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ABSTRACT

Bulk mass-flux models represent the large eddies that are primarily responsible for the turbulent fluxes in the
planetary boundary layer as convective circulations, with an associated convective mass flux. In order for such
models to be useful, it is necessary to determine the fractional area covered by rising motion in the convective
circulations. This fraction can be used as an estimate of the cloud amount, under certain conditions. “Matching”
conditions have been developed that relate the convective mass flux to the ventilation and entrainment mass
fluxes. These are based on conservation equations for the scalar means and variances in the entrainment and
ventilation layers. Methods are presented to determine both the fractional area covered by rising motion and
the convective mass flux. The requirement of variance balance is used to relax the “well-mixed” assumption.
The vertical structures of the mean state and the turbulent fluxes are determined analytically. Several aspects
of this simple mode!’s formulation are evaluated using results from large-eddy simulations.

1. Introduction

The “bulk” approach to parametric representation
of boundary-layer processes in large-scale models, pi-
oneered by Deardorff (1972 ) and further developed by
Randall (1976), Benoit (1976), and Suarez et al.
(1983), involves a simple planetary boundary layer

(PBL) model in which some aspects of the vertical .

structure of the mean state are parameterized. Among
the parameters introduced to represent the mean state
are the PBL depth, which is prognostically determined,
and “jumps” or discontinuities at the PBL top. The
use of jumps amounts to a concession that, although
the fine structure near the PBL top is important for
the PBL physics, it is unresolvable by any grid that can
be used in a large-scale model. Extensive results from
a PBL parameterization based on a bulk model have
been reported by Randall et al. (1985).

The key shortcomings of existing bulk models are
their assumption of vertical homogeneity for conser-
vative variables and their inability to predict fractional
cloud amounts. In attempts to address these deficien-
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cies, a number of recent studies (cited below) have
made use of a convective mass-flux parameterization.

The mass-flux concept was invented for use in a
cumulus parameterization by Arakawa (1969). It was
later adapted to the problem of boundary-layer param-
eterization by Betts (1973, 1983), Albrecht et al.
(1979), Hanson (1981), Penc and Albrecht (1986),
Wang and Albrecht (1986, 1990), Randall (1987), and
Chatfield and Brost (1987). We refer to bulk boundary-
layer models that use the mass-flux concept as “bulk
mass-flux models.” In such models the convective mass
flux is assumed to be associated with convective cir-
culations that have ascending and descending branches.
Several of the modeling studies just cited allow the
possibility that cloudiness can occur (or not) in either
branch. The concept of “convective circulations” has
also been used in observational studies (based on con-
ditional sampling or joint distribution functions, or
both) by Lenschow and Stephens (1980, 1982),
Greenhut and Khalsa (1982), Wilczak and Businger
(1983), Mahrt and Paumier (1984), Grossman
(1984), Khalsa and Greenhut (1985), Penc and Al-
brecht (1986), and Young (1988a,b). Recently, it has
been applied to analyze the results of large-eddy sim-
ulations by Schmidt and Schumann (1989), Schu-
mann and Moeng (1991a,b), and Moeng and Schu-
mann (1991).

The existing bulk mass-flux models do not match
the fluxes associated with the convective mass flux with
those driven by ventilation at the surface and entrain-
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ment at the top. Also, no existing bulk mass-flux model
includes a physically based method to determine o, the
fractional area covered by rising motion. Finally, most
of the existing bulk mass-flux models have retained the
“well-mixed” assumption, with the notable exceptions
of Betts (1973), Albrecht et al. (1979), and Wang and
Albrecht (1990).
This paper addresses all three of these problems.

2. Convective mass-flux model

The basic framework of our model is shown in Fig.
1. The level just above the PBL top is denoted by sub-
script B+, while the earth’s surface is denoted by S—.
We define an infinitesimal “ventilation layer” just
above the earth’s surface and an infinitesimal “en-
trainment layer” just below the PBL top. These are
indicated by stippling in Fig. 1. The ventilation layer
is more conventionally known as the surface layer. The
entrainment layer is the region within which the tur-
bulent fluxes drop sharply from finite values to zero.
Caughey et al. (1982) and Nicholls and Turton (1986)
describe the entrainment layer as a thin region of weak
organized vertical motions and vigorous small-scale
mixing. The top of the ventilation layer will be denoted
by subscript .S, and the base of the entrainment layer
by subscript B. The depth of the PBL (in terms of
pressure) is denoted by dp,,.

The generic variable ¢ will be used to represent a
prognostic intensive scalar such as the dry static energy,
the mixing ratio of water, or a velocity component.
Area-averaged values of ¢ are denoted by . The up-
ward turbulent flux of ¥ is denoted by ;. The midlevel
of the PBL. is indicated by the dashed line in Fig. 1; it
is representative of the interior of the PBL and will be
denoted by subscript 1. '

S-

FIG. 1. Diagram illustrating the assumed structure of the PBL.
The interior, which is represented by two layers, is bounded above
by a thin entrainment layer and below by a thin ventilation layer.
Convective circulations occur, with rising branches occupying frac-
tional area o. The ascending and descending branches have different
thermodynamic soundings and, therefore, different cloud-base levels.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 20

~ An entrainment mass flux F carries mass across the
PBL top and is closely related to the turbulent fluxes
at the base of the entrainment layer. Correspondingly,
a ventilation mass flux V is associated with the surface
fluxes; in conventional parlance, V is the product of
the surface air density, the surface wind speed, and a
transfer coeflicient. The fluxes at the top of the venti-
lation layer are assumed to be approximately equal to
those at the surface. As explained later, the model in-
corporates diagnostic balances for mass ¥ and y’'? for
both the entrainment and ventilation layers. These
layers are assumed to be thin enough so that these ap-
proximations are applicable.

Within the ventilation layer, the turbulent fluxes
have to be carried by small eddies, since the organized
vertical motions associated with the convective circu-
lations must vanish there. Within the entrainment layer
the organized vertical motions associated with the con-
vective circulations become negligible. Since the tur-
bulent fluxes vanish above the PBL top, however, it is
not necessary to hypothesize that small-eddy fluxes are
important in the entrainment layer. Nevertheless, the
existence of small eddies within the entrainment layer
is well known from observations (e.g., Rayment and
Readings 1974).

As indicated in Fig. 1, we assume that the turbulent
fluxes in the interior of the PBL are entirely due to the
convective circulations, with rising branches covering
fractional area ¢ and sinking branches covering frac-
tional area 1 — ¢. Some authors (e.g., Greenhut and
Khalsa 1982 )have suggested a third, “‘environmental”
domain in which the vertical motion is nearly zero:
We are not willing to accept such-a complication with-
out strong evidence that it is really necessary. The re-
sults of Schumann and Moeng (1991a) suggest that it
is not. '

There have been numerous observations and nu-
merical simulations yielding values of ¢, based on var-
ious sampling methods. The méthods used and results
obtained are summarized in Table 1. Note that the
various studies are based on data from several different
PBL regimes and employ several different definitions
of . They have yielded a variety of numerical values
for ¢. For example, Manton (1977), Coulman (1978),
and Lenschow and Stephens (1978 ) have adopted def-
initions involving not only the vertical velocity fluc-
tuations but also .the thermodynamic fluctuations. In
these three studies, ¢ is found to be considerably less
than 0.5. All of the remaining studies have adopted
definitions based only on the sign of the vertical ve-
locity. Greenhut and Khalsa (1982) and Schumann
and Moeng (1991a) define three domains: updrafts,
downdrafts, and an environment. The updrafts consist
of regions in which the vertical velocity exceeds a pos-
itive threshold. If we take the fractional area covered
by updrafts to be ¢, then Greenhut and Khalsa obtained
o = 0.16, by far the smallest value obtained in any of
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TABLE 1. Summary of observations and simulations of the fractional area covered by rising motion in several studies.
Here { ) denotes the expected value.
Sampling method used to
Author Source of data define “updraft™ Mean ¢
Manton (1977) Observations T > T such that {(w(Ty)) = 0 0.42
Coulman (1978) Observations Similar to Manton (1977) 0.38
Lamb (1978) LES results for clear PBL Vertical velocity is positive 0.45
Greenhut and Khalsa Observations Vertical velocity exceeds a 0.16
(1982) positive threshold. Three

domains are defined: one

for updrafts, one for

downdrafts, and one for

“environment.”
Lenschow and Observations Moisture fluctuation is 0.25

Stephens (1982) positive
Young (1988a) Observations Vertical velocity is positive 0.46
Nicholls (1989) Observations of stratus- Vertical velocity is positive 0.70
topped PBL over the
North Sea

Schumann and Moeng LES results Vertical velocity exceeds a 0.35

(1991a)

positive threshold. Three
domains are defined: one
for updrafts, one for
downdrafts, and one for
“environment.”

the studies, while Schumann and Moeng obtained o
= (.35. We note, however, that Schumann and Moeng
concluded that little is to be gained by defining an en-
vironment for the updrafts and downdrafts.

" The remaining three studies listed in Table 1 [i.e.,
those by Lamb (1978), Young (1988a), and Nicholls
(1989)] adopted definitions of ¢ that are essentially
the same as ours, namely, that ¢ is the fractional area
covered by positive vertical velocity. The first two au-
thors obtained values of ¢ equal to or slightly less than
0.5. Only the observations of Nicholls (1989), obtained
by aircraft in stratocumulus clouds, show ¢ near 0.7.
We conclude that ¢ is by no means a universal constant
but that with the definition we have adopted here we
should expect ¢ to be not too different from one-half
under some conditions of interest.

Consider an arbitrary scalar ¢ satisfying a conser-
vation equation of the form

a i)
Py (py) = —V-(pV¥) — e (pwy) + 8y, (2.1)

where p is the density, which is quasi constant in time
and the horizontal, as in the usual anelastic approxi-
mation: V is the horizontal velocity vector; w is the
vertical velocity; and S, is the source of ¥ per unit mass
per unit time. The local time derivative and the V op-
erator are defined on constant height surfaces.

Area averages satisfy

¥ = uo + Ya(l — o). (2.2)

Here subscripts u and d denote upward and downward

moving parcels, respectively. The fluxes associated with
the convective circulations are given by
Fy=pw{' = p[(wy — W)Yy — ¥)o
+ (wa = W)(Ya — ¥)(1 = 0)]

= M.(Yu — ¥a), (23)

where

M. = po(1 = o) (W, — Wa) (2.4)
is the convective mass flux.

For later use, we note that the variance of y is given
by

¢12

oY — )+ (1 = o) (Y — ¥)?
o(1 — a)(Yu — Ya)?

a(l — a)(]%)2 s

while the plume-scale variance transport can be written
as

WYY = pla(w, — W)(¥u — ¥)?
+ (1 = o) (wa— w)(¥a— ¥)*]
= pa(l — a)(1 — 2a)(wy, — wa)(¥,, — \bd)z

(F?
M,

(2.5)

= (1 - 20) (2.6)
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According to (2.6), pw'y'yY’ is positive (upward
variance transport) if o is less than 15 and negative
(downward variance transport) if ¢ is greater than 1/;.
For ¢ = 1/» the variance transport vanishes. It follows
that if the ventilation layer is exporting variance [ pro-
duction exceeds dissipation, and (pw'y'y')s is up-
ward], then o5 must be less than 1/2; this would nor-
mally be the case for a clear convective PBL driven by
surface heating. Similarly, if the entrainment layer is
exporting variance [production exceeds dissipation,
and (pw'y'Y')p is downward], then o5 must be greater
than 1/5.

Now and from time to time throughout the rest of
this paper, we investigate the consistency of our simple
model with LES results obtained by C.-H. Moeng.
These results are similar to the stratocumulus simu-
lations of Moeng (1986) except that the domain size
was doubled to 5 km X 5 km X 1 km and 803 grid
points were used. The vertical resolution was 12.5 m.
The horizontal resolution was 62.5 m. We have used
six LES history records, spaced 250 simulated seconds
apart. These same LES results were analyzed by Schu-
mann and Moeng (1991a; their “STBL” case).

Figure 2 shows % /¢, and g, plotted as functions of
height. Here 4 = 5, — Lg,, ¢, is the specific heat of air
at constant pressure, and g, is the total mixing ratio
(vapor plus liquid). We use s, to denote the virtual dry
static energy and g, to denote the liquid water mixing
ratio. The figure shows averages over the six LES history
records. The expected well-mixed interior and near-
discontinuities at the top and bottom of the PBL are
readily apparent.

We propose a method to determine ¢ and M, based
entirely on the vertical velocity statistics and suggested
by the analysis of Moeng and Rotunno (1990). The
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idea is to use (2.2), (2.5), and (2.6) with ¢ = w and
to solve these three equations for the three unknowns
g, w,, and w,. The convective mass flux can then be
evaluated using (2.4). We find that

1 Sw
T2 aarsy @7
where
;v/_3
Sy = W (2.8)

is the skewness of the vertical velocity. A similar result
was obtained by Wyngaard and Brost (1984). Accord-
ing to (2.7), o is less than 1/ when the skewness is
positive and greater than 1/ when the skewness is neg-
ative. The form of (2.7) guarantees that 0 < ¢ < 1.
The convective mass flux satisfies

o) (2.9)
¢ VYa+s2

One advantage of this approach is that it guarantees
consistency between the mass flux and the variance of
the vertical velocity, within the context of the mass-
flux model. A second advantage is that it can be used
to determine ¢ and M, in a higher-order closure model.
Of course, we cannot use this method to determine ¢
and M, in a bulk mass-flux model because such a model
does not provide the needed input data; for example,
S, is not available. Later, in section 4, we present a
method that can be used to determine ¢ and M, in a

bulk mass-flux model.
Figure 3a shows the profiles of w, and w, obtained
by the method described above and by directly sam-

800

|||||||||

o

600}
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200f ;
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FIG. 2. The vertical profiles of / and g, plotted as functions of height.
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FiG. 3. (a) The vertical profiles of w, and w, obtained by the
method described in section 2 (solid curves) and also by directly
sampling the LES results (dashed curves). (b) The vertical profiles
of ¢ (solid curve) and M, (dashed curve), plotted as functions of
height normalized by the PBL depth. Values are not plotted above
the PBL top since ¢ and M, have little meaning there.

pling the LES results. The profiles are quite similar,
but the method proposed here systematically overes-
timates the magnitudes of w, and w,. Figure 3b shows
the profiles of ¢ and M., obtained from the LES results
by the method described in the preceding paragraph.
Although o is close to 0.5 at all levels, it decreases no-
ticeably upward through most of the PBL’s depth, from
about 0.6 near the surface to about 0.4 slightly below
the PBL top. This is consistent with the analysis of
Moeng and Rotunno (1990). The convective mass flux
has a roughly parabolic profile, with a maximum
slightly above the midlevel of the PBL, and much
smaller values near the surface and the PBL top. The
maximum value of M. is about 0.45 kg m2s~".
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Using (2.2) and (2.3), we can evaluate y, and ¥, as
follows:

Y=V + __11‘—4.7&’ (2.10)
‘/’d=¢_A%“F¢. (2.11)

The values of ¥, and y, obtained directly by conditional
sampling (based on the sign of the vertical velocity)
are slightly different from those obtained from the
fluxes using (2.10)-(2.11). This is shown in Fig. 4a
for i/ ¢, and in Fig. 4b for g,. In these figures the solid
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F1G. 4. Profiles of ¥, and ¥, calculated directly by conditional
sampling (based on the sign of the vertical velocity) and from the
fluxes using (2.10)-(2.11). (a) for h/c,; (b) for g,. The solid lines
show the updraft and downdraft properties obtained from (2.10) and
(2.11), and the dashed lines show the corresponding values based
on conditional sampling.
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lines show the updraft and downdraft properties ob-
tained from (2.10)-(2.11), and the dashed lines show
the corresponding values based on conditional sam-
pling. The updrafts are “warm” and “wet,” and the
downdrafts are “cold” and “dry.” To give the correct
fluxes, (2.10)-(2.11) make the updrafts warmer and
wetter and the downdrafts colder and drier than the
corresponding updraft and downdraft properties ob-
tained by conditional sampling (cf. Young 1988a;
Wang and Albrecht 1990; Schumann and Moeng
1991a). The discrepancies are fairly small, however,
compared to the differences between the updraft and
downdraft properties. These discrepancies are due to
the “top-hat” profiles assumed in the convective mass-
flux model. In a sense, the mass circulation of the con-
vective mass-flux model produces fluxes less efficiently
than the more realistic simulation produced through
LES. In the remainder of this paper we use ¥, and ¥4
as determined from (2.10)-(2.11).

3. Matching the fluxes

The surface fluxes are assumed to satisfy the usual
bulk aerodynamic formula,

(Fps = V(¥s- — ¥s), (3.1)

where Vis the “ventilation mass flux,” which is usually
written as the product of surface wind speed, a transfer
coefficient, and the surface air density.

We assume that the fluxes at the top of the venti-
lation layer are entirely due to the convective circu-
lations and that the small-eddy fluxes are negligible
there. Using this assumption with (2.3) and (3.1), and
also using our assumption that the ventilation layer is
thin, we can write

V(¥s- — ¥s) = Mes(Yu — Va)s. (3.2)

This condition implies a consistency between the fluxes
obtained from the bulk formula and those determined
from the mass-flux model. Wang and Albrecht (1990)
did not impose (3.2) or the corresponding condition
at the PBL top (discussed later).

At level S the parcels rising away from the lower
boundary must be “charged” with the properties of the
boundary. We cannot assume, however, that the prop-
erties of the updrafts at level S are the same as those
of the boundary, because there can be very strong gra-
dients across the ventilation layer. The small eddies of
the ventilation layer rapidly dilute air that has been in
contact with the boundary by mixing it with air that
has recently descended from the interior of the PBL.
As a result, |Ys- — ¥s| > (Y — Ya)s|; from (3.2)
this implies that M, ¢ > V. In order to take this into
account we introduce a nondimensional parameter X
such that

(Yu)s — ¥s = Xv(¥s- — ¥s); (3.3)
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in case Xy = 1, we get (¥,)s = ¥s_. Smaller values of
Xy indicate stronger mixing by the small eddies of the
ventilation layer. We expect 0 < Xp < 1. By combining
(2.2), (3.2), and (3.3), we find that

XVGV = 1 — O0gs, (3.4)

where Gy = M, s/V. This is a “continuity equation”
for the eddies, expressing a relationship between the
convective mass flux and the ventilation mass flux.

In the preceding discussion it has been tacitly as-
sumed that X, is independent of ¥, that is, that a single
“mixing” parameter X, satisfies (3.3) whether ¢ is
moist static energy, total water mixing ratio, or some
other intensive scalar. This assumption is supported
by (3.4); if M_ s, V, and o5 are all independent of ¢,
then X, must also be independent of . Such indepen-
dence suggests that X is a useful concept.

We now apply a similar analysis to the entrainment
layer. The assumption that it is thin yields the familiar
“jump” relation between (F,)p and the entrainment
rate:

(Fy)s = —E(Ys+ — ¥5) — J;“ Edl. (3.5)

Here E is the rate at which mass is entrained across
the PBL top. In (3.5) we follow Lilly (1968) by keeping
the S, term, which represents a possible concentrated
entrainment-layer “source” of ¢ (e.g., due to radia-
tion). We now assume that the fluxes at the base of
the entrainment layer are entirely due to the convective
circulations and that the small-eddy fluxes are negli-
gible. Then, by comparing (2.3) and (3.5) and using
(2.2), we obtain

M, g(Ya— V)8 = Eop(¥p+ — ¥5) + 0B J; " Sydz.

(3.6)

At this point, we introduce a mixing parameter Xg
by analogy with (3.3). To allow for the effects of the
concentrated source, however, we include an additional
term:

(Wa — ¥)s = Xe(¥ps — ¥5) + KJ;M Sydz. (3.7)

Here A is a coefficient that is determined later. Ac-
cording to (3.7), the properties of the descending air
at level B are related to those of the free atmosphere
just above the PBL top, as modified by small-eddy
mixing and the effects of any concentrated source
within the entrainment zone. Since there is a sharp
gradient of ¢ across the entrainment layer, we expect
0<xg<l.

The mixing parameter Xg is closely related to the
parameter X discussed by Siems et al. (1989) (see also
Albrecht et al. 1985; Nicholls and Turton 1986). We
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can interpret Xz as the value of X associated with the
downdraft air at level B. Further discussion is given
later in this section.

Comparing (3.6) with (3.7), we find that

(—M_.gXg + Eog)(¥s+ — ¥5)
+ (=M, 3\ + o5) fzm S,dz=0. (3.8)

In case the source term of (3.8) vanishes, we obtain
(3.9)

where Gg = M, g/ E. This relationship does not involve
¥; it must therefore apply for all Y. To ensure that
(3.9) will be satisfied even when the source term of
(3.8) is not zero, we must choose

A= O'B/MC,B- (310)

We can interpret (3.9) as another “continuity equa-
tion,” analogous to (3.4). Again, we have tacitly as-
sumed that Xz is independent of the species under con-
sideration. This assumption is consistent with (3.9),
since M, 5, E, and op are independent of species. We
can use (3.9) to eliminate M, pin (3.6), or alternatively,
use (3.10) to eliminate A in (3.7); either way, the result
is

XgGg = op,

_ - X ZB+
(Vado = XeBs + (1 = Xp)o + f S, dz.

(3.11)

According to (3.11), the descending air at level B has
the properties of the free atmosphere, except as mod-
ified by mixing (when Xz < 1) and by the concentrated
source. Caughey et al. (1982) and Nicholls (1989) have
reported observations of cool downdrafts in the upper
portions of stratocumulus cloud sheets. They con-
cluded that the sinking air had been radiatively cooled
near the cloud top. Such effects are represented by the
Sy term of (3.11).

This term is inversely proportional to E, which
means that radiative cooling in the entrainment layer
can produce negatively buoyant parcels most effectively
if the entrainment rate is slow. This suggests that en-
trainment driven by radiative cooling near cloud top
tends to be self-limiting.

According to (3.4), ventilation-layer dilution be-
comes more effective (in other words, X decreases) as
the convective mass flux increases relative to V(1
— ds). The ventilation mass flux times the fractional
area covered by the incoming downdrafts is a measure
of the rate at which the updrafts leaving the ventilation
layer can be supplied with air that has been charged
with surface properties, and the convective mass flux
is a measure of the rate at which this air is removed
from the surface layer. The stronger the convective
mass flux becomes, the less effectively ventilation-layer
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air can be charged with surface properties before it is
carried away into the interior of the PBL. A similar
interpretation can be given for (3.9).

If we combine (3.4) and (3.9) and assume that ¢ is
independent of height through the depth of the PBL
so that o5 = o5, we find that

1
1+ Xy Gy/XeGs

[

(3.12)

Suppose that M., is also independent of height so that
M. s = M_g. If we substitute (3.12) back into either
(3.4) or (3.9) and use the definitions of Gy and Gg,
we obtain

1 = EIX5)(V/Xy)
O (E/xg)+ (VIXy)'

(3.13)

With the assumption that M. is independent of height,
(3.12) can be rewritten as

E Xy
=1/(1+=2K).
’ /( VXE)

Of course, bulk PBL models normally include param-
eterizations for V and E. If we have a parameterization
of Xy/Xg, then (3.14) can be used to determine o.
Note that the forms of (3.12) and (3.14) ensure that
0 < o < 1. We use both (3.13) and (3.14) later in this
paper.

The profiles of o and M, shown in Fig. 3 are not
independent of height. Nevertheless, the assumption
that these two parameters are vertically uniform is of
interest as a particularly simple special case.

Now we test the main conclusions of this section,
using the LES results.

First we have to identify levels S—, S, B, and B+
based on the LES output. In this we are guided not
only by the mean structures but also by the turbulence
results, since we have defined the ventilation and en-
trainment layers in terms of the relative importance of
small-eddy fluxes. Figure 5 shows the mean structure
of the total moisture g, (g kg™', solid line) and the
ratio of the subgrid moisture flux to the total moisture
flux. The ratio becomes appreciable only near the top
and bottom of the PBL. We identify the entrainment
and ventilation layers as those regions within which
the ratio exceeds 0.1. We have also taken into account
the mean structure. The entrainment and ventilation
layers that we have identified are indicated in Fig. 5.
The height of level S— is zero (the surface), while level
S'is at 62.5 m, level B is at 475 m, and level B+ is at
537.5 m. The average cloud top is near 504 m. Since
the vertical grid spacing of the LES model is 12.5 m,
there are four model layers inside the ventilation layer
and four more inside the entrainment layer.

Averaging over six LES history records, we obtain

(3.14)
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FIG. 5. For the LES results, the ratio of the subgrid-scale moisture
flux to the total flux. The ventilation and entrainment layers are
indicated by stippling.

the following numerical values for the mean-state vari-
ables:

hp+/c, = 295.73 K,

hgs/c, = 285.45 K,
(g)s+ = 422gkg™",
(¢)s=17.18gkg™,

hs/c, = 285.51 K,

hs_/c, = 288.67 K,
(g)s=1723gke™",
(g:)s-=9.80gkg™.

These values are indicated in Fig. 2.

We have evaluated the ventilation mass flux from
the LES results, as the ratio of the surface flux of 4 or
q, to the surface-air difference in the same quantity,
as indicated in (3.1). Averaging over six LES history
records, the ventilation mass flux based on 4 is 1.04
X 1072 kg m~2 7!, while that based on ¢, is 0.965
X 1072 kg m~2s~!. We estimate, therefore, that the
correct value of Vis about 1.0 X 102 kgm2s™".

Table 2 gives the entrainment mass flux E as eval-
uated from the LES data by the following methods.

Method HA:

_ AR+ (Fay = (F)s

En Ah
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Method HB:
AR — (Fy)s
E, = —
g Ah
Method QA:
Eq - (th)B: (th)B
Ag,
Method QB:
_ _(F q)B
E, ™
Method Z:
dz _
E=p —(Z‘Z — pWp.

Here z is the cloud-top height. Methods HA and QA
include the small contributions from the fluxes at level
B+, and so are a priori more reliable than methods
HB and QB. Our results indicate that the effect of fluxes
at level B+ on the estimated entrainment rate amounts
to about 20%. Method Z does not give a reliable value
for the entrainment rate because of uncertainties in
determining the values of zr and especially its time
change; we have shown only the average value based
on the total length of the record available to us. From
the results given in Table 2, we conclude that the correct
value of E is about 0.82 X 1072 kg m™2 s™!. This cor-
responds to an “entrainment velocity” of about 25
m h™! or about 600 m day™', which is in line with
observations (e.g., Nicholls and Turton 1986). Note
that E and V are quite comparable in magnitude.

We have argued that X, and X are independent of
species. Do the LES results support this? Substituting
(2.10) and (2.11) into (3.3) and (3.6), and using
(3.10), we obtain expressions for X; and Xg:

SN[ET
McS ¢S— —‘#S ’

TABLE 2. The LES entrainment mass flux in 1072 kg m~2s™!, as
determined by methods HA, HB, QA, QB, and Z. See text for
explanation of the methods.

(3.15)

History record number

1 2 3 4 S 6 Average
HA 0.803 0.768 0.816 0.814 0.797 0.841 0.806
HB 0660 0.639 0.666 0.691 0.741 0.767 0.694
QA 0.819 0.786 0.859 0.835 0.853 0.833 0.831
QB 0.633 0.625 0.670 0.671 0.760 0.733  0.682
V4 0.656
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ZB+
(ﬂb+f Sydz
2

op
Xg = — = = 3.16
£ (MC,B) A (3.16)
For ¢ = g,, we have S, = 0, while for ¢ = # we have
ZB+ _ - 2B+ oT
—f Sydz = AR = — pcp(—) dz, (3.17)
Zp zZp at RAD

where (97°/0¢)rap is the heating rate due to longwave
radiation.

Using the methods of section 2, we have evaluated
o and the convective mass fluxes at levels B and S.
The results, averaged over the six history records, are
os=0.595,05=0.352, M, s =0.316 kgm 2 s~!, and
M.z = 0.235 kgm 25!, From the mass fluxes, we
obtain Gy = 31.56 and G = 28.66. We have also eval-
uated AR by using (3.17). The result is AR = 82.1
W m™2. In a similar way, we have determined that the
radiative flux “jump” across the ventilation layer is a
warming of 2.2 W m—2.

We have also determined X, and Xz using each of
the six LES history records. For this purpose, we used
(3.3) and (3.7), with the numerical values of ¢,, ¥4,
and y given earlier. The results are given in Table 3.
The X obtained for ¢ = h and ¢ = g, agree very well.
Note that X, is generally a little bit larger than X ,.
If we include the small radiative flux jump across the
ventilation layer, we find that the two X agree as well
as the two Xz do. On the basis of these results, we con-
clude that Xy = 1.22 X 1072 and that Xz = 1.02
X 1072, The good agreement between the values of X
obtained with A and g, supports our assertion that X,
and X are independent of species. As expected, both
Xy and X g are small compared to unity. Their numer-
ical values are quite similar.

Since we have chosen ¥V and E so that (3.1) and
(3.5) are satisfied, the good results presented above for
Xy and Xz ensure that (3.4) and (3.9) will be satisfied.
Substituting our “‘best estimates” of E, V, X, and Xg
into (3.14), we find that the effective height-indepen-
dent value of ¢ is 0.505, in reasonably good agreement
with the LES results shown in Fig. 3.

RANDALL ET AL.

1911

Using the numerical values given above for E, V,
Xg, and Xy, we find from (3.13) that the effective
height-independent value of M, is 0.406 kg m™2s™!.
This is slightly larger than the value of M, s obtained
directly from the LES resuits, and is substantially larger
than the value of M, 5. It is fairly close to the maximum
value of M, shown in Fig. 3.

Before leaving this section, we offer an alternative
interpretation of X . The air descending at level Bis a
mixture of updraft air that has passed through the en-
trainment layer and newly entrained air from level B+.
Let f be the fraction of air from level B+; that is,

(Vs = (Ws(1 = f) + f¥pr.  (3.18)

For simplicity we have assumed no concentrated
sources or sinks. Note, however, that this assumption
does not alter the result below. Comparing (3.18) with
(3.7), we find that

XE

f= XE+0'B(1 _XE) )

(3.19)

Substituting the numerical values of ¢ and Xg from
above, we obtain f = 0.028. This means that, for the
case studied here, about 3% of the air descending at
level B has just been entrained; the remainder is “re-
cycled” updraft air.

__Appendix A presents an analysis of the budgets of
¥'? for the entrainment and ventilation layers.

4. The convective mass flux and the turbulence
kinetic energy

In this section, we present methods to determine o
and M, inside the convective mass-flux model, using
the turbulence kinetic energy (TKE) and the entrain-
ment and ventilation mass fluxes as inputs.

-Obviously, there has to be a close connection be-
tween the convective mass flux and the turbulence ki-
netic energy. Let a; be the fraction of the vertically
integrated TKE that resides in the vertical component
of the motion. We can write

ZB+ 1 ZBy
ager de = 5 f pW/2dZ.
z z,

S— S—

(4.1)

TABLE 3. Values of X, and Xz determined from the LES results by various methods. Subscript g indicates that we have used = g,, while
subscript / indicates that we have used ¥ = h. In the case of X', we have taken into account the weak radiative forcing of the ventilation
layer. This slightly reduces the values of Xy, bringing them into better overall agreement with those of Xy,,.

History record number

i 2 3 4 5 6 Average
Xvg 0.0124 0.0124 0.0130 0.0121 0.0125 0.0119 0.0124
Xvp 0.0126 0.0137 0.0140 0.0130 0.0140 0.0127 0.0133
XEg 0.0097 0.0104 0.0101 0.0094 0.0109 0.0106 0.0101
XEgn 0.0101 0.0106 0.0101 0.0097 0.0107 0.0110 0.0104
X'y p 0.0113 0.0124 0.0128 0.0117 0.0127 0.0114 0.0121
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Here ¢, is the vertically averaged TKE per unit mass.
If the TKE is equipartitioned among the three con-
vective velocity components, then a; = 1/3. Using the
LES results and considering only the resolved-scale
motions in the region zg_ < z < zz,, we find that ¢,
=0.712m?s 2 and a; = 0.281.__

Using (2.3), we can express w'? in terms of the dif-
ference in vertical velocity between the updrafts and
the downdrafts. Next, (2.4) can be used to rewrite this
difference in terms of the convective mass flux, giving

M;
- p%e(1 — o)’
Because of the way we have determined ¢ and M, from
the LES results (see section 2), (4.2) has to be exactly

satisfied when w'? is evaluated from the LES. By sub-
stitution from (4.2), (4.1) can be rewritten as

J‘ZB+ d Mg
ase, z =7 —
M Je P T2 ). o1 - o)

If 6 and M, are independent of height, then (4.3) re-
duces to

72

g

(4.2)

1 ZB+

dz. (4.3)

- Zp+ \1/2
2az0(1 — a)er pdz

zZg
ZB+ 1

f —-dz
zg- P

The integrals in (4.4) are easily evaluated for a given

sounding. If we consider the density of the air to be

approximately constant with height in the PBL, then
(4.4) can be simplified to

M. = vaza:;G'(l - U)eM.

Appendix B gives a method to predict e in a bulk
boundary-layer model. Then (4.5) can be used to eval-
uate M_, provided that ¢ is known.
- From the LES results, we have already found, in
section 3, that the effective height-independent values
of M, and o are 0.406 kg m™2 s~ and 0.505, respec-
tively. Substituting numerical values into the rhs of
(4.5), we obtain M, = 0.383 kg m~? s~!. This is in fair
agreement with the value just mentioned, and seems
reasonable in view of the LES results shown in Fig. 3.
By equating (4.5) and (3.13), and using (3.14), we
can derive a constraint on the product X, Xg; that is,

EV

.
2azpuen

M, = (4.4)

(4.5)

Xy Xg = (46)

Substituting numerical values on the rhs of (4.6) gives
Xy Xg = 1.40 X 1074, which should be compared with
the value inferred in section 3; that is, X,y Xz = (1.22
X 1072) X (1.02 X 1072) = 1.24 X 1074,
Alternatively, we can set the lhs of (4.5) to 0.406
kg m~2 57!, which is the value obtained in section 3,
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and solve (4.5) for as. This gives a3 = 0.316, which is
slightly larger than the value obtained directly from
the LES results mentioned before. This small discrep-
ancy in a; comes from our assumption that both ¢ and
M, are independent of height. If a; = 0.316 is used in
(4.6), we are guaranteed to obtain the same value of
Xy Xg that we reported in section 3. Of course, given a
method to determine Xz and Xy, we could use (4.6)
to solve for a;.

Our plan is to parameterize Xg and X;.. The param-
eterization -must be consistent with (4.6). Note that
the denominator on the rhs of (4.6) contains only
quantities that characterize the PBL as a whole, rather
than the entrainment or ventilation layers. We expect
E and ¥V to appear symmetrically in the expressions
for Xz and Xy. The form of (4.6) thus suggests the
following two alternative possibilities for Xz and Xp:

V
Xy = —F=—=, Xg=—=—=; (4.7a)
pmV2azey puV2azey
or
EV 172
Xy =Xg= (—2) . (4.7b)
2aspirenm

Obviously, neither (4.7a) nor (4.7b) follows rigorously
from (4.6); these are just two particularly plausible
possibilities. A possible motivation for (4.7a) is that it
pairs V'with X, and E with X, thus keeping ventilation-
layer quantities together and entrainment-layer quan-
tities together. A motivation for (4.7b) is that the prod-
uct EV is, in a sense, characteristic of the PBL as a
whole, so that it can plausibly appear symmetrically
in the expressions for Xz and X.

Substituting the previously mentioned numerical
values for the quantities on the rhs of (4.7a), we obtain
Xy = 1.31 X 1072 and Xz = 1.07 X 1072, Similarly,
(4.7b) gives Xy = Xz = 1.18 X 1072, These values are
reasonably close to those deduced from the LES results
in section 2, that is, X, = 1.22 X 1072 and Xz ='1.02
X 1072,

We can now substitute (4.7a) or (4.7b) back into
(3.14) to obtain an expression for o. From (4.7a) we
obtain

(4.8a)

and from (4.7b)

1

“TYEV (4.8b)

g

Since E and V are practically equal in the LES results
under discussion here, (4.8a) and (4.8b) give essentially
the same numerical value for ¢, and both are reasonably
consistent with the LES results presented in section 3,
which gave ¢ close to 1/2. It would be useful to have
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observations or LES resulfs for which E and V differed
appreciably; if ¢ was also known, this would allow us
to choose between (4.8a) and (4.8b).

5. Interiors

Up to this point we have discussed only the venti-
lation and entrainment layers. Now it is time to con-
sider the interior of the PBL. The purpose of this section
is to show how the well-mixed assumption can be re-
laxed by using a simple second-order closure, within
the context of our bulk mass-flux model.

We assume that the variance budget of the PBL’s
interior satisfies

ot 2p32 paz(”w‘W) 26y
Advection by the mean flow has been neglected, and
we have assumed for simplicity that y is a conservative
variable. (This assumption is not necessary and can
easily be relaxed.) We now model each term of (5.1),
following the methods introduced earlier. The variance
itself is replaced by (2.5). The triple correlation in the
transport term is replaced by (2.6). The dissipation is
modeled by

(5.1)

LY
v Tdis

_ o(l — o) (_&)2

M. (5.2)

Tdis

where 74 is a dissipation scale whose functional de-
pendence on ¢ will be discussed later. With the as-
sumptions that ¢ and M, are independent of height,
we find that

9 F,\
a0 ]

= _2ﬂ@_wli[dl ._U)(_F_‘k)z]

p Oz o(l —0o) poz M,
_20(1 —a) F, 2
_Tdis (Mc) . (5.3)

It is interesting to consider the equilibrium (3/9¢
= 0) solutions of (5.3) for two limiting cases. First,
suppose that o = 1/ so that the middle term (the trans-
port term) of (5.3) drops out. Then we get

Mires 139
o(l —0)pdz’
This is a downgradient diffusion formula.

Next, suppose that ¢ < 1, as in the case of cumulus
convection. Then (5.3) reduces to

F,=— (5.4)

dF, Y
— = —-M,—.
0z 0z

This is the “compensating subsidence” formula that

(5.5)
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has become familiar in cumulus parameterization the-
ories. (The “detrainment” terms that appear in cu-
mulus parameterizations can be included here too by
relaxing our simplifying assumption that M, is inde-
pendent of height.)

In short, (5.3) includes both downgradient mixing
and “compensating subsidence” as special cases.

Figure 6 shows the dissipation time scale obtained
from the LES results, as a function of height, deter-
mined by using

12
Tdis =~ »
v
for both & (solid line) and g, (dashed line). Near the
midlevel of the PBL, 74 is on the order of 1000 sec.
It is considerably shorter near the surface and the PBL
top. This might be because the resolved-scale variances
are small near the edges of the PBL, or it might be
because dissipation is actually more effective in those
regions where small eddies are dominant. We use a
single, height-independent value of 745 in our model.
Further discussion of 7 is given later.

We can use these results in either of two ways, both
of which allow us to relax the well-mixed assumption.
On one hand, the equilibrium solution of (5.3) gives
a constraint on dy/dz similar to that proposed by
Wyngaard and Brost (1984 ). In fact, one way to pro-
ceed from here would be to adopt the formulas for
d0¢/9z and F, proposed by Wyngaard and Brost [e.g.,
their Eq. (46)], and to force consistency with our
model. This approach would yield constraints on ¢
and M..

(5.6)

~ |
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FIG. 6. Vertical profiles of 74, as determined from the LES results
for dissipation of 4 (solid line) and ¢, (dashed line).
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The other possible application of (5.3 ) is as follows.
Note that (5.3) is hyperbolic; only the first derivative
with respect to z of ¢(1 — ¢)(F,/M)?* appears, and it
is multiplied by the “velocity” M. (1 — 20)/[pa(1
— 0¢)]. This velocity is upward (positive) if ¢ < 1
and downward (negative) if ¢ > 1/5. It follows that the
single boundary condition on ¢(1 — ¢ )(Fy/M.)? must
be applied at level S'if ¢ < 1/ and at level B if ¢ > 1/5.
We cannot force the surface flux to satisfy the bulk
aerodynamic formula and the flux at level B to satisfy
(3.5) simultaneously, unless some additional freedom
is introduced. :

The needed freedom lies in the choice of dy/dz,
which is unknown at this point anyway. We now as-
sume that 3y /9dz is constant with height and drop the
time-derivative term of (5.4). This leads to an ordinary
differential equation for F,, which, using hydrostatics,
can be written as

M. dp  Op« op
where
T
Bp*Ea(l—ij)‘fl—-Za)’ (38)
and
7= (1 — 20)%74;. (5.9)

We assume that 7 is independent of ¢. The motivation
for this assumption is explained in appendix C.
The solution of (5.7) is

opx O P —Ds
——— 4+ A4 5.10
(1-20) dp e""( oDs )] (5-10)

F¢ = Mc[

where A is an arbitrary constant. In order to maintain
consistency of (5.10) with the imposed fluxes at the
top and bottom of the PBL, we must choose ap-
propriate values of dy/dp and 4. In this way, we
find that

o
(F)s — (F))s exp(ﬂ )

% _ (1= 20) i (5.11)
p  M.op, (- exp(%)
and
Fy= [(Fw)s[l - exp("a;f”)]
- 5
+ Epdow( 2522 - o 2¢) ]}
[1 - exp(%:—M)] . (5.12)
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The results show how the mean gradient and the flux
profile are determined for given values of the fluxes at
levels S and B and the other parameters. Note from
(5.11) that d¢//dp vanishes for ¢ = 1/5. Inspection of
(5.12) confirms that F, satisfies the appropriate
boundary conditions at levels S and B.

Obviously, 6ps/6p, is a key parameter in (5.11)-
(5.12). It can be written as
(1 — a)(1 — 20)épy

= : 5.13
YE (5.13)

2
)

As an example, Fig. 7 shows how 8p,,/6p, varies with
o, for the particular case M, = 0.4 kgem™2s™', dpy,
= 50 mb. The solid line is for 7 = 1 sec, and the dashed
line is for 7 = 10 sec (see appendix C for a discussion
of 7). Note that 8p,,/ép, passes through zero for ¢
= 1f5. As is apparent from (5.13), dp,,/dp, decreases
as 7 increases. In this example, for 7 = 1 sec, 8pas/8ps
can be of order +10? for ¢ moderately different from
1/2. Smaller values of 5p,,/ 8p, are favored by a stronger
convective mass flux and larger values of 7. _
Extending this example, Fig. 8 shows how dy/dp
varies with . Again, the solid line is for 7 = 1 sec, and
the dashed line is for 7 = 10 sec. Here we consider
potential temperature 6 (Fig. 8a) and the mixing ratio
of water vapor ¢ (Fig. 8b). The “edge” fluxes are as-
sumed to be (Fp)s = 0.1 ke K m™2 57}, (Fp)p = —0.02
kg Km™2s™! and (F,)s =3 X 10 kgm 25! and
(F,)p=2.5X 107" kg m?s~'. For potential temper-
ature, the results are plotted as K (50 mb) ™!, and for
moisture they are plotted as g kg™ (50 mb)~'. The
figure shows that the sign of 6/dp depends on ¢; pos-
itive values (upward decrease) occur for ¢ > 1/, and
negative values (upward increase) for ¢ < 1/2. In con-
trast, the sign of dg/dp is positive (upward decrease)
for all values of o. The different behaviors of 96/dp
and d4q/dp arise from the differences in their respective
prescribed fluxes at levels .S and B. With the values of
these fluxes that we have prescribed for this example,
observations suggest (¢.g., Wyngaard and Brost 1984)

100}

o ———

1 L

02 04 06 08 |
o

FIG. 7. The variation of 8p,,/ép. with &, for the particular case
M,=0.4kg m s, 5ps, = 50 mb. The solid line is for 7 = 1 sec,
and the dashed line is for 7 = 10 sec.
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FIG. 8. As in Fig. 7 but for the variation of &//dp with ¢: (a)
potential temperature in units of K (50 mb)™!; (b) the mixing ratio
of water vapor in units of g kg~! (50 mb)~'.

that potential temperature should increase upward and
water vapor mixing ratio should decrease upward. Our
model predicts such a result for o less than 1/2. The
numerical values of the vertical gradients are qualita-
tively reasonable. The gradients become stronger as 7
decreases, for a given value of o.

Figure 9 shows the variations of the fluxes of poten-
tial temperature and moisture with height, from the
surface to the PBL top. As before, the solid line is for
7 = 1 sec, and the dashed line is for 7 = 10 sec. Larger
7 favors more linear flux profiles.

As discussed earlier, there is reason to believe that
o is often close to 1/2. For épas/dps < 1, which can be
interpreted [see (5.8) or Fig. 7] as ¢ close to 1/, (5.12)
and (5.11) can be approximated by

(F\P)B( )‘*’( ¢)s(p pB)

41 (6&4)(17 —ps)(ps—p)
2\ 0py oPm OPum

X [(Fps — (Fys], (5.14)
and
@ gr (5PM)
ap  o(1 — 0)(8pm)? \ 6ps

1
X [[(F‘p)ﬂ (F)s] + 5 ”” LUEDs + (F¢)s]}
(5.15)
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respectively. To obtain (5.15) from (5.11), we have
used (5.8). In (5.14) we have kept terms of first order
in 8pas/ 8Dy , while in (5.15) we have kept terms of sec-
ond order. Since (5.14) is quadratic in p, differentiating
it twice with respect to p gives a constant, which is
compatible with our assumed constant value of
ay/ap. _

According to (5.15), d¢//dp vanishes for o = 1/3,
since this is the limit ép,,/ép, — 0. In this same limit,
(5.14) reduces to the familiar linear flux profile. We
conclude that our model reduces to the classical well-
mixed layer for ¢ = 1/3.

Suppose that F, is independent of height, as in the
water vapor example given above. Then (5.15) reduces
to

op  o(1 — o) (psr)® \ ops

For F, > 0, as in the case of an upward moisture flux,
(5.16) predicts that ¥ decreases upward. This is con-
sistent with observations showing that the mixing ratio

N_ &g (5”M) F,. (5.16)
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FIG. 9. As in Fig. 7 but for the variations of the fluxes of potential
temperature and moisture with height, from the surface to the PBL
top: (a) potential temperature flux for ¢ = 0.52; (b) moisture flux
for ¢ = 0.52; (c) potential temperature flux for & = 0.48; and (d)
moisture flux for ¢ = 0.48.
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of water vapor typically decreases upward in strongly
entraining boundary layers (e.g., Wyngaard and Brost
1984). As a second special case, suppose that |(Fy)g|
< |(Fy)s|, which is typically true for the potential tem-
perature flux in convective PBLs. Then (5.15) reduces
to :

& _ —&t  (wm\[, _1(opu

ap =~ (1~ o)(opa)? (m)[‘ 2 (6p*)](F“)S
. —&  [opm
~ o1 = 0)(opm)? (ap*)(F s G.17)

For the case of an upward surface potential temperature
flux, with ¢ < 1 (i.e., 0ppr/0ps > 0), (5.17) predicts
that the potential temperature increases upward, that
is, the flux is countergradient; again, this is consistent
with observations (e.g., Wyngaard and Brost 1984).

If we truncate (5.15) at first order in 6pys/ 6p4, sub-
stitute into (5.14), and use (5.9), we obtain

F, ~ (F»B(”S _P ) + (Fw)s(p _”3)

0pm 0pum

1(p — ps)(ps — p)o(l —G)ﬂ‘

+
2 gr ap

(5.18)

The first line on the rhs of (5.18) is the linear flux
profile characteristic of a well-mixed layer, and the sec-
ond represents a downgradient diffusion. According to
(5.18), when the PBL fluctuates away from a well-
mixed structure, the flux profile changes in such a way
as to damp the fluctuation. This seems quite plausible.

6. Summary and conclusions

We have presented an internally consistent PBL
model that has a parameterized vertical structure but
also includes a simple second-order closure.

In section 2, a method is proposed to determine the
updraft and downdraft properties applicable to a mass-
flux model by using vertical motion statistics obtained
from observations, LES, or even higher-order closure.
This method cannot be used to determine ¢ and M,
in a bulk mass-flux model, however, because the needed
inputs are not available in such a model.

In section 3, consistency conditions are imposed on
the various fluxes, and suitable boundary conditions
are applied on the updraft properties at the top of the
ventilation layer and the downdraft properties at the
base of the entrainment layer to develop simple rela-
tionships among mass fluxes, fractional areas, and
mixing parameters.

In section 4, methods applicable to the bulk mass-
flux model are presented to determine the convective
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mass flux and o. So far as we are aware, the results
obtained in section 4 represent the first physically based
method to determine o.

By applying the mass-flux model to the interior of
the PBL, we obtain, in section 5, an idealized but phys-
ically based approach to relaxing the well-mixed as-
sumption that has been such a mainstay of bulk
boundary-layer models over the past 25 years or so.
In particular, the variance budget equation determines
the turbulent fluxes and the gradients of the mean state
in the interior of the PBL. These vertical profiles are
solved for analytically. Under appropriate conditions,
the variance budget equation can reduce to downgra-
dient diffusion or to a “compensating subsidence”
formula similar to that used in cumulus parameteriza-
tions. This represents a first attempt to marry the ap-
proaches of higher-order closure and convective mass-
flux closure. Appendix A extends this higher-order
closure approach to the entrainment and ventila-
tion layers.

In the future, we hope to generalize the model to
allow ¢ and M, to vary with height, possibly by follow-
ing the approach sketched in appendix A.

The variance balance equation presented in section
5 and the TKE prediction equation given in appendix
B comprise what amounts to a simple second-order
closure, formulated in terms of the mass-flux model
and applicable to the bulk boundary-layer model. This
approach can be put into perspective as follows.

In recent years, two new approaches have emerged
for including the effects of the planetary boundary layer
(PBL) in large-scale models. The first involves coupling
the large-scale model with a “bulk” PBL model. Ad-
vantages of the bulk approach are its simplicity and
computational economy. A disadvantage, up to now,
is its inability to represent the internal structure of
the PBL.

A second approach is to make use of a higher-order
closure model in which one or more turbulence vari-
ables are prognostically determined. This idea has
aroused widespread interest, but has been adopted in
practice only by K. Miyakoda’s group at the Geo-
physical Fluid Dynamics Laboratory (Miyakoda and
Sirutis 1977, Miyakoda et al. 1983). Advantages of
this approach are its relatively high degree of physical
sophistication and its ability to predict the internal
structure of the PBL. Disadvantages are its requirement
for high vertical resolution and its relative complexity.
Both of these lead to considerable computational ex-
pense.

The present model can be viewed as an attempt to
merge these two approaches, retaining the advantages
of each and giving rise to what we call a “‘second-order
bulk model” (SOB). Our model also makes use of a
convective mass flux, a concept that has been important
in the development of cumulus parameterizations.
Figure 10 summarizes the conceptual pedigree of our
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Cumulus Parameterization

PBL Parameterization

Bulk Models

Convective Mass Flux Models Higher-Order Closure Modsis

Bulk Mass Flux Models

Second-Order Bulk Model

F1G. 10. Diagram summarizing the relationship of the present
model to earlier models used in boundary-layer and cumulus param-
eterizations.

model, relative to earlier models used in boundary-
layer and cumulus parameterizations.

Although the approach presented here is highly
idealized, it is potentially useful for parameterization
and also for physical understanding of the results of
more complex models.
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APPENDIX A

Scalar Variance Budgets for the Ventilation
and Entrainment Layers

In section 3, we derive constraints on M, and ¢ by
forcing the convective mass-flux model to be consistent
with the fluxes of ¥ due to entrainment and ventilation.
We now derive additional_constraints by use of the
conservation principle for y'2, as applied to the ven-
tilation and entrainment layers.

Because ¥ varies rapidly across the top of the ven-
tilation layer and the base of the entrainment layer,
there is vigorous variance production in these regions,
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but there is also rapid variance dissipation by small
eddies. The variance budget for the ventilation layer
can be approximated by

2 [ wodz = 2(E)sFs ~ F) — (9T
(A1)

The ths of (A.1) represents dissipation. The first term
on the rhs represents gradient production, and the sec-
ond represents downward transport into the ventilation
layer by triple correlations. We have neglected the terms
representing the local time rate of change and advection
by the mean flow.

Similarly, the variance budget for the entrainment
layer can be expressed as

2 f " epdz = —(Fy)pAy + (pw'¥'V)s

~EW)p+2 fB V'S, dz. (A2)

The lhs and the first two terms on the rhs of (A.2) are
closely analogous to those of (A.1). In the gradient
production term of (A.2) the minus sign appears be-
cause of the definition of Ay. The factor of 2 that ap-
pears in the production term of (A.1) is not present in
the corresponding term of (A.2) because although the
turbulent flux of ¢ is nearly constant across the ven-
tilation layer, it drops from (F,)z to zero across the
entrainment layer, so that its average value for the en-
trainment layer is half of (Fy)s. The second term of
(A.2) represents the transport of variance into the en-
trainment layer by triple correlations. The fourth term
represents the rate at which scalar variance is provided
to the newly entrained air. The fifth term represents
variance production due to fluctuations of S, in the
entrainment layer. There is a close analogy between
(A.2) and (3.5).

Recall from section 2 that the plume-scale variance
of y is given by

¥'2 = ol — o)(¥u — ¥a)? (A.3)

and that the plume-scale variance transport can be
written as

pw Y = M (1 — 20)(Yu — ¥a)*.

For the LES results shown in Fig. 3, ¢ is so close to
1/ at both levels S and B that the only safe conclusion
is that variance production and dissipation are closely
balanced in both the entrainment and ventilation lay-
ers. If (ow'Y'Y¥")s = (pw'yY'yY')p, the variance flux passes
through the interior of the PBL without convergence
or divergence.

These ideas may have some relevance to mesoscale
cellular convection, if our mass-flux model can be ap-

(A.4)
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plied to the mesoscale convective circulations. For the
case of open cellular convection, surface heating is be-
lieved to dominate (e.g., Arakawa 1975), and obser-
vations suggest that oz < 1. According to our model,
the entrainment layer with ¢z < 1 is dissipating more
variance than it produces. This seems physically plau-
sible for open cells. For closed cellular convection,
cloud-top cooling is believed to be dominant (Arakawa
1975), and observations suggest that oz ~ 1. According
to our model, the entrainment layer with ¢z ~ 1 is
producing more variance than it is dissipating. This
seems physically plausible for closed cells.

We now define nondimensional measures of the dis-
sipation rates denoted by ky and kg, respectively:

2 f " iz = kyVos(1 — 05)(Yu — V)b, (A5)

2 [ qodz = keEap(1 ~ op)u— ¥0)h.  (AS)

Rapid variance dissipation rates in the ventilation and
entrainment layers correspond to large values of ky
and kg, respectively. Note from (A.3) that the rhs of
(A.5) and (A.6) are proportional to ¥ for the venti-
lation and entrainment layers, respectively. The defi-
nitions of k- and kg, given by (A.5) and (A.6), are
motivated by the idea that the rates of variance dissi-
pation in the ventilation and entrainment layers should
be related to the actual values of the variances at the
edges of those layers.

Using the results of section 3 with (A.4) and (A.5),
we rewrite (A.1) as '

_ 2— Xy
kVX%/+ 2(1 “XV)'

os (A.7)
All reference to y has dropped out of (A.7), indicating
that ky is independent of species.

Now turning to the entrainment layer, we can use
(A.3), (A.4), and (A.6) with the results of section 3
to rewrite (A.2) as

(Yu — ¥a)3 XM, p{ —ke(1 — a5)
+ X5 [XF 05 + (1 — 205)] — (1 — ap)}

Mc ZB+
+ = vao 1222 [ Sy
25

ZB+
+2 f ¥'Sydz=0. (A.8)
zp
We require that (A.8) hold for all species, including
those for which .S, is zero. It follows that

_ kexi—xg+x%
l+kEX%—2XE+X%;.

op (A.9)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 20

Again, all reference to ¢ has dropped out, showing that
kg is independent of species.

Since (A.8) and (A.9) must apply for all species,
including those for which S, is not zero, we conclude
that

ZB+ Zp+
2 f S, dz = — % f S,dz. (A.10)
2p zZp

Using (A.10), we can determine the rate at which fluc-
tuations of S, in the entrainment layer generate fluc-
tuations of ¥ there.

Using the results derived above, we can show that
the ratio of dissipation to production, for the ventilation
layer satisfies

28
2 f eypdz
w [xyu — 205)
2(Fy)s(¥s- — ¥s) 2(1 = o5)
The corresponding ratio for the entrainment layer is

2B+
2 f e,pdz
zp

—(Fy)sby — EG)s + 2 f " TS, dz

].' (A.11)

Xe(1 — 203)
=1+
[UB - X}(1 — op)

]. (A.12)

Note from (A.11) and (A.12) that, since X, and Xz
are both on the order of 1072, and if o is close to 1/,
dissipation and production must nearly balance in the
ventilation and entrainment layers. Such near balances
are observed (e.g., Caughey and Palmer 1979) and have
been predicted through LES (see for example Fig. 7 of
Moeng and Wyngaard 1989).

Now combine (A.7) with (3.4) to obtain a quadratic
equation for X,.. The solutions, which are both phys-
ically relevant, are given by

= 20 kvt Vk} — 8G}ky + 4G
v 2ky Gy :

(A.13)

Using (3.4), we can obtain the corresponding solutions
for og:

(kv — 2G,) ¥ Vk} — 8GYky + 4G}
2k '

(A.14)

0s =

The condition that the discriminant in (A.13) and
(A.14) be nonnegative implies that k) must be suffi-
ciently large for a given G. The discriminant vanishes
for

ky = (k)min = 4G¥ + 2G,V4GE — 1. (A.15)
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For convenience, let
= (kV)min )
Figure 11 shows plots of X;- and o against G,-and r;-.
Both solutions are shown. Note that for sufficiently

large Gy, o5 depends only on r,. For G;-> 1, the fol-
lowing approximate relations hold:

(A.16)

(kv )min =~ 8GY, (A.17)
FVrd(n -1
gs e DEIA D) ) ey
2"1'
r;-i Vr;-(r;- - l)
Xy =~ . (A.19)
2r|'G1'
From (A.18) we conclude that

% < gs <1 with the choice of the minus, or

0<os< % with the choice of the plus. (A.20)
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By substituting (A.17)-(A.19) back into (A.1) and
(A.5), we can show that the approximation Gy > 1,
on which (A.17)-(A.19) are based, corresponds to a
balance between dissipation and production.

A parallel analysis for the entrainment layer leads
to

2Gy+ kg + 1
= k3ViE + (2 — 4GLykg + 1 (A21)
2Gg(1 + kg)
and
2Gg + kg + 1
ope—E k};Vk;EJ izk—E)4G§-)kE 1 Ao

Again, both solutions are physically relevant. The con-
dition that the discriminant in (A.21) and (A.22) be
nonnegative implies that kx must be sufficiently large.
The discriminant vanishes for

C

FIG. 11. Plots of X,  and o5 against k, and ry, as given by (4.13) and (4.15). Panels (a) and (b) are for the choice
of the plus sign on the discriminant, and panels (c) and (d) are for the choice of the minus sign.
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a C

F1G. 12. Plots of Xz and o against kz and rg, as given by (4.21) and (4.22). Panels (a) and (b) are for the choice
of the plus sign on the discriminant, and panels (¢) and (d) are for the choice of the minus sign.

ke = (k£)min = 2G% — 1 + 2GeVGE — 1. (A.23)

1.0 T T T T T T T
Let
kg
o= . (A.24 —~ o8l
E (kE)min ) Lu" 08
Figure 12 shows plots of Xz and o against Gz and rg. )
The situation is very similar to that found for the ven- ® 06
tilation layer. For sufficiently large Gg, o appears to
depend only on rz. We can demonstrate that, for Gg
> 1, the following approximate relations hold: o 04
(KE)min =~ 4G (A.25)
+V -1 R
ope EEVECEZD ) 56y > o2t
2r, E' bu)
x P rEi rE(rE_ 1) (A27) (o] "l 1 1 ] 1 1 N
£ 2reGr : : 1 .5 20 25
Note that (A.26) and (A.27) closely parallel (A.19). v of T
Figure 13 shows o5 as a function of rg, and/or g as FIG. 13. Plot of o as a function of r, or of v,

a function of ry, as given by (A.18) and/or (A.26). or of both, as a function of ry.
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From (A.26), we can conclude that

< og <1 with the choice of the plus, and

N —

0 < g5 < with the choice of the minus. (A.28)

N | =

The main results of this appendix are (A.18) and
(A.19)and (A.26) and (A.29). Our expressions for g
and op automatically satisfy 0 < ¢ < 1. If rp- and r¢
were known, we could find o5, 65, and Xz and Xg. The
values of M, s and M, z would follow immediately from
(3.4) and (3.9), respectively. The interior value of M,
could be obtained by an approach analogous to that
used in section 4. We would thus be in a position to
allow ¢ to vary linearly with height and M, to vary
quadratically. This would allow improved agreement
with the LES results presented in Fig. 3. Pursuit of this
generalization of our model is left to the future.

APPENDIX B

A Method to Predict the Vertically Integrated
Turbulence Kinetic Energy

The vertically integrated conservation law for the
TKE can be written as

ey

g 'opu 6:’+EeM=B+S—D. (B.1)

Here B, S, and D represent production by buoyancy,
production by shear, and dissipation, respectively, and
dpas is the pressure thickness of the PBL.

The vertically integrated dissipation rate and the
vertically averaged TKE are assumed to be related by

D = ppulen/ar)’?,

where p,, is the vertically averaged PBL density and
a, = 0.163 is a dimensionless constant.
The buoyancy production integral B is of the form

Ps- FSII
B=«x f dp,
g+ D

(B.2)

(B.3)

where « is Poisson’s constant. This integral can be eval-
uated using the methods of Randall (1984).
The shear production integral .S is of the form

- oV
S = Fv'_dp.

B4
Pp+ ap ( )

We divide this integral into three parts: shear produc-
tion in the surface layer, shear production in the interior
of the PBL, and shear production in the entrainment
layer. The surface-layer shear production is approxi-
mately given by
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Ps—

v _ _
Fv"é; dp = (Fy)s* Vs = |(Fy)s| - | Vs|.
(B.5)

Here the second equality follows from the assumption
that the surface stress is parallel to the surface wind.
The interior shear production can be evaluated by
straightforward methods once the profiles of the stress
and the wind are known.
Finally, the entrainment-layer shear production is
approximately given by

Ps

y7] ov 1 1 .
mev'?p“dP—E [(Fv)s| - |AV | —'2'E|AV| .

(B.6)

In (B.6), the factor of !/2 arises because Fy decreases
from (Fv)z to zero across the entrainment layer, so
that its average value inside the entrainment layer is
(Fv)p/2. The second equality comes from applying
(3.5) to the momentum budget of the entrainment
layer.

APPENDIX C
Motivation for (5.8)-(5.9)

Dropping the time dependence of (5.3) and simpli-
fying, we obtain
1 - 1 -
(1-20)3F _o(l=0), _

_%
Mc ap gTdisMg )

v ap

(C.1)

This is basically the same as (5.7) except that we have

not introduced ép, . We solve (C.1) as a first-order or-

dinary differential equation for F,, assuming constant

coefficients and a constant value of 3¢ /dp. The solu-
tion is

_ SrasMe &)

Y o(l —ag)dp

o(1 — a)(p — ps)
gTdist(l - 20') ’
(C.2)

where A is the constant of integration. Notice that the
quantity (1 — 2¢) appears in the denominator of the
argument of the exponential. As o passes through 1/,
the argument of the exponential diverges to plus and
minus infinity—unacceptable behavior. We cannot
solve this problem by choosing 4 = 0 because then F,
would be independent of height and could not satisfy
its boundary conditions at the surface and the
PBL top.

Our interpretation is that 74, must depend on .
This is acceptable, since the o dependence of 4; is not
known a priori. We choose the ¢ dependence of T4 in
such a way that F, varies continuously with o.

This we can do by taking 74 proportional to (1
— 20); that is,

+ A exp
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(C.3a)

where 7 is a constant (i.e., independent of ¢). Then
(C.2) is replaced by

; = (1 - 26)Tdi59

M.op, 8¢ (p — ps)
2 ——— + - .
F, (1 —20) 9p A exp[ o0e ], (C.4a)
where
opy = SMe (C.52)
a(l — o)

Inspection of (C.4a) shows that the flux does indeed
vary continuously with ¢. This approach is unaccept-
able, however, because (C.3a) will inevitably give neg-
ative and hence physically impossible values of 74 for
some values of o.

We can ensure nonnegative 74;s and also make F,
vary continuously with ¢ by choosing

3= (1 — 20) g, (C.3b)

with 7 positive and independent of ¢. The solution of
(C.1) is then
[ ope &Y P —Ds
Fp=M|]—————+ 4 —|, (C4
v [(1 —20) op e"p( e ) ()

where
_ gM7
T o(l=6)(1—20)"

We have used (C.3b) and (C.5b) in section (5).

This is the line of reasoning that led us to adopt
(5.9), with 7 independent of o.

An implication of (5.9) is that 74;; becomes infinite
(that is, the variance dissipation rate goes to zero) for
o = 1/5. Of course, this is at best an idealization of how
nature works. From the LES results, we estimate that
(1 — 2¢) ~ 107! or 1072, which, together with the
results shown in Fig. 6, suggests that for this particular
case 7 is on the order of 1-10 sec.

Why should 74; increase as o approaches 1/2? A pos-
sible physical interpretation is that the largest (absolute)
convective vertical velocities increase as ¢ departs from
1/. For example, if ¢ < 1, the updraft vertical velocities
must be relatively vigorous, implying strong lateral
shears and suggesting strong lateral mixing and variance
dissipation. Similarly, for ¢ close to unity, the downdraft
vertical velocities must be relatively vigorous. The in-
tensity of the individual drafts is minimized for ¢
= 1/, suggesting that the dissipation rate is minimized
then too.

We must also ask why 7 is so short. From (5.2) and
(5.9) the dissipation rate can be written as

g2
e = (1 —20')2(‘p )

T

6pa (C.5b)

(C.6)
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We can interpret '/ 7 as the intense /ocal dissipation
rate in those portions of the convective circulations
where dissipation actually occurs and (1 — 20)? as the
fraction of the domain within which dissipation is lo-
calized. The volume-averaged dissipation rate is then
given by (C.6).
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