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Past, present and impendent hydroelastic
challenges in the polar and subpolar seas

BY VERNON A. SQUIRE*

Academic Division, University of Otago, PO Box 56, Dunedin 9054,
New Zealand

Current and emergent advances are examined on the topic of hydroelasticity theory
applied to natural sea ice responding to the action of ocean surface waves and swell, with
attention focused on methods that portray sea ice more faithfully as opposed to those that
oversimplify interactions with a poor imitation of reality. A succession of authors have
confronted and solved by various means the demanding applied mathematics associated
with ocean waves (i) entering a vast sea-ice plate, (ii) travelling between plates of different
thickness, (iii) impinging on a pressure ridge, (iv) affecting a single ice floe with arbitrarily
specified physical and material properties, and (v) many such features or mixtures thereof.
The next step is to embed simplified versions of these developments in an oceanic general
circulation model for forecasting purposes. While targeted on specific sea-ice situations,
many of the reported results are equally applicable to the interaction of waves with very
large floating structures, such as pontoons, floating airports and mobile offshore bases.

Keywords: hydroelasticity; sea ice; ocean surface waves; general circulation model

1. Introduction

The polar oceans have changed over the last 20 years and they continue to
evolve. In the past, central Arctic Basin sea ice was, by and large, continuous but
intersected by a network of meandering imperfections such as open or refrozen
leads and pressure ridges, and the occasional polynya. Ice concentration was
normally high and the average floe size was very large in medial regions, but
near the margins or in regions of deformation or shear, smaller floes could be
distinguished and the sea ice would typically be less compact. While warmer
summer temperatures undoubtedly caused melting, a significant proportion of
Arctic Basin sea-ice survived the æstival onslaught to become heavily deformed
multi-year ice that circumgyred the polar mediterranean basin before exiting at
Fram Strait or the northern Barents Sea. Near ice-free areas, in regions where
open ocean processes are influential such as the northern Greenland Sea, surface
waves and swells penetrated the pack ice with sufficient intensity to fracture local
ice floes and regulate their size but, apart from the longest swells, they were soon
attenuated before reaching the deep ice interior [1,2].
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In the winter Southern Ocean, recalling that the vast proportion of sea ice
here is first year ice that disintegrates during the austral summer, the ice cover
appearance is typically quite different. In the Weddell Sea, for example, pancake
ice plays a substantial role, contained again in size by aggressive incoming ocean
waves that originate far to the north. Beyond this often expansive band of
pancakes, after the ferocity of the incoming waves has calmed sufficiently to
allow adjacent floes to bond together using nearby frazil ice as ‘glue’, much
larger floes characteristic of interior sea ice are seen. While their congelation
growth thickness is modest—perhaps only 0.5 m or so, these floes are often very
rough, with jagged uneven bottoms due to rafted pancakes doubling or tripling
the normal ice thickness, and with the edges of pancakes protruding upwards to
give a surface topography resembling a ‘stony field’ [3].

The onset of global climate warming has strongly influenced sea-ice
morphology. This is particularly evident in the Arctic Ocean during summer,
where concentration and thickness have both diminished anomalously during
the last 20 years [4,5], with the ice becoming more fragmented like a marginal
ice zone (MIZ; see §5). This has undoubtedly occurred because of warmer
temperatures that cause melting on the upper surfaces of ice floes, which
encourages further melting because of the enhanced absorption owing to the
lowered average albedo of melt water pools and water-infiltrated snow. But an
attendant contribution comes from an increased capacity for ocean waves and
swell to damage the ice. This arises primarily because the character of the sea-
ice cover has altered from being ‘quasi-continuous’ to being MIZ-like and the ice
itself has become weakened by the thermal assault. Accordingly, the destructive
payload of the waves penetrates further—leading to altered fluxes between the
atmosphere and ocean, but it will also be associated with the heightened and
more frequent extreme events we are experiencing owing to climate change, which
will potentially lead to higher waves being created at distant storm centres.
In addition, direct wave-induced melting of ice floes will occur more readily in
the manner described by Wadhams et al. [6]. The strong positive feedback due
to albedo reduction and ocean-wave breakup suggests that the summer Arctic is
unlikely to revert to its former configuration easily. Interestingly, in winter, the
waves and swell that assist in regulating ice floe size will actually enhance further
congelation ice growth by creating more open leads that quickly freeze over with
new ice.

We know a great deal less about how Antarctic sea ice is adapting, and it
may even have increased in overall extent over the last two decades. Unlike the
Arctic, which is an ocean basin surrounded by land with sea ice extending all
the way to the Pole, the Antarctic is a large continent surrounded by ocean
where the sea ice has more room to expand in the winter. Since the start of
the satellite record, total Antarctic sea ice appears to have increased by about
1 per cent per decade, but whether this small overall increase in extent is a
sign of meaningful change in the Antarctic is uncertain because ice extents in
the Southern Hemisphere vary considerably from year to year and from place
to place around the continent. Considered individually, only the Ross Sea sector
had a significant positive trend, while sea-ice extent has actually decreased in the
Bellingshausen and Amundsen Seas [7]. Further uncertainty arises because these
conclusions relate to extent and concentration only, as the time series on which
they are based is constructed using radiometers that measure microwave energy
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radiated from the Earth’s surface. Changes in sea-ice morphology are not easily
detected unless accompanied by a change in the compactness of the ice cover.
Consequently, we are unable to confirm or reject the notion that sea-ice physical
properties other than concentration and extent, e.g. ice thickness, ductility, floe
size distribution or the width of the pancake ice band, have altered akin to changes
in the Arctic. However, the natural variability of Antarctic sea ice, together with
the continuous pounding it receives from a wave climate that is methodically
intensifying because of global warming, does suggest that ice properties around
the continent will have evolved.

We are making the case in this paper that the recurring interactions that occur
between ocean waves and swell and sea ice are a universal element of the polar
and subpolar seas that is crucial to understanding how ice covers mutate, and
that this is especially relevant in the context of a warmer Earth where sea ice
will be emasculated and ocean waves are more violent. Yet remarkably, there
is currently no observation system for ocean waves in ice-covered seas, state-
of-the-art operational models such as the European Centre for Medium-range
Weather Forecasts Wave Prediction Model do not simulate wave propagation
into ice-covered areas, and operational sea-ice models do not accommodate wave
effects either, despite their acknowledged influence on MIZ dynamics. We expect
future offshore operations in Arctic waters to take place more frequently in
areas of seasonal ice cover, which will necessitate integrated weather, waves,
ocean and sea-ice monitoring and forecasting systems for safer functionality. The
hazards involved in offshore polar exploration, like collisions with icebergs and
dangerous sea-ice conditions, are considerably amplified when aggressive ocean
waves coerce the ice into motion and emergency situations may arise where
operations on vessels or platforms and production must be interrupted and
environmental degradation occurs. And, although not imminent, it is probable
that these sentiments will apply to Southern Ocean ice fields in the future as well.

An expedient paradigm shift has occurred over the last several years in relation
to modelling how surface ocean waves and swells communicate with sea ice,
either agglomerations of floes in an MIZ or continuous ice sheets fenestrated
by leads and intersected by pressure ridges. For the first time, prescribed model
terrain closely resembles natural sea ice with its considerable heterogeneity and
irregularity. In the Arctic Basin, for example, wave trains have been tracked for
nearly 2000 km [2,8], while in the MIZ, fully three-dimensional models are now
beginning to accurately compute the embrangled exchanges that occur between
compliant ice floes in motion. Moreover, the first serious attempts to embed ocean-
wave–sea-ice interactivity into an oceanic general circulation model (OGCM) are
occurring, as it is now recognized that the accurate parametrization of how waves
affect pack ice, and vice versa, can significantly influence the accuracy of model
outcomes.

Hereinafter, we will introduce and briefly explain the theoretical analyses
that have progressed our current understanding of wave propagation in fields
of sea ice. Because sea-ice plates are compliant and are known to flex (and
routinely fracture) under wave action, collectively the work described embodies
the modern topic of hydroelasticity—defined as the branch of science that is
concerned with the motion of deformable bodies in liquids. Beginning in §2 with
a helpful canonical model, we will then, in turn, discuss continuous sea ice (§3),
discrete finite ice floes of different sizes and shapes (§4), aggregations of floes
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forming MIZs (§5), the datasets that can be used for model validation (§6) and,
finally, how hydroelastic representations of scattering can be assimilated into
OGCMs (§7).

2. Canonical model

First consider (figure 1) what happens when waves propagating on the free ocean
surface enter or leave a sea-ice-covered region that may be either semi-infinite
x ∈ [0, ∞) or of finite breadth x ∈ [0, d], where y ∈ (−∞, ∞). This canonical
problem can be modified later to allow for a continuous sea-ice plate. The
uniform Euler–Bernoulli elastic thin plate [9] is used most frequently to describe
how the ice sheet bends under the wave action, with viscosity included when
hysteresis is perceptible during flexure [10]. Plate thickness is denoted by h;
mass per unit area by m = r′h, where r′ is the density; and rigidity by D =
Eh3/12(1 − n2), where E is Young’s modulus and n is Poisson’s ratio. The lower
surface of the plate is described by z = z(x , y, t), where t is time. Assuming
that the water is inviscid and incompressible and that the flow is irrotational
and undergoes small amplitude motions, a velocity potential F(x , y, z , t) can be
defined such that V2F = 0, V = (vx , vy , vz) in the fluid and Fz = 0 on the sea
floor z = −H . The pressure p(x , y, z) is accessible from the linearized Bernoulli
equation, i.e.

p = pa + mg − rFt − rgz , (2.1)

where g is the acceleration owing to gravity and pa is the constant atmospheric
pressure. If V4

h denotes the biharmonic operator in the xy-plane,

p|z=z = pa + mg + DV4
hz + mztt , (2.2)

where an Euler–Bernoulli plate is assumed and Vh = (vx , vy). Equations (2.1) and
(2.2) are combined on z = z and linearized about z = 0 to give

DV4
hz + rgz + mztt + rFt = 0 on z = 0, (2.3)

with additional coupling between fluid and floe described by the kinematic
condition zt = Fz , also linearized about z = 0. Denoting the angular frequency
by u and incorporating the shift invariance in the y-direction, we assume that
F(x , y, z , t) = Re[−iuf(x , z)ei(ly−ut)] and z(x , y, t) = Re[w(x)ei(ly−ut)]. Then, the
wavenumber l is related to q and

(D(v2
x − l2)2 + rg − mu2)w − ru2f = 0, w = fz |z=0. (2.4)

Most authors prefer to work with non-dimensionalized quantities. Here, we
non-dimensionalize length with respect to the natural length L = 5

√
D/ru2 and

time with t = 8
√

D/rg5, which has the advantage of simultaneously assimilating
the properties of both the ice floe and the wave and of furnishing a dispersion
relation in terms of a single parameter (see [11]). Defining l = g/Lu2, m = m/rL,
writing (x̄ , t̄) = (x/L, t/t), f̄(x̄ , z̄) = f(x , z)/L2, w̄ = w/L, H̄ = H /L, l̄ = l/L, and
henceforth dropping the overbars to avoid clutter, our now non-dimensionalized
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Figure 1. Open water waves impinge obliquely onto a compliant ice sheet that is either semi-infinite
or of finite length d in the x-direction, but extends to ±∞ in the y-direction. The coordinate frame
is shown schematically, as in most cases, ice draft will be assumed to be negligible with z = 0
located at the mean free surface and z = −H at the sea floor.

f(x , z) must satisfy

(V2 − l2)f(x , z) = 0, (2.5a)

L(x , vx)w(x) − f(x , 0) = 0, (2.5b)

w(x) − fz(x , 0) = 0 (2.5c)

and fz(x , −H ) = 0. (2.5d)

Operator L(x , vx) = (v2
x − l2)2 + l − m beneath the ice and is equal to l in open

water, so equation (2.5b) actually expresses two equations if we define

L(x , vx) = a(v2
x − l2)2 + l − mb, (a, b) =

{
(0, 0) in open water,
(1, 1) beneath the ice.

(2.6)

Because energy is conserved at any interior free edge, x = x0, we must also have

L−(vx)w(x0) = L+(vx)wx(x0) = 0, z = 0, (2.7)

where L±(vx) = (v2
x − l2) ∓ (1 − n)l2. And, referring to figure 1, radiation

conditions as x → ±∞ are necessary to close the system, namely

f(x , z) ∼
⎧⎨
⎩

(eikx + Re−ikx)4(z) as x → −∞,
Teikx 4(z) as x → ∞, for a semi-infinite sheet, or,
Teikx4(z) as x → ∞, for a finite solitary floe,

(2.8)
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where the quantities R and T are called the reflection and transmission
coefficients. The wavenumbers corresponding to the (lossless) propagating mode
for open water and the ice plate are, respectively, K = (k2 + l2)1/2 and g =
(k2 + l2)1/2, where k and k are their respective components in the x-direction
and the relationship l = k tan q = K sin q holds.

Finally, a useful power flow condition can be expressed using far-field energy
flux arguments,

s|T |2 = 1 − |R|2, such that
{
s �= 1 for a semi-infinite sheet,
s = 1 for a finite solitary floe,

(2.9)

where s is known as the intrinsic admittance.

3. Continuous ice

In regions that are protected from the full impact of the open ocean, by land, a
barrier of unconfined pack ice or simply because of distance, sea ice will invariably
consolidate into a zone composed of vast ice floes that is virtually continuous. This
is not to say that the sea ice is homogeneous or isotropic; indeed, it is not. But
rather that to penetrating ocean waves, the length scales associated with the ice
cover are large enough and its integrity is sufficiently high that the medium may
be regarded as quasi-continuous with random imperfections. These flaws may
be meandrous cracks, open or refrozen leads, the occasional polynya, or sinuous
pressure ridge sails and keels. These are quite distinct circumstances to wave
propagation through a band of loose ice floes, where waves are scattered by the
edges of discrete ‘rafts’ that are also free to respond as autonomous compliant
floating bodies and wavelengths are of the same order as floe diameters.

The synthesis of Squire [12], a cognate study focused on offshore engineering
hydroelasticity [13], and an earlier review [1] have extended sections on wave
propagation through continuous sea ice, although the bulk of the reported work
is theoretical as few experiments have been done. We do not intend to rehash these
works, although there is inevitably some overlap and the same single theoretical
framework advanced in the earlier papers will be used.

(a) Cracks

Suppose that the ice sheet now covers the entire ocean surface, but that it has
N parallel cracks located at points x = xn within a closed finite interval [0, d].
Then, only minor changes need to be made to the equations of §2, as follows:

— equations (2.5) remain the same;
— L(x , vx) = (v2

x − l2)2 + l − m, x ∈ (−∞, ∞) \ ⋃{(x−
n , x+

n )} in equation
(2.6);

— L−(vx)w(x±
n ) = L+(vx)wx(x±

n ) = 0 for each xn in equation (2.7);

— equation (2.8) becomes f(x , z) ∼
{
(eikx + Re−ikx)4(z) as x → −∞,
Teikx4(z) as x → ∞; and

— s = 1 in equation (2.9) because the ice cover extends from −∞ to ∞.
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Figure 2. Two semi-infinite elastic ice plates of thickness h0 and h2 surround a finite elastic plate
of thickness h1. The thickness of any of the three plates may be set to zero. Axes are displaced
to the right to avoid clutter. Williams & Squire [14]. Reproduced by permission of Cambridge
University Press.

(b) Open lead

A lead forms when a crack opens owing to divergent forces brought about
by winds and currents acting upon the ice plate over large spatial scales. Leads
are common features of polar ice fields and, when temperatures are low, they
quickly freeze over to create an ice sheet intermediate between the two existing
plates. Incident waves are partially reflected to a degree that depends on the
configuration and properties of the lead. In its simplest form, i.e. for an open
lead of width 2d, the boundary-value problem to be solved is again an amended
version of §2, as follows:

— equations (2.5) remain the same;

— equation (2.6) is the same but with (a, b) =
{
(0, 0) for |x | < d,
(1, 1) for |x | > d;

— equation (2.7) becomes L−(vx)w(±d) = L+(vx)wx(±d) = 0;
— equation (2.8) is the same as for a crack; and
— s = 1 in equation (2.9) again.

(c) Steps in thickness

The situation shown in figure 2 is described by the following modifications to
our canonical boundary-value problem in §2:

— equations (2.5) and (2.9) remain the same;

— equation (2.6) remains the same but with (a, b)=
⎧⎨
⎩

(a0, b0) for x < 0,
(a1, b1) for 0 < x < d,
(a2, b2) for x > d,

such that L and m are now each defined for the plate with the largest
flexural rigidity and a and b are normalized with respect to their respective
values for that plate;
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— for the edges xe = {0, d}, equation (2.7) becomes either L−(vx)w(x±
e ) =

L+(vx)wx(x±
e ) = 0, for free edges, or, for frozen-together plates,

w(x+
e ) = w(x−

e ),

wx(x+
e ) = wx(x−

e ),

a(x+
e )L−(vx)w(x+

e ) = a(x−
e )L−(vx)w(x−

e )

and a(x+
e )L+(vx)wx(x+

e ) = a(x−
e )L+(vx)wx(x−

e ); and

— equation (2.8) becomes f(x , z) ∼
{
(eik0x + Re−ik0x)40(z) as x → −∞,
Teik2x42(z) as x → ∞.

(d) Variable terrain

Williams & Squire [11] incorporated a region of variable properties, expressed
through the flexural rigidity and density, in an otherwise uniform ice sheet
(figure 3), by redefining the operator (2.6) as

L(x , vx) = (v2
x − l2)(a(v2

x − l2)) + (1 − n)l2v2
xa + l − mb, (3.1)

where

(a, b) =
{
(a(x), b(x)) for x ∈ (0, d),
(1, 1) for x �∈ (0, d).

The ends of the variable region are welded to the surrounding sheets, so for any
point x = xc where the two regions meet

w(x+
c ) = w(x−

c ), (3.2a)

wx(x+
c ) = wx(x−

c ), (3.2b)

a(x+
c )L−(vx)w(x+

c ) = a(x−
c )L−(vx)w(x−

c ) (3.2c)

and (a(x+
c )L+(vx)vx + vxa(x+

c )L−(vx))w(x+
c )

= (a(x−
c )L+(vx)vx + vxa(x−

c )L−(vx))w(x−
c ), (3.2d)

where L±(vx) = (v2
x − l2) ∓ (1 − n)l2, as defined after equation (2.7).

(e) Solutions

(i) Single features

The boundary-value problems defined in §3a–d have been tackled by a
profusion of ingenious mathematical methods, recognizing that the high order of
the plate boundary condition makes finding a solution to each problem especially
demanding. Methods used include matched asymptotic expansions, eigenfunction
matching in several forms, various approaches founded in the theory of Green’s
functions and variants on boundary-integral methods, the Wiener–Hopf method,
residue calculus, Laplace and Fourier transforms, the Carleman integral equation,
Rayleigh–Ritz single and multi-mode decomposition after a variationally based
reformulation, spectral methods and more.
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Figure 3. Wave scattering at a pressure ridge. The main ice cover has a constant thickness of h0
and the sea water has a finite depth of H . The coordinate axes are oriented as shown, but are
displaced to the right in the figure so that the y-axis actually corresponds to the left-hand limit of
the ridge. Reproduced with permission from Williams & Squire [11].

The astute reader will also have observed that the underside of the ice defined
by the Euler–Bernoulli plate boundary condition (2.3) is placed at z = 0, which of
course is incorrect. In nature, the density of sea ice is such that it has a significant
draught, typically about 9/10 of its thickness. While the justification for the zero
submergence approximation is defensible, namely that ocean wavelengths are very
long compared with the vertical length scale associated with ice thickness so that
effects owing to draught will be negligible, the approximation needs to be tested.
This was done by Williams & Squire [15] by solving an integral equation arising
from a formulation based on Green’s functions. Bennetts et al. [16] also included
Archimedean draught but the focus is mainly on solitary floes. Another paper
on the topic is noteworthy. Williams & Porter [17] considered how waves pass
through a junction at which two semi-infinite ice sheets of different properties
are either frozen together or separated by a crack, allowing the ice sheets to
adopt a variable submergence according to thickness. To solve the ensuing integral
equation, a series of even Gegenbauer polynomials was employed in a Galerkin
scheme, which accommodates the required singularity in the fluid velocity at the
junction. This is a clever way of including the correct Archimedean draught with
matched eigenfunctions, which facilitates rapid numerical convergence.

(ii) Multiple features

Several papers that deal with solitary irregularities, e.g. Williams & Squire
[11,14], also go on to consider wave propagation through many such features. To
date, however, the most ambitious attempt to achieve this, due to Vaughan et al.
[8] and Squire et al. [2], interfuses the model of Bennetts et al. [16] as its kernel.
In Squire et al. [2], waves were tracked across 1670 km of realistic Arctic sea-ice
terrain obtained from upward-looking submarine sonar records (figure 4).

4. Solitary floes

Equations (2.5) with operator (2.6), the finite solitary floe version of equation
(2.8) and the free-edge conditions (2.7), are the necessary equations to
solve in two dimensions. As for continuous sea ice, this has now been
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Figure 4. How the amplitude of ocean waves with period ranging from 13 to 35 s is affected
by 1670 km of sea-ice terrain. Squire et al. [2]. Copyright 2009 American Geophysical Union.
Reproduced by permission of American Geophysical Union.

done by a miscellanea of mathematical methods that also nourish the
allied, conventionally more temperate, field of very large floating structure
research.

However, although the behaviour of two-dimensional isolated floating bodies is
interesting, its value is more within the domain of littoral engineering than polar
marine physics. A two-dimensional model can be helpful in clarifying aspects
of how compliant ice floes bend, or possibly fracture, or parallel structures in
an ice field scatter incoming ocean waves, but there is plenty of observational
evidence that shows the three-dimensional attributes of scattering in the MIZ are
paramount. The MIZ is fundamentally a three-dimensional scattering medium
composed of three-dimensional floating bodies, where reflection and transmission
causes wave energy to leak laterally rather than directly contributing to the
principal wave vector. Accordingly, to capture scattering interactions properly,
the elemental floes must, of necessity, be three dimensional. Their motion,
deformation and reflective properties provide the scattering kernels of the
constituent ice floes that together comprise the MIZ.

A train of long-crested water waves impinging on a single circular raft
floating on deep water was studied by Meylan & Squire [18], using two separate
eigenfunction methods, and by Andrianov & Hermans [19] for water of any depth.
Meylan [20] extended these analyses to allow arbitrary floe shapes using either
general vibrational modes specified by means of finite elements or modes specified
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Figure 5. Scattering response of a sea-ice floe. The incident wave propagates from x → −∞ parallel
to the x-axis. The displacement within the floe is shown, along with the surrounding diffracted
wave field. Bennetts & Williams [22]. Reproduced by permission of Cambridge University Press.

analytically for restrictive geometries, e.g. a circular thin plate. However, while
the compliant circular raft is a good theoretical constituent of an MIZ composed
of many floes with randomized floe diameter at specified concentration, to use
such a model naively for an MIZ made up of tens of thousands of ice floes would
be impractical, even in the unlikely event that the morphology of every floe
present was known accurately. Recognizing this challenge, more efficient schemes
for computing the wave scattering owing to solitary ice floes have been conceived,
e.g. Bennetts et al. [21] and Bennetts & Williams [22], and approximate methods
for assembling the scattering effects for many floes have been devised.

Bennetts & Williams [22] described a solution method that could be applied
to linear wave scattering by a single ice floe or an isolated polynya located in a
continuous ice sheet, each requiring a smooth perimeter but for arbitrary shape.
Their approach to these problems was based on reducing the spatial dimension
in two stages and generated solutions at a low computational cost. Firstly, the
governing equations of the full three-dimensional problem were projected onto
the horizontal plane using a process of vertical averaging through a Rayleigh–
Ritz style approximation. The resulting equations were then converted into sets
of one-dimensional integro-differential equations, posed on the boundary between
the free surface and the ice-covered fluid, by implementing matrices of Green’s
functions in conjunction with Green’s second identity. This allows the Galerkin
technique to be invoked to produce a numerical solution. In figure 5, results
obtained using this method show how an ice floe in the shape of a so-called
‘crooked egg’ scatters a plane incident wave of unit length (in open water)
travelling parallel to the x-axis from x → −∞. The displacements within the
scatterer are shown along with the surrounding diffracted wave field, and the
effects of the shape of the scattering source on these motions are evident.

5. Fragmented ice

The customary definition of the MIZ is due to Wadhams [23] who described it as
the part of the ice cover close enough to the open ocean boundary to be affected
by its presence. It is an interfacial region that resides at the fringe of the open and
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frozen oceans, neither fully open nor fully frozen over—a mélange of ice cakes and
floes, habitually pervaded by slurries of frazil ice and brash. Because the MIZ is a
part of the ice cover closest to open sea, it is a very dynamic region that is affected
mainly by incoming ocean waves and swells, and changes of wind and current.
Concentration is generally variable, both spatially and temporally, and the nature
of the ice floes making up the zone is also invariably quite heterogeneous as the
waves break up floes differentially or, especially near the ice edge, pummel and
raft the ice.

Since energy is dissipated at the ice floes the waves meet during their passage,
under steady-state forcing there will be a place in the interior MIZ where the
waves lack the ferocity to fracture local floes and, on this account, the ice will
remain quasi-continuous. (Indeed the band of wave broken ice created to seaward
helps to protect the interior from further wave-induced damage.) That being so, a
major way in which the open ocean interacts with sea ice in the region is through
wave-induced modification of the underlying floe size distribution, and it is this
process that actually produces the MIZ [24]. In a nutshell, the MIZ is formed
by ocean waves breaking up the ice floes but, in concert, the belt of ice cakes
and modified floes produced shields more remote floes and continuous ice from
breaking. Of course, an intensification of wave energy in the open sea beyond
the ice edge, caused by the passage of a storm, for example, will lead to further
destruction and an altered distribution of floe diameters.

Modelling wave interactions in the MIZ either (i) synthesizes the behaviour
of many solitary flexible ice floes or a small number of such floes that are then
aggregated to create the complete ice cover or (ii) assumes the zone has certain
rheological properties a priori and then describes its influence on the waves
mathematically. The challenge of (ii) is to find a mathematical representation
that encapsulates the physical properties of the MIZ properly, which has never
been achieved, although the recent work of Wang & Shen [25] holds promise.
Amalgamation of the behaviour of many solitary floes with randomized diameters,
three-dimensional shapes and physical properties would therefore appear to be
the most prudent approach at this time. As with quasi-continuous sea ice, few
field experiments to measure waves in the MIZ have taken place, but it is
observed that the attenuation rates of waves travelling in MIZs decrease as
the period increases and that a narrow directional spectrum at the ice edge
broadens to become isotropic as it evolves with increasing distance into the MIZ
(e.g. [24,26,27]).

Although the MIZ is, in detail, a three-dimensional scattering medium, some
useful qualitative outcomes can be had from two-dimensional theory. For instance,
by means of a wide-spacing approximation, the Williams & Squire [14] theory
described in §3c can be used to shed light upon how waves travel in a medium
composed of many ice plates of different size and thickness separated by open
water or thinner ice. This is essentially a two-dimensional MIZ, as an open
lead surrounded by ice is the same as two ice floes separating a stretch of open
water, once waves local to the edges have dissipated. Exploiting an eigenfunction
expansion under each ice floe and matching the expansions at the plate boundaries
where free-edge conditions (2.7) must hold, Kohout & Meylan [28] used an
equivalent approach. On also comparing with some field data, they concluded
that their model, even though two dimensional, is applicable to large floes for
short- to medium-wave periods in the 6–15 s range. (See §6 later.)
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In a sequence of papers, Peter & Meylan [29–31] and Peter et al. [32] applied
the seminal exact three-dimensional interaction theory of Kagemoto & Yue [33] to
the MIZ, which, in principle, can be real or simulated. The most recent study [31]
treated repeated clusters of separate ice floes that lie close together as if they are
a single scatterer, emulating the multi-pole method of optics. Periodic structures
were also investigated by Bennetts & Squire [34,35], who introduced the added
complication of a realistic Archimedean ice floe draught and used periodic Green’s
functions. The MIZ is, unfortunately, not periodic. While Bennetts et al. [36]
attempted to overcome this limitation by averaging, the periodicity introduced
by artificial recurring structures causes unnatural artefacts such as the creation
of extra waves that would not be present in a true MIZ.

Transport theory has also been used to derive an equation for three-dimensional
energy transport in the MIZ [37], but for rigid ice floes rather than compliant
ones. This method and the independent one of Meylan et al. [38] based on a
linear Boltzmann equation approach have now been shown to be nearly identical
by Meylan & Masson [39] and have produced a linear Boltzmann model for wave
scattering in the MIZ.

6. Field and laboratory experiments

The most comprehensive account describing in situ observations and experiments
relating to wave propagation in fields of sea ice is still due to Wadhams et al.
[27], noting that this publication includes a reanalysis of the results of Squire &
Moore [24] collected in the Bering Sea in 1979. Few experiments have taken
place since, although waves have occasionally been measured as a constituent of
large-scale experiments focused on understanding several other marine and/or
geophysical phenomena (e.g. [40,41]), and there are reports of studies that make
use of remote-sensing techniques, such as synthetic aperture radar (SAR) imaging
from space (e.g. [42–44]). While, aircraft and satellite-borne remote sensing offers
obvious advantages over buoys deployed between or on ice floes, the resolution of
current sensors and data analysis and processing complexities have limited their
application to date. Indeed, the most convincing study in this regard, namely
that due to Wadhams et al. [44], concerns wave dispersion in a viscous layer of
frazil-pancake ice as opposed to scattering from assemblies of ice floes in an MIZ
or a quasi-continuous sea-ice plate, so its relevance to the hydroelastic theme
of this volume is less. Notwithstanding this, we remark that the theoretical
generalization due to Wang & Shen [25], in which the ice–ocean system was
represented by a homogeneous viscoelastic fluid overlying an inviscid layer of
finite thickness, where the viscosity is imagined to originate from the frazil ice
or ice floes much smaller than the wavelength and the elasticity comes from ice
floes that are relatively large when compared with the wavelength, may further
improve the interlinking of SAR imagery and theory.

The Wadhams et al. [27] datasets were reanalysed by Kohout & Meylan [28]
and Bennetts et al. [36] to ascertain whether their respective two- and three-
dimensional models reproduced similar attenuation rates to those observed by
Wadhams et al. [27]. Both comparisons with experimental data gave reasonable
agreement and provided confidence in each model’s ability to describe attenuation
due to scattering. However, a recurring deviation is the underprediction of
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attenuation for high periods and overprediction at low periods, even though the
attenuation coefficients produced by the three-dimensional model do a better job
in this respect than those of the two-dimensional model. There are potentially
several reasons for this discrepancy, e.g. (i) when the wave amplitude is roughly
commensurate with floe size and each is small relative to the wavelength,
scattering becomes less important and processes take over that are often described
empirically by Morison’s equation [45], (ii) even when scattering occurs, there
are other processes in the MIZ that cause energy dissipation, e.g. turbulence in
the water, breakup and collisions between ice floes, for instance, (iii) sea ice is
actually not elastic, it is nonlinearly viscoelastic, and (iv) there is no doubt that a
major impediment to making a proper quantitative validation of theory against
experiment is the lack of documented detail and level of accuracy about local
pack ice morphology at the time when the field experiments took place.

A small number of laboratory experiments have been carried out to observe how
waves are affected by ‘ice floes’, which may be artificial, typically manufactured
from a flexible plastic, or real ice if a freezable wave flume is available. The
first experiments, done by Wadhams [46] using empty film canisters as floats,
demonstrated unequivocally that such experiments were difficult to execute but
were nonetheless extremely useful to making sense of how scattering modifies
an incoming wave train under controlled conditions. Many years later, Kohout
et al. [47] reported a similar two-dimensional experiment using 20 mm thick
elastic sheets to represent the sea ice, in a 26 m long wave tank with an active
control beach to eliminate reflected waves. Passable agreement was found between
the data collected and a solution based upon eigenfunction matching at the
boundaries of the plates where free-edge conditions were imposed. The experiment
is important because the material used to replicate sea ice at the water surface
was compliant and flexed rhythmically as the wave train passed down the tank.

A series of three-dimensional wave tank experiments were recently conducted
at the École Centrale de Nantes in France to validate the linear scattering theory
used to model hydroelastic interactions between regular water waves and sea-
ice floes (F. Montiel 2010, personal communication). The simplest experiment
involved a single compliant disc, made of expanded polyvinyl chloride, set in
motion by a controlled incident wave train generated by a wave maker, but
multiple disc experiments were also done. An optical motion tracking device
captured the deflection of the disc. This consisted of 39 polystyrene spherical
markers placed over half the disc (invoking symmetry), covered with a retro-
reflective tape. The motion of these markers was recorded by three infrared
cameras. Resistive wave gauges recorded the scattered waves in the water around
the disc, which was only allowed to move in heave, roll and pitch, in addition to
its flexural response. To the author’s knowledge, these are the most sophisticated
experiments done to date on the bending of compliant three-dimensional discs in
surface gravity waves, serving as a model of a very large floating pontoon or a
solitary sea-ice floe. Figure 6 shows snapshots of the bending disc at two different
times, below their theoretical counterparts computed using an eigenfunction
matching method. Agreement between theory and experiment is impressive.

To complete this section, I mention a unique experiment carried out in
the Arctic Environmental Test Basin at the Hamburg Ship Model Basin,
Germany [48]. The project reproduced similar but smaller scale work done by
Newyear & Martin [49,50]. Being focused on the dispersion and attenuation of
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surface waves propagating through a grease–pancake ice mixture, it does not
strictly relate to hydroelasticity but it has bearing on our earlier discussion about
the use of SAR.

There is a paucity of experimental data describing ocean-wave propagation in
ice fields, which is particularly troubling as climate warming gradually transforms
the Earth’s ice-covered oceans to make them more like MIZs.

7. Oceanic general circulation models with sea ice and waves

To assimilate ocean-wave interactions into ice–ocean models or, indeed, within
OGCMs, the key challenge is to devise a computationally manageable means of
calculating how the many ice floes involved in an archetypal three-dimensional
MIZ interact. Some studies attempt to address this problem but each has
deficiencies that undermine its efficacy. For example, Boltzmann-type equations
in which interactions are in terms of energy alone have been popular, but the
underlying energy interaction assumption is naive without coherence effects [51]
and, in any case, the resulting equations are still intractable unless unphysical
simplifications such as two dimensionality or homogeneity are made. Exact
methods that use Graf’s formulas and are based upon interaction theory [33] are
a candidate but, owing to computational cost, direct application at MIZ scales
is implausible. As noted hereinabove, models have consequently previously either
been two- [28] or three-dimensional with unrealistic periodicity and averaging [36].

A way forward is to recognize that owing to computational limitations and
satellite resolution, ice–ocean models are pixellated into grid cells within which
sea-ice descriptors are known only in an average sense across the cell. While
obvious, I believe this has not been appreciated before in the context of
embedding wave scattering into an ice–ocean model or an OGCM. Accordingly,
heterogeneity at subgrid scales, i.e. conglomerations of dissimilar scatterers, is
superfluous as only average thickness, floe size and concentration are known.
This does not mean that wave scattering does not occur at subgrid scales,
or indeed that it does not need to be modelled, but rather that one can
gain the immense numerical advantage of assuming that within the cell the
morphological parameters that describe the sea ice, namely thickness, floe size
and concentration, are uniform. By synthesizing subgrid wave scattering, each
cell can then be viewed as a single ‘body’ with known scattering cross section in
the manner of the multi-pole method, and the process repeated by systematically
grouping neighbouring cells and determining their interactions until the overall
domain has been spanned. Graf’s interaction theory can be used for cylindrical
geometries but, more generally, boundary-integral equations can provide an
instrument to find the interaction of a set of arbitrarily shaped floes or any other
scattering sources, which may be used to express a Dirichlet–Neumann map on
any contour enclosing the group. The pixellated MIZ visualization will allow all
identified key properties—including additional features such as energy dissipation
and drift, to be accommodated in a computationally efficient mathematical
model, with randomness simulated at each level of the configuration. All
aspects of the wave field can be obtained, e.g. the attenuation and evolution
of directional spectra.
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8. Conclusions

As well as results from embedding wave–ice interaction effects in ice–ocean
models and OGCMs, which it is anticipated will improve accuracy and forecasting
precision substantially, the next development to occur in the context of
hydroelasticity applied to the ice-infested seas relates to large amplitude, i.e.
nonlinear, waves. A very small amount of work has been done on this, e.g.
Hegarty & Squire [52], which has demonstrated major difficulties as some
established methods cannot be extended to higher orders, but the topic is in
its infancy. While laboratory experiments relating to single and multiple floating
compliant discs have recently begun (§6), there is a dearth of experimental data in
the hydroelastic research corpus that needs to be rectified as ocean waves become
more fierce and MIZs become more prevalent on a warmer Earth.

V.A.S. acknowledges with gratitude the support of the International Centre for Mathematical
Sciences, the University of Otago and the Marsden Fund Council from Government funding
administered by the Royal Society of New Zealand.
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