGW.

d. Frontogenesis function

Fronts contain regions of low Ri and therefore may
be conducive to turbulence (e.g., Jacobi et al. 1996) and
can also be a source of gravity waves that may be un-
stable (e.g., Lane et al. 2004). The definition of the
frontogenesis function is (e.g., Bluestein 1993, p. 253)

F �
D

Dt
����,

where D/Dt is the Eulerian time derivative. This can be
rewritten in two dimensions, using the thermal wind
relation, as
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��� 	
��

��

D

Dt ���

����.

Expanding on a constant-� surface and invoking conti-
nuity gives

F� 
 �
D

Dt ���u

���2

	 ���

���2�1�2

�

��v
��
��1��u

��

D

Dt ��u

��� 	
��

��

D

Dt ���

����.


A9�

This is the form used in GTG at upper levels. Note that
its formulation is based on an isentropic coordinate sys-
tem (as used at upper levels in the RUC model). In that
case an alternative is to use a constant pressure p sur-
face formulation:

Fp 

�u

�p

D

Dt ��u

�p� 	
��

�p

D

Dt ���

�p�. 
A10�

This is the form used in GTG at midlevels.

e. Richardson number tendency

The index, dRi/dt (Roach 1970; Keller 1990), is based
on attempts by several investigators to forecast turbu-
lence by using a time tendency equation for the Rich-
ardson number. The version used within GTG is based
on a formulation of this equation in isentropic coor-
dinates by Keller (1990), termed Specific CAT Risk
(SCATR), given by

SCATR �
1

24
	 SV

2 , 
A11�

with

	 �
2

SV
2 F� � �H, 
A12�

and

�H � horizontal divergence �
�u

�x
	

��

�y
.
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Brown’s index (Brown 1973) is a simplification of the
Ri tendency equation originally derived by Roach
(1970). The simplifications involve use of the thermal
wind relation, the gradient wind as an approximation to
the horizontal wind, and some empiricism. Form (A13)
is the simplified Ri tendency equation, while form
(A14) is an extension to provide a measure of turbu-
lence intensity:

	 � 
0.3 �a
2 	 DSH

2 	 DST
2 �1�2 
A13�

and

� �
1

24
	 SV

2 , 
A14�

where the shearing deformation DSH � ��/�x 	 �u/�y,
the stretching deformation DST � �u/�x � ��/�y, abso-
lute vorticity �a � � 	 f, with � � ��/�x � �u/�y and f is
the Coriolis frequency.

f. Ellrod indices

Ellrod indices (Ellrod and Knapp 1992) are derived
from simplifications of the frontogenetic function. As
such it depends mainly upon the magnitudes of the
horizontal gradients of � (proportional to SV through
the thermal wind relation) and the total deformation.
The two variants developed were

TI1 � SVDEF 
A15�

and

TI2 � SV
DEF � �H�, 
A16�

where

DEF � 
DSH
2 	 DST

2 �1�2. 
A17�

g. Potential vorticity

Another index is the potential vorticity (PV) (Knox
2001) or horizontal gradient of PV (Shapiro 1978):

|PV| 
A18�

and

|�PV| , 
A19�

where

PV � �g�a

��

�p
.

h. Clark’s CAT algorithm

Clark’s CAT (CCAT; Vogel and Sampson 1996) in-
dex has been used by U.S. Navy forecasters for at least
two decades. It is defined as

CCAT � � g

T���a

f ��v · ���T

�z��, 
A20�

where T is absolute temperature.

i. Curvature measures

Tight curvatures in upper-level troughs and ridges
have been empirically related to turbulence outbreaks
(e.g., Lester 1994; Hopkins 1977; Arakawa 1952; Stone
1966). A measure of curvature is relative vorticity �,
with a maximum (positive value) in upper-level troughs
and a minimum (negative value) in upper-level ridges.
Therefore,

�2 � |� � v|2 
A21�

should be a measure of curvature in both troughs and
ridges.

Another measure may be related to inertial instabil-
ity in strongly anticyclonic flows (Arakawa 1952; Stone
1966; Knox 1997):

f�f�1 �
1

Ri� 	 ��� 0. 
A22�

j. Horizontal temperature gradient

The horizontal temperature gradient is a measure of
the deformation and also vertical wind shear from the
thermal wind relation, and is routinely used by airline
forecasters. It was also used in Buldovskii et al. (1976):

|�HT | � ���T

�x�2

	 ��T

�y�2�1�2

. 
A23�

k. Wind-related indices

Besides the speed vertical shear (A3), the wind speed

s � |v| 
A24�

may be related to turbulence. Also Endlich (1964)
noted that jet stream turbulence tended to be associ-
ated with both high wind speeds and large directional
wind shears; thus,

s���

�z� 
A25�

could be a turbulence diagnostic, where � is the wind
direction.
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l. Dutton’s empirical index

Dutton’s empirical index (Dutton 1980) is based on
linear regression analyses of turbulence reports over
the North Atlantic and northwest Europe during 1976
and various synoptic-scale turbulence indices:

E � 1.25 SH 	 0.25 SV
2 	 10.5, 
A26�

where SH is the horizontal wind shear,

SH � �u

s� �s

�y
� ��

s� �s

�x
, 
A27�

and the constants were empirically determined by Dut-
ton.

m. MOS CAT probability predictor indices

The following indices were found to be the most skill-
ful subset of a suite of turbulence diagnostics used in
NCEP’s Nested Grid Model (NGM) model output sta-
tistics (MOS) probability forecasts (Reap 1996):

|v|DEF 
A28�

and

��T

�z�DEF. 
A29�

n. Unbalanced flow

There is some evidence that regions of strong imbal-
ance may be related to turbulence aloft (e.g., Knox
1997; McCann 2001; Koch and Caracena 2002). The
UBF diagnostic (Knox 1997, 2001; McCann 2001;
O’Sullivan and Dunkerton 1995; Koch and Caracena
2002) formulation used within GTG was developed by
Koch and Caracena (2002) and McCann (2001), and
derives from the residual of the nonlinear balance
equation

UBF � ��2	 	 2J
u, �� 	 f� � �u, 
A30�

where � is geopotential, J is the Jacobian operator, and
� is the Coriolis frequency gradient.

The Lagrangian Rossby number RoL is another un-
balanced flow diagnostic originally suggested by Van
Tuyl and Young (1982). Following the definition of Ro
in Bluestein (1992, Eq. 4.1.93) and evaluating in isen-
tropic coordinates gives

RoL �
|Dv�Dt|

| fv| �
|v · �v|

| fv| �
| � �M � f k � v|

| fv| ,


A31�

where M is the Montgomery streamfunction.

The hydrostatic NWP model derived or nonhydro-
static computed vertical velocity

|w| 
A32�

and the horizontal divergence,

�H �
�u

�x
	

��

�y
, 
A33�

may also be measures of unbalanced flow.
Other unbalanced flow related diagnostics developed

by McCann (2001) and used in a case study by Knox
(2001) include

ABSIA � |�i � �c|
2, 
A34�

where

�i � |v · �v|�f and �c � Ks|v|2�f,

and

AGI � �curv 	 f �2, 
A35�

with

�curv � Ks|v|,

and where Ks is the streamline curvature.

o. NCSU1

The NCSU1 is described in Kaplan et al. (2004) and
was developed from investigations of several severe
turbulence encounters:

NCSU1 �
1

MAX
Ri, 10�5�
MAX�u

�u

�x
	 �

��

�y
, 0�|��| .


A36�

p. Negative vorticity advection

A rule-of-thumb forecasting approach used by the
airlines is to look for regions of large negative vorticity
advection (NVA) computed as follows (Bluestein 1992,
p. 335):

NVA � MAX���u
�

�x

� 	 f � � �

�

�y

� 	 f ��, 0�.


A37�

APPENDIX B

Thresholds Used with the 20-km RUC

Table B1 provides thresholds and default weights for
the upper- and midlevel turbulence diagnostics used
within the current version of GTG. The thresholds are
determined from median values for 1 yr (2003) of
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1800 UTC 6-h forecast (valid 0000 UTC) index–PIREP
pairs for each of the five major turbulence categories.
The default weights are derived from the area2 under
the PODY–PODN 6-h forecast curves (Figs. 5 and 6),
normalized so that the resultant sum is unity.
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