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We hypothesize that the observed wave number spectra of kinetic and potential energy in the

atmosphere can be explained by assuming that there are two related cascade processes emanating from

the same large-scale energy source, a downscale cascade of potential enstrophy, giving rise to the k�3

spectrum at synoptic scales and a downscale energy cascade giving rise to the k�5=3 spectrum at

mesoscales. The amount of energy which is going into the downscale energy cascade is determined by

the rate of system rotation, with negligible energy going downscale in the limit of very fast rotation. We

present a set of simulations of a system with strong rotation and stratification, supporting these hypotheses

and showing good agreement with observations.
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The wave number spectra of horizontal wind and tem-
perature in the atmosphere [1–4] (Fig. 1) display a range at
synoptic scales (� 500� 2000 km) with an approximate
k�3 dependence and a range at mesoscales (�2�500 km)

with a k�5=3 dependence, where k is the horizontal wave
number. The spectrum of horizontal wind can be taken to
be equal to the kinetic energy spectrum while the spectrum
of temperature can be translated into a potential energy
spectrum, where the potential energy here is related to the
restoring Archimedes force on a fluid element that is
vertically displaced in a static stable atmosphere. A spec-

trum of the form k�5=3 is found in 3D turbulence [5] with a
downscale energy cascade, but also in 2D turbulence with
an upscale energy cascade [6]. Charney [7] showed that
strong rotation and stratification lead to a dynamics, which
he named geostrophic turbulence, that is very similar to 2D
turbulence in that there is a second quadratic invariant
apart from energy. In 2D turbulence the second invariant
is enstrophy (half the square of vorticity) while in geo-
strophic turbulence it is potential enstrophy, defined as half
the square of potential vorticity, a quantity representing
geostrophically balanced motions for which the velocity is
tangential to the local isobar. In 2D and geostrophic turbu-
lence enstrophy and potential enstrophy, in each case
respectively, are transferred downscale which gives rise
to a k�3 spectrum at higher wave numbers than a character-

istic forcing wave number while a k�5=3 spectrum is found
at lower wave numbers.

It has been hypothesized [8–10] that the mesoscale k�5=3

spectrum is produced by an upscale energy cascade. This
hypothesis presumes that there is an important energy
source at kilometer scales [11] in addition to baroclinic
instability [12] at thousand kilometer scales. Apart from
the difficulty in identifying the nature of this energy
source, there are several other difficulties associated with
this hypothesis. Since the effect of Earth’s rotation is not
very strong at such small scales, one has to assume that
it is the effect of strong stratification that predominantly

gives rise to the upscale energy cascade [9]. Numerical
simulations of stratified turbulence [13–16] have shown
that strong stratification alone does not favor an upscale
cascade but rather a downscale cascade. Moreover, some
success has been made in reproducing the transition from a

k�3 range to a k�5=3 range in general circulation models
[17,18], mesoscale models [19,20] and idealized box simu-
lations [21,22], without the introduction of any small-scale
energy source. Despite this evidence pointing against the
upscale cascade hypothesis, it was recently revived [23] on
the basis of the results of an experiment in a layer of fluid
with electromagnetic small-scale forcing. The authors con-
cluded that ‘‘it is possible that the suppression of 3D

FIG. 1. Atmospheric spectra of kinetic energy of the zonal and
meridional wind components and potential energy measured by
means of the potential temperature. The spectra of meridional
wind and potential temperature are shifted one and two decades
to the right, respectively. Reproduced from Nastrom & Gage
(1985).
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vertical eddies induces an inverse energy cascade through
the mesoscales in the Earth atmosphere.’’ It is remarkable
that no scientific consensus yet has been reached on the
important issue whether the energy cascade through the
mesoscale range is upscale or downscale.

We take a similar point of view as Tung & Orlando [24],
who argued that a weak downscale energy cascade is
generated from the large-scale forcing, but is shadowed
by the downscale cascade of potential enstrophy, which is

producing a spectrum of the form EðkÞ � �2=3k�3 at syn-
optic scales [7], where � is the flux of potential enstrophy.

At a transition wave number kt �
ffiffiffiffiffiffiffiffiffi
�=�

p
, where � is the

downscale energy flux, the energy cascade will become

visible and the spectrum will gradually change to EðkÞ �
�2=3k�5=3. While Tung & Orlando assumed that the weak
energy cascade is produced already in the limit of zero
Rossby number (very strong rotation), we make the hy-
pothesis that it is a finite Rossby number effect. To test this
hypothesis, we consider the so-called primitive equations

Duh

Dt
¼ �rhp� fez � uh; (1a)
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Dt
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r � u ¼ 0; (1d)

where u is the velocity vector, uh is the horizontal part of
u, w is the vertical velocity component, ez is the vertical
unit vector, p is the pressure, N is the Brunt-Väisälä
frequency, b ¼ g�=ðN�0Þ is the buoyancy, where � and
�0 are the fluctuating and background densities, respec-
tively, g is the acceleration due to gravity and f is the
Coriolis parameter. We reformulate the system in terms of
the potential vorticity and two ageostrophic components:
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where u and v are the velocity components in the x and y
direction, respectively. The equations have been subject to
nondimensionalization using geostrophic scaling [7], i.e.,

x� L; y� L; z� f=NL; t� L=U;

u�U; v�U; w� RoUf=N; b�U;

q�U=L; a1 � RoU=L; a2 � RoU=L;

(3)

where Ro ¼ U=fL is the Rossby number.

Including small-scale and large-scale friction, the sys-
tem can be rewritten as follows
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Apart from the viscous parameters, the Rossby number
constitutes the single adjustable parameter that enters the
equations, whereas the Froude number, Fr ¼ U=LN, is
implicitly set to zero through the assumption (1b) of hydro-
static balance [25]. The inviscid, unforced system con-
serves total energy, ðu2 þ v2 þ b2Þ=2. In the limit
Ro ¼ 0, it reduces to Charney’s equation [7] which apart
from energy also conserves potential enstrophy, q2=2.
The system (4) is solved using a pseudo spectral method,

with full dealiasing, in a triply-periodic (2�� 2�� 2�)
domain with a resolution of 10243 grid points. Observe that
the box is cubic in the space where the vertical coordinate
is stretched by a factor of N=f. Translated to midlatitude
atmospheric dynamics this would correspond to a real
space box aspect ratio of f=N � 0:01. The velocities and
the buoyancy are recovered by inverting the nondimen-
sional counterpart of (2) which contains the Rossby num-
ber but not the Froude number. A random forcing is
introduced in the potential vorticity equation. The forcing
is white noise in time and restricted to the wave number
shell k 2 [3,5], i.e., it is isotropic in the space where the
vertical coordinate has been stretched. The potential ens-
trophy injection rate, �, is perfectly controlled and is set to
unity. Consequently, the energy injection rate, P, is also a
controlled parameter. We carry out six simulations for
Ro ¼ ½0; 0:025; 0:05; 0:075; 0:1; 0:2� and the correspond-
ing values �S ¼ ½2:4; 1:9; 1:9; 1:9; 4:0; 6:2� � 10�18 of the
small-scale viscous parameter, while the large-scale vis-
cous parameter has the same value �L ¼ 0:12 in all simu-
lations. The Rossby number can also be interpreted as
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Ro ¼ �1=3=f. Cho and Lindborg [26] made the estimate
�� 10�15 s�3 from structure function analyses in lower
stratosphere. If this value is representative for the atmo-
sphere we would obtain Ro� 0:1 at midlatitude. The
reason why we have increased �S in the two highest
Rossby number simulations is that a larger amount of
energy is going downscale in these simulations. To make
sure that dissipation takes place at the resolution scale, �x,

we need a �S scaling as ��1=3ð�xÞ22=3, where � is the
downscale energy flux.

The total spectral energy flux can be calculated as

�ðkÞ ¼ � Xk
k0¼0

Im½kxðû2û� þ cuvv̂� þ cubb̂�Þ
þ kyðv̂2v̂� þ cuvû� þ cvbb̂�Þ
þ Rokzðcuwû� þ cvwv̂� þ cwbb̂�Þ�; (5)

where the hat denotes the Fourier transform and k0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
. In Fig. 2(a), we see �ðkÞ normalized by

the energy injection rate P. There is a monotonic decrease
of �=P with increased rate of rotation. For all Rossby
numbers, there is a range of constant positive flux, �,
showing that there is a downscale energy cascade. In
each constant energy flux range there is negligible dissi-
pation. For Ro ¼ 0 less than 1000th of the injected energy
is going downscale. For Ro> 0, we find that � / Ro1:5P,
approximately. In Fig. 2(b), we see the horizontal spectra
of total energy. For both Ro ¼ 0:2 and Ro ¼ 0:1 we find a
clear range where the total energy spectrum scales as

EðkÞ ¼ C�2=3k�5=3, with C � 1:1 for Ro ¼ 0:2 and C �
1:4 for Ro ¼ 0:1. We find that the ratio between the kinetic
and potential energy is a little bit larger than 2 in this range,
consistent with previous simulations of stratified turbu-
lence [14]. For Ro ¼ 0, the spectrum is slightly steeper

than, but close to, K�2=3k�3 with K � 2:2, consistent
with the prediction of Charney [7] and previous simula-
tions of geostrophic turbulence [27]. For Ro ¼ 0:025, the
spectrum is slightly more shallow than k�3.

The sign and the magnitude of the kinetic energy flux,
�K, can be estimated by measuring third-order velocity
structure functions, which are third-order statistical mo-
ments of differences between the velocity components
measured at two points which are separated by a distance
r. Kolmogorov [28] derived the relation DLLL ¼
�4�Kr=5, for the longitudinal third-order structure func-
tion of isotropic 3D turbulence, where L refers to the
direction of the separation vector r. For 2D turbulence a
similar derivation [29] gives DLLL ¼ �3�Kr=2 where �K
in this case is negative since the cascade is upscale. In the
enstrophy cascade range of 2D turbulence one finds that
DLLL ¼ �r3=8, where � here is the enstrophy flux [29].
Wind data from the lower stratosphere were used [26] to
calculate the sum D ¼ DLLL þDLTT , where T refers to a

velocity component perpendicular to r. It was found thatD
has a negative linear dependence on r at mesoscales. At
r � 300 km, D switches sign and at synoptic scales there
is a narrow range where D approximately scales as�r3. In
Fig. 3(a) we see that D is preferentially negative in the
higher Rossby number runs, with a change of sign moving
towards larger scales with increasing Rossby number. In
the highest Rossby number runs we find that D � �2�Kr,
in the forward energy cascade range, which is the relation
that was used [26] to estimate �K. In Fig. 3(b) we see thatD
is preferentially positive for the lowest Rossby number
runs for which D� r3, with a particular good agreement
for Ro ¼ 0.
With a forcing acting at a particular wave number kf the

enstrophy and the energy injection rates are approximately

related as � ¼ k2fP. With �� Ro3=2Pwe can thus estimate

the transition wave number as kt �
ffiffiffiffiffiffiffiffiffi
�=�

p � Ro�3=4kf. In

the atmosphere, the most unstable wave number of baro-
clinic instability can be estimated as kf � 2�=ð4LRÞ,
where LR is the Rossby deformation radius. If the relation

�� Ro3=2P also would hold in the atmosphere, we would

thus obtain a transition wave number kt � �Ro�3=4=ð2LRÞ
and a corresponding transition scale Lt � 4LRRo

3=4. With
LR ¼ 1000 km and Ro ¼ 0:1, we obtain Lt � 700 km, in
reasonable agreement with observations (Fig. 1).
In agreement with previous simulations [18,20,22,30]

and data analysis [31], our simulations show that the
kinetic energy content in horizontally divergent modes is

FIG. 2 (color). (a) Energy flux as a function of wave number k
normalized by the energy injection rate. The magnitude of the
flux is increasing with increasing Rossby number. From bottom
to top: Ro ¼ ½0; 0:025; 0:05; 0:075; 0:1; 0:2�, (b) energy spectrum
for different Rossby numbers with the same colors as in (a). The
k�3 (dashed) and k�5=3 slopes (dotted) are indicated.
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of the same order of magnitude as the content in rotational
modes, in the mesoscale range. Koshyk and Hamilton [30]
interpreted the energy content in the divergent modes as a
signal of gravity waves. In a future study, we will address
the issue of the possible importance of gravity waves by
carrying out frequency analyses.

In conclusion, our numerical experiment shows that the
same type of spectrum as found in the atmosphere can be
generated from a single energy source in a system with
strong stratification and strong but finite rotation. The

experiment suggests that the atmospheric k�5=3 mesoscale
spectrum can be explained by the existence of a downscale
energy cascade whose strength is regulated by the Rossby
number. Moreover, the simulations show a third-order
structure function,D, which is consistent with observations
from the lower stratosphere.

Computer time provided by SNIC (Swedish National
Infrastructure for Computing) is gratefully acknowledged.
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