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ABSTRACT

This paper investigates the uncertainties related to atmospheric fields from reanalysis products used in

forcing ocean models. Four reanalysis products, namely from 1) the interim ECMWF Re-Analysis (ERA-

Interim), 2) version 2 of the CommonReference Ocean–Ice Experiments (CORE2), 3) the 25-Year Japanese

Reanalysis Project (JRA-25), and 4) NCEP–NCAR, are evaluated against satellite-derived observations for

eight different fields (zonal and meridional winds, precipitation, specific humidity, continental discharge,

surface air temperature, and downwelling longwave and shortwave radiation fluxes). No single product is

found to agree better in all fields with satellite-derived observations. Reanalysis products are mostly com-

parable to each other because of their similar physical assumptions and assimilation of common observations.

Adjusted atmospheric fields from the Estimating the Circulation and Climate of the Ocean (ECCO) opti-

mizations are also in agreement with other reanalysis products. Time-mean and time-variable errors are

estimated separately and mapped globally in space, based on 14-day average fields to focus on monthly to

interannual periods. Time-variable errors are larger in comparison to the signal than time-mean errors for

most fields, thus justifying the need to separate them for studying uncertainties as well as formulating opti-

mization procedures. Precipitation and wind stress fields show significant time-mean and time-variable errors

whereas downwelling radiation, air temperature, and humidity fields show small time-mean errors but large

time-variable errors, particularly in the tropics. Uncertainties based on evaluating multiple products pre-

sented here are considerably larger than uncertainties based on single product pairs.

1. Introduction

Investigations of the ocean state are limited by the

paucity of observations in space and time. These limi-

tations are in part mitigated by ocean general circulation

models (OGCMs), which aid in interpreting ocean ob-

servations, deciphering ocean dynamics, and assessing

contributions of different processes (McWilliams 1996).

Moreover, models are one of the few available frame-

works for making projections to past and future ocean

conditions. To force OGCMs, surface atmospheric state

variables are used to infer air–sea fluxes via boundary

layer schemes. These atmospheric conditions are usually

derived from reanalysis products (Kalnay et al. 1996;

Uppala et al. 2005; Onogi et al. 2005; Dee et al. 2011)

that assimilate meteorological observations (satellite

and in situ) into numerical weather prediction models.

Surface fluxes of momentum, heat, and freshwater can

be applied to OGCMs by different techniques. A com-

mon OGCM boundary condition is to prescribe wind

stress for the momentum equation, net heat flux for the

thermal equation, and net (virtual) salt flux, corre-

sponding to the exchange of freshwater associated with

evaporation, precipitation, and runoff for the salinity

equation (Cox and Bryan 1984). However, uncertain

measurements and complex cancelling processes such as

evaporation, precipitation, ice formation and melting,

and river runoff can create large discrepancies in the

salinity balance. The heat balance is similarly limited by

uncertain observations in turbulent (sensible and latent)

and radiative (shortwave and longwave) heat fluxes.
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These imbalances are usually overcome by restoring

both temperature and salinity surface values to observed

climatology (Haney 1971; Han 1984), at time scales

ranging from days to months (e.g., Cox and Bryan 1984;

Danabasoglu and McWilliams 1995). For simulations

concerning natural variability dynamics, alternative

mixed conditions are employed for tracers in OGCMs.

In such cases temperature is restored and a salinity flux

is specified by diagnosing a preliminary solution with

fully restoring conditions (e.g., Bryan 1986).

A drawback to restoration is that the resulting surface

tracer values do not differ largely from climatology.

Furthermore, such formulations exclude the possibility

of having nonzero flux coincident with correct model

surface tracer fields (Large et al. 1997). An alternative

approach discussed by Large and Pond (1981) uses bulk

aerodynamic formulas to calculate surface flux bound-

ary conditions. The bulk air–sea flux formulation derives

momentum from surface wind speed observations at

10 m (U10). The surface thermal flux has four compo-

nents. 1) First, specific turbulent heat flux is estimated

from U10, air temperature at 2 m (or 10 m), and model

sea surface temperature (SST). 2) Latent turbulent heat

flux, which is a function of evaporation, is obtained from

specific humidity at 2 m (or 10 m), U10, and SST. 3)

Shortwave radiative heat flux is estimated from albedo

and downwelling surface shortwave radiation, and fi-

nally 4) longwave radiative heat flux is calculated as

a function of surface downwelling longwave radiation

and SST. The net surface freshwater flux is the differ-

ence between evaporation and precipitation with the

addition of freshwater continental discharge. Variations

of the bulk flux formulation can also be used; for ex-

ample, wind stresses could be directly prescribed to the

momentum equation (instead ofU10), while thermal and

freshwater surface boundary conditions could be pre-

scribed in bulk manner (Stammer et al. 2002; Wunsch

and Heimbach 2006). Because of nonlinearity in the

bulk formulas, Large et al. (1997) recommend the use of

atmospheric fields sampled at high frequencies.

Atmospheric reanalyses use numerical models to

synthesize observations distributed irregularly in space

and time into regularly gridded meteorological dataset

at high frequencies. The commonly available reanalysis

products such as the National Centers for Environ-

mental Prediction (NCEP)–National Center for Atmo-

spheric Research (NCAR;Kistler et al. 2001), European

Centre for Medium-Range Weather Forecasts (ECMWF;

Uppala et al. 2005) and interim ECMWF Re-Analysis

(ERA-Interim;Dee et al. 2011) products, and the Japanese

25-Year Re-Analysis (JRA-25; Onogi et al. 2005) have

stimulated ocean modeling studies not otherwise possi-

ble. However, a combination of imperfect models and

data result in individual biases in these reanalysis fields.

Several studies show significant biases in tropical wind

stress and its divergence (Milliff et al. 1999), near-surface

humidity (Sun et al. 2003), polar temperatures (Drobot

et al. 2006), bulk flux algorithms (Brunke et al. 2003),

precipitation (Smith et al. 2001; Nicolas and Bromwich

2011), clouds in the South Pacific convergence zone

(Wang and McPhaden 2001), and the sea surface albedo

(Zhang et al. 1995). These biases have been corrected in

several ways. Large and Yeager (2004) created a new

dataset called the Common Ocean-Ice Reference Ex-

periment (CORE) that applies corrections to original

NCEP reanalysis fields by adjusting them against a vari-

ety of satellite-based and in situ derived radiation, SST,

sea ice concentration, and precipitation products. Simi-

larly, Brodeau et al. (2010) calibrate the air–sea fluxes of

the 40-yr ECMWF Re-Analysis (ERA-40) by applying

corrections to the reanalysis fields from satellite-derived

and in situ-derived datasets. Both Large and Yeager

(2004) and Brodeau et al. (2010) verify that the correc-

tions are consistent with a near-zero global imbalance of

heat and freshwater fluxes.

An alternative method of correcting atmospheric

reanalysis fields has been suggested by Stammer et al.

(2004). Their methodology, developed by the ‘‘Esti-

mating the Circulation and Climate of the Ocean’’

(ECCO) Consortium, involves synthesizing a large va-

riety of oceanic observations over long periods to pro-

duce a dynamically consistent state of the ocean. Part of

this synthesis involves adjusting the air–sea fluxes within

error limits to make the model consistent with available

ocean data. Stammer et al. (2004) report that adjust-

ments to momentum, heat, and freshwater fluxes from

the NCEP reanalysis show good correspondence with

the CORE dataset.

While significant efforts have been made toward

correcting biases in reanalysis fields, quantitative un-

certainty estimates of the atmospheric state are very

limited. Lucas et al. (2008) present ERA-40 uncertainties

for the thermal boundary condition in the North Atlantic

by taking the difference between ERA-40 fields and their

corresponding CORE field. They note that their esti-

mates do not represent the full range of errors in the

ERA-40 fields as the models driving the ECMWF and

CORE reanalysis use similar physical assumptions and

both systems assimilate common observations as bound-

ary conditions. Similarly, Leeuwenburgh (2005) estimates

differences between ERA-40 and the 15-yr ECMWFRe-

Analysis (ERA-15) for the tropical Pacific over a 2-yr

period to obtain a statistical description of error char-

acteristics in zonal and meridional surface stress, air

temperature, dewpoint temperature, and shortwave ra-

diation. Brunke et al. (2011) have estimated uncertainties
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in surface turbulent fluxes by comparing reanalysis

products against cruise-based fluxes. While these mea-

surements are sparse in space and time, they provide the

most accurate values for error estimation. Future ad-

vances in ocean modeling and ocean forecasting will

undoubtedly benefit from global uncertainty estimates of

atmospheric state fields (Brodeau et al. 2010).

In this study, our goal is to obtain best possible global

ocean uncertainties in atmospheric fields used to force

OGCMs. In particular, errors are derived for atmo-

spheric forcing fields used in the ECCO modeling

framework, which include wind stress, air temperature,

specific humidity, continental discharge, precipitation,

and downwelling longwave and shortwave radiation

fluxes [surface pressure has been treated by Salstein

et al. (2008)]. We also evaluate 10-m zonal and meridional

wind speed, which are widely used by the ocean modeling

community in bulk formulations and are important for

both heat and freshwater fluxes. Rather than attempting to

define the uncertainties in a particular atmospheric re-

analysis product, we try to provide an upper bound on the

expected uncertainties for each of the mentioned forcing

fields by comparing not only several reanalyses but also

some reference datasets. The data and procedures used

to derive errors in the atmospheric parameters are

described in section 2. Comparisons of reanalysis and

ECCO-optimized atmospheric fields against satellite-

based references are presented in section 3, based on

14-day averaged fields to focus on monthly and longer

periods. A separate discussion of time-mean and time-

variable errors is presented in section 4. Our main

findings are summarized in section 5.

2. Data and methods

We consider atmospheric state fields from three re-

analysis products (NCEP,ERA-Interim, and JRA-25), one

reanalysis-derivedproduct [version 2 ofCORE(CORE2)],

and one ECCO-optimized atmospheric solution for

evaluation against corresponding satellite-derived ref-

erence fields. The five products are compared against

each other and also against satellite-based data (Table 1)

chosen as references because of their high temporal and

spatial coverage globally. Further details about the re-

analysis products and satellite-based references are pre-

sented in the appendix.

By definition, a difference between any two products

provides an estimate of error contributed by both

products, to the extent that their errors are uncorrelated.

If a reanalysis product is compared against a weather

buoy or a shipboard instrument (e.g., Brunke et al.

2011), and one can consider the in situ observation

as reference (ignoring instrumentation errors), their

difference would reflect the error in the reanalysis

product solely, which can include a significant contri-

bution from representation error (i.e., errors associated

with physical processes that appear in observations but

are not represented in the model; Lorenc 1986). Lack of

in situ data in both time and space, or reference datasets

more generally, limits our ability to perform such ac-

curate analysis. We employ a more rudimentary ap-

proach in which combinations of differences are taken

not only between reanalysis products and satellite-based

references, but also among themselves. The largest dif-

ferences among these combinations are chosen to repre-

sent the errors. This conservative approach attempts to

encompass the entire range of forcing field uncertainties

for products considered in this study, without accounting

for the possibility of correlated errors. By taking the

largest differences we essentially search for the maximum

uncertainties possible across all products, without focus-

ing on any specific one. In the case of uncorrelated errors,

these estimates would provide an upper bound on un-

certainty for each variable analyzed. The use of different

products, including reference datasets, can also partly

mitigate the possibility of underestimation of errors be-

cause of correlated errors in any single two-product

comparison.

The reanalysis products have different spatial and

temporal resolutions. ERA-Interim and ECCO-adjusted

ERA-Interimhave thehighest spatial resolution (;70 km),

followed by JRA-25 (;120 km). TheNCEP andCORE2

fields have the coarsest resolution (;180 km). All the

reanalysis fields are regridded to the coarsest grid (i.e.,

NCEP) tominimize interpolation errors. TheNCEP-grid

masking procedure is used to identify land points, which

are ignored from the analysis. The reanalysis fields,

TABLE 1. Analysis periods for different atmospheric parameters

shown above are largely constrained by the availability of satellite-

based data. QuikSCAT data are level 2B multi-algorithm ocean

wind stress components in a 25.0-km swath grid. HOAPS is a

multisatellite product consisting of all available SSM/I instruments

and National Oceanographic Data Center (NODC)–Rosenstiel

School of Marine and Atmospheric Science (RSMAS) Pathfinder

SST data on a 0.58 global grid. ISSCP uses a 280-km equal-area

grid, with 3-hourly global coverage.

Variable Reference Time period

U, wind stress QuikSCAT 1999–2006

V, wind stress QuikSCAT 1999–2006

Air temperature Ensemble 1992–2007

Specific humidity HOAPS 1992–2005

Precipitation HOAPS 1992–2005

Longwave radiation ISCCP 1992–2007

Shortwave radiation ISCCP 1992–2007

Continental discharge

(Dai et al. 2009)

Syed et al. (2010) 1994–2006

1 JANUARY 2013 CHAUDHUR I ET AL . 155



originally provided at 6-hourly intervals, are averaged

over 14-day intervals. The 14-day interval is chosen to

optimize the use of high-frequency reanalysis (6 hourly)

along with low-frequency satellite-based composites

(daily to weekly). Furthermore, the 14-day interval cor-

responds to the adjustment period of atmospheric fields

chosen in the ECCO framework and requiring un-

certainty estimates that are consistent with that period.

Many other operational OGCMs have adjustment win-

dows of 7–14 days (Broquet et al. 2009;Moore et al. 2011)

and therefore knowledge of uncertainties in air–sea flux

forcing at comparable intervals would be beneficial for

such optimization procedures. Similarly the satellite-

derived datasets (Table 1) are also gridded onto the

NCEPgrid at 14-day averages. Errors are partitioned into

time-mean and time-variable components to explore how

systematic biases comparewith randomuncertainties and

study their individual influence on the total error of

a specific atmospheric field. Differences in time-mean

and time-variable errors, if significant, would point to the

need to have a separate treatment of these components

when trying to correct available atmospheric fields (e.g.,

Stammer et al. 2004; Large and Yeager 2004).

At each grid point, for a given pair of products with

time series x and y, the time-mean error is calculated as

jx2 yj, where the overbar denotes time averaging, and

time-variable error is calculated as the standard de-

viation of (x 2 y). These values are calculated for all

possible pairs and maximum values are taken to repre-

sent the error at each grid point. In regions of missing

data or fields without a ‘‘reference’’ dataset (e.g., air

temperature), the time-mean and time-variable errors

are estimated from differences only within the reanalysis

fields. This methodology is particularly used for data-

sparse high-latitude regions. The estimated errors are

compared against the original field by evaluating the

signal-to-noise ratio of each atmospheric field as follows:

the time-mean and time-variable signals are represented

as the maximum of all reanalysis and reference mean

and standard deviation fields, respectively, at a particu-

lar grid point. We choose the maximum signal to be

consistent with the maximum error estimates described

above. The prominent contributors of time-mean and

time-variable errors for each field are determined by

initially noting the source pairs that provide the largest

differences at each ocean grid point. The sum of grid

points for a particular source divided by the total number

of ocean NCEP grid points represents the percentage of

that source in the global error map. The error sources will

be discussed in section 4 and shown in Table 2.

3. Comparison of reanalysis products

A comparison of reanalysis solutions against satellite-

based data is conducted to better understand their fi-

delity to these references and among themselves. Note

that some of the satellite-based ‘‘reference’’ datasets

[e.g., Quick Scatterometer (QuikSCAT)] are directly

assimilated into reanalysis models and hence are not true

independent references. Furthermore, these datasets

have implicit errors of their own, which are neglected as

part of this study. However, the high-resolution spatial

and temporal coverage provided by these satellite-based

datasets make them most suitable for comparison.

Atmospheric fields from three reanalyses (NCEP,

ERA-Interim, and JRA-25), one reanalysis-derived

TABLE 2. Percentage of grid points contributed by each product pair to the error estimates in each atmospheric variable. Bold values

denote maximum percentage for each variable. Annotations are as follows: E: ERA-Interim, J: JRA25, N: NCEP, C: CORE2, R: Ref-

erence. Refer to Table 1 for specific references.

Tm E-J E-N E-C E-R J-N J-C J-R N-C N-R C-R

TauX 7.01 4.97 27.44 2.00 6.24 2.67 9.51 7.54 17.19 15.39

TauY 12.36 8.34 3.06 4.16 7.16 2.69 5.11 12.63 25.97 18.46

LwDn 73.12 21.06 0.27 0 1.39 0.05 0 3.02 0 1.05

SwDn 9.15 3.00 1.62 0.1 2.57 16.57 0.87 52.63 13.46 0.01

Tair 20.83 1.15 10.28 n/a 6.00 22.04 n/a 39.69 n/a n/a

Humd 11.35 1.04 0.87 0.07 3.21 9.32 3.84 35.56 34.47 0.22

Rain 8.52 10.34 1.73 6.04 20.85 3.38 10.16 13.22 12.84 12.88

Tv E-J E-N E-C E-R J-N J-C J-R N-C N-R C-R

TauX 0.35 2.26 32.96 0.89 2.30 12.36 2.10 29.23 2.06 15.44

TauY 0.39 2.97 24.9 0.66 3.18 11.67 1.42 30.23 4.92 19.61

LwDn 1.05 0.3 13.2 0.92 6.64 36.69 9.7 22.96 7.55 0.89

SwDn 0.2 13.52 0.08 0.38 24.18 0 3.39 19.6 4.3 34.20
Tair 24.71 13.48 19.93 n/a 5.04 32.93 n/a 3.86 n/a n/a

Humd 10.53 3.56 9.39 10.73 1.61 2.96 10.72 0.53 15.02 34.91

Rain 0.03 0.12 4.68 0.94 0.45 12.57 2.57 15.40 20.68 42.5
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product (CORE2), and the ‘‘optimized’’ ECCO product

are evaluated quantitatively against respective satellite-

based observations using Taylor (2001) diagrams. The

Taylor diagram (Fig. 1) provides a statistical summary of

howwell the reanalysis products match the satellite-based

observation patterns in terms of their correlation, root-

mean-square (RMS) difference, and the ratio of their

standard deviations. The radial distances from the origin

represent the standard deviations, whereas the azimuthal

positions show correlation coefficients. Simulation fea-

tures that match well with observations in both amplitude

and phase appear closest to the observed point in the di-

agram (e.g., the longwave radiation of ERA-Interim in

Fig. 1a). There is also no restriction placed on the time or

space domain considered. Thus we concatenate the time

series at each grid point into a single vector and maintain

the same order of concatenation for each dataset. The

focus is on comparative statistics and not individual

analysis. As the units of measurement are different

for the five different fields, their statistics are non-

dimensionalized by normalizing, for each field, the RMS

difference and the two standard deviations by the stan-

dard deviation of the corresponding observed field. This

enables us to compare all the fields in oneTaylor diagram.

Comparison to satellite-based observations shows that

for any given variable, all reanalysis products are clus-

tered around each other (Fig. 1). This is not surprising as

most of the reanalysis solutions are driven by similar

model dynamics and largely assimilate common datasets.

Furthermore, assessment of individual atmospheric fields

suggests that no single product seems to agree better in

all fields with satellite-derived observations. Zonal and

meridional wind stresses for ECCO, JRA-25, NCEP,

and ERA-Interim display larger variability against

QuikSCAT data (Fig. 1a) but compare reasonably with

each other. CORE2 wind stresses originally derived by

adjusting NCEP wind speeds to QuikSCAT winds ex-

pectedly show better agreement in standard deviation

with QuikSCAT data. While CORE2 improves on stan-

dard deviation, it shows larger RMS differences and

lower correlations in comparison to other reanalysis

products (Fig. 1a). These differences are likely due to the

short time period (2000–01) of analysis used to determine

the biases between NCEP and QuikSCAT (Large and

Yeager 2004). ECCO stresses are similar to ERA-

Interim, implying small adjustments to the first-guess

forcing fields in the preliminary optimization results

analyzed here. Zonal and meridional wind speeds (not

shown) display slightly better fidelity to QuikSCAT

winds in comparison to wind stress components and have

almost similar spreads amongst the reanalysis products.

Downwelling longwave radiation fields from re-

analysis and ECCO-optimized solutions show close

correspondence and high correlations when compared

FIG. 1. Taylor diagram representing model performance (Taylor 2001). A polar coordinate system is used, with radius representing the

normalized standard deviation, and angles (with respect to horizontal) representing the correlation coefficient, decreasing from 1 to 0.

Green dashed lines show root-mean-square differences. (a) Comparison of satellite-based observations (black square) against zonal wind

stress (TauX), meridional wind stress (TauY), and downwelling longwave radiation (LwDn) for NCEP (N), CORE2 (C), JRA-25 (J),

ERA-Interim (E), and ECCO (I). (b) Comparison for precipitation (Rain), humidity (Hum), and downwelling shortwave radiation

(SwDn).
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against satellite-based International Satellite Cloud

Climatology Product (ISCCP) data (Fig. 1a). Longwave

radiation is one of the few fields that compares well for

all products and the reference. Assessment of downw-

elling shortwave radiation reanalysis fields (Fig. 1b) also

shows good correspondence with ISCCP data. It should

be noted that CORE2 shortwave radiation is derived

from ISCCP and hence shows best agreement, but Large

and Yeager (2004) actually adjust the ISCCP field be-

tween 508S to 408N because of regional biases in the

equatorial Atlantic and Pacific data between ISCCP and

mooring data. The largest discrepancies between re-

analysis and reference are seen in the precipitation field.

Significant disparities occur in both standard deviations

and rms differences of reanalysis products against the

Hamburg Ocean Atmosphere Parameters and Fluxes

from Satellite Data (HOAPS) dataset (Fig. 1b). The

spread of behavior between the reanalysis products is

comparatively larger in precipitation than other fields.

The smallest discrepancies are observed in the humidity

field, which displays good correspondence with the

HOAPS dataset for all the products. The good fidelity in

humidity is likely due to its close correspondence to

near-surface air temperature, which in turn is largely

modulated by SST in the open oceans (Chou et al. 2000).

Since SST measurements are readily available during

the ‘‘satellite-era’’ (including our study period) and ap-

plied in most reanalyses products, humidity estimates

are mostly similar. Broadly, most of the products eval-

uated in Fig. 1 show reasonable correspondence with

each other; however, large discrepancies are seen for

wind stress and precipitation fields in comparison to

satellite-based references. The implications of these

patterns in relation to the uncertainties associated with

the various surface atmospheric fields are discussed in

the next section.

4. Error estimates

In this section we will present error estimates of var-

ious atmospheric parameters used in forcing OGCMs

and discuss which pairs of products yield the largest

differences and contribute to the estimated uncertainties.

Given the close proximity of the ECCO-adjusted ERA-

Interim atmospheric fields to the original ERA-Interim

fields (Fig. 1), the ECCOfields are not used in the analysis.

a. Wind stress and wind speed

The wind stress errors are computed for the period

1999–2006, which is chosen to coincide with the data

available from QuikSCAT and CORE2. The mean

zonal wind stress from the four reanalysis products

appears to be stronger than QuikSCAT in most basins

(Fig. A1). Risien and Chelton (2008) compareQuikSCAT

against NCEP climatologies and suggest that coarser res-

olutions in reanalysis products allow them to resolve only

large-scale features (.500 km). The dynamically im-

portant small-scale wind stress features are not resolved

accurately. Further evidence for their importance was

found in a regional eddy-permitting state estimates of

the Southern Ocean (Mazloff et al. 2010), which pro-

duced small-scale wind stress adjustments. Milliff and

Morzel (2001) also show spectral ringing in NCEP re-

analysis fields globally. Xu and Scott (2008) note that

ignoring ocean current dependence in the wind stress

calculation artificially increases global wind power by

32% in strong current regimes. Ocean circulation effects

are accounted for in scatterometer products but not in

reanalysis products. Furthermore, Risien and Chelton

(2008) suggest that wind stress fields in the various

products are dependent on the specific formulation of

drag coefficient used in the bulk aerodynamic formulas.

Time-mean errors in zonal wind stress (Fig. 2a) are

largest (.0.05 N m22) in the Southern Ocean. Smaller

time-mean errors (,0.04 N m22) are seen across all

basins within 108–308S, 108–308N, and 408–708N. Similar

patterns are also noted by Large and Yeager (2009) for

the CORE2 dataset. The large errors in the Southern

Ocean seem to be within the 30%–50% range of the

signal (Fig. 3a), which is comparable to signal-to-noise

ratios of regions with smaller errors such as the equa-

torial basins. Thus regions with largemagnitudes in wind

stress have large time-mean errors (e.g., the Southern

Ocean) but their noise level is similar to other regions

with small errors. Time-variable errors for zonal wind

stress (Fig. 2b) are ,0.04 N m22 in the low and mid-

latitudes up to 408, but larger (.0.05 N m22) poleward

of 408 for the reasons described earlier. The QuikSCAT

data coverage is limited to 808S–808N; hence, errors at

the highest latitude regions are based solely on largest

differences in reanalysis products. A large portion of the

Arctic Ocean shows smaller errors than subtropical re-

gions because the reanalysis products are closer to each

other in magnitude and variability. Also the presence of

sea ice at higher latitudes likely has a reducing effect

on time-variable errors However, signal-to-noise ratios

of time-variable zonal stress are ,2 globally (Fig. 3b).

Thus, while zonal wind stress time-variable errors ex-

hibit considerable spatial variability (Fig. 2b), noise

levels are generally large (.50%) irrespective of error

magnitudes (Fig. 3b).

Errors in meridional wind stress are comparatively

smaller than in zonal wind stress (Fig. 2). The largest

errors (.0.03 N m22) in the timemean (Fig. 2c) occur in

the upwelling favorable regions such as the western

coasts of North and South America, southwest Africa,
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and Australia. Large errors are also seen east and west

of Greenland due to the enhancement of wind speed by

nearly 50% for these regions in the CORE2 dataset

(Large and Yeager 2009). Again, the errors associated

with the higher latitudes might be larger than depicted,

but lack of data prevents more conservative values.

Time-mean signal-to-noise ratios are generally high in

low error regions and low in high error regions (Fig. 3c).

The largest time-variable errors (.0.05 N m22) occur

poleward of 408 in both hemispheres (Fig. 2d). Specifi-

cally, regions east and west of Greenland show large

time-variable uncertainties. As with zonal stress, the

noise levels in Fig. 3d are high (.50%) in most ocean

basins. From Figs. 2 and 3, time-variable wind stress

errors are mostly greater than time-mean errors in both

absolute magnitude and in relation to the respective

signals. Regarding the source of the errors (Table 2), the

most values for time-variable (33%) and time-mean

(27%) errors in zonal wind stress come from differences

between ERA and CORE2; for meridional wind stress,

the most time-mean (26%) and time-variable (30%)

values originate from differences between NCEP and

QuikSCAT and NCEP and CORE2, respectively.

The magnitudes of wind speed at 10 m also vary

considerably among the various products and thus con-

tribute toward differences in wind stress (Fig. 4). Con-

sidering first zonal wind speeds, time-mean errors are

large (.1 m s21) in the equatorial regions, particularly

in the intertropical convergence zone (ITCZ) and also in

the Southern Ocean (Fig. 4a). Most of the subtropical

basins show small time-mean errors (Fig. 4a). These

results are in agreement withWallcraft et al. (2009), who

found similar biases and suggest that NCEP reanalysis

have weak skill in the subtropical regions. Large time-

variable errors are seen in the extratropical regions and

the Southern Ocean (Fig. 4b). Broad coherence in spa-

tial patterns exists between zonal wind stress (Fig. 1) and

wind speed (Fig. 4) time-variable errors; however, the

northern tropical regions such as the tropical eastern

North Pacific are notable exceptions. Meridional wind

speed show large time-mean errors (Fig. 4c) in upwelling

favorable regions similar tomeridionalwind stress (Fig. 1c);

however, large errors are also seen in the northeast

Pacific trade wind region. Time-variable errors in me-

ridional wind speed (Fig. 4d) are large in the extra-

tropical and higher latitudes, similar to zonal wind speed

(Fig. 4b). Time-variable errors are mostly larger than

time-mean error for both zonal and meridional wind

speeds (Fig. 4). The noise for zonal wind speed time-

mean errors (Fig. 3o) is small (,20%) in most regions

except the subpolar and higher latitudes and the tropical

Pacific and Indian oceans. Time-variable errors have

relatively higher noise levels (Fig. 3p) apart from some

regions such as the Arctic, Arabian Sea, and Bay of

FIG. 2. Global wind stress uncertainty estimates in N m22. (a) Time-mean uncertainties in zonal wind stress. (b) Time-variable un-

certainties in zonal wind stress. (c) Time-mean uncertainties in meridional wind stress. (d) Time-variable uncertainties in meridional wind

stress. The gray scale is the same for both zonal and meridional wind stress components.
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Bengal. Meridional wind stress signal-to-noise ratios are

similar to zonal ratios and hence are not shown. In

general, the noise levels in wind speeds are less than

wind stress, which implies that uncertainties in other

quantities such as drag coefficients and air densities

amplify the uncertainties in wind stress.

b. Downwelling radiation

Downwelling radiation depends heavily on the pa-

rameterization of clouds, which is weakly resolved in

radiative transfer models used in most reanalyses. Re-

gions of high cloud cover, where low-level stratus and

stratocumulus are inaccurately represented, have large

systematic uncertainties. Time-mean (Fig. 5a) and time-

variable (Fig. 5b) errors in downwelling longwave radia-

tion show values .25 W m22 in the Arctic and Southern

Ocean regions. In the Arctic, Tjernström et al. (2008)

found a systematic negative bias in downwelling radiation

by comparing six regional models from the Arctic Re-

gional Climate Model Intercomparison (ARCMIP)

project against observations from the Surface Heat

Budget of the Arctic Ocean (SHEBA) experiment.

They conclude that some modeled cloud properties, such

as the cloudwater paths, are reasonable in a climatological

sense, but temporal correlation of model cloud properties

with observations are poor. Most models underestimate

the presence of high clouds, and the modeled low clouds

are too thin and displaced downward. Similar large un-

certainties are also expected in the Southern Ocean

(Dong et al. 2007). While high latitudes show similar

spatial patterns in time-mean and time-variable errors,

considerable differences occur at midlatitudes. Time-

mean errors dominate in most regions, especially in the

Southern Hemisphere, whereas time-variable errors are

confined to coastal regions, especially upwelling regions.

Signal-to-noise ratios for time-mean longwave radiation

suggest noise levels,20% of the signal globally (Fig. 3e),

which is relatively low compared to other fields (Fig. 3). In

contrast, noise levels for time-variable term are generally

.50% formost regions except the northeast Pacific region

(Fig. 3f). Differences between ERA and JRA-25 con-

tribute 73% of the time-mean error values (Table 2). For

time-variable errors, most values (36%) arise from dif-

ferences between CORE2 and JRA-25 (Table 2).

FIG. 3. Signal-to-noise ratios of (a) time-mean errors in zonal wind stress, (b) time-variable errors in zonal wind stress, (c) time-mean

errors in meridional wind stress, (d) time-variable errors in meridional wind stress, (e) time-mean errors in downwelling longwave ra-

diation, (f) time-variable errors in downwelling longwave radiation, (g) time-mean errors in shortwave radiation, (h) time-variable errors

in downwelling shortwave radiation, (i) time-mean errors in air temperature, ( j) time-variable errors in air temperature, (k) time-mean

errors in humidity, (l) time-variable errors in humidity, (m) time-mean errors in precipitation, (n) time-variable errors in precipitation,

(o) time-mean errors in zonal wind speed, and (p) time-variable errors in zonal wind speed. Meridional wind speed errors are not shown.

The signal-to-noise ratios can be converted to percentage of noise (section 4) by taking the inverse of the plotted values andmultiplying by

100. Thus regions showing blue (;5) can be interpreted as having 20% noise whereas regions showing red (;1) can be interpreted as

having 100% or larger noise.
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In general, errors in downwelling shortwave radiation

are larger than errors in longwave radiation. Time-mean

errors (Fig. 5c) show values .50 W m22 in the north-

west and southeast Pacific, around Japan, and the

Peruvian/Chilean coast respectively. Also, higher lati-

tudes show expectedly large errors in the time mean.

Within the Atlantic, large time-mean errors are seen

offshore of the western African coast. The Arctic and

FIG. 4. Global wind speed error estimates in m s21. (a) Time-mean errors in zonal wind speed. (b) Time-variable errors in zonal wind

speed. (c) Time-mean errors in meridional wind speed. (d) Time-variable errors in meridional wind speed.

FIG. 5. Global surface downwelling radiation error estimates inW m22. (a) Time-mean errors in longwave radiation. (b) Time-variable

errors in longwave radiation. (c) Time-mean errors in shortwave radiation. (d) Time-variable errors in shortwave radiation. The gray scale

for shortwave radiation is double that of longwave radiation.

1 JANUARY 2013 CHAUDHUR I ET AL . 161



the Southern Ocean display the largest time-variable

errors (Fig. 5d), likely due to lack of data and knowledge

of sea ice behavior in these regions. Signal-to-noise ra-

tios for time-mean fields (Fig. 3g) show relatively low

noise levels (,20%) in most basins except the high lat-

itudes. However, the time-variable component (Fig. 3h)

shows large noise (.50%) in most tropical regions.

Global time-mean errors in shortwave radiation are

dominated spatially by differences between NCEP and

CORE2 (52%; Table 2). Differences between CORE2

and ISCCP contribute the most to the time-variable

errors (34%) and are likely due to the 5% reduction in

the ISCCP insolation made by Large and Yeager (2004)

between 508S and 308N.

c. Air temperature and humidity

Air temperature is one of the fields where a global

reference data is not available. In this case the largest

differences between the four reanalysis products are

taken to compute errors. The largest errors in both the

time mean (Fig. 6a) and time variable (Fig. 6b) occur at

high latitudes of both hemispheres. Rigor et al. (2000)

report uncertainties in the range of 38–58C based on

comparing NCEP and ECMWF reanalysis air tempera-

tures with data from Arctic drift stations during 1979–97.

If we take the RMS of time-mean and time-variable air

temperatures errors for the Arctic, our estimates show

an uncertainty of 38 to 48C, similar to Rigor et al. (2002).

Similarly, the Southern Ocean shows large errors (.28C)
in both time-mean and time-variable components. Most

of the errors in the time mean for the Southern Ocean

come from large differences between the NCEP and

CORE2 products. These errors are likely due to a per-

sistent cold bias in NCEP reanalysis air temperatures in

comparison to weather station and drifting buoy data

from Antarctica (Large and Yeager 2009). Large tem-

perature errors in polar regions can lead to errors inwater

mass formation rates, which are critical in determining

global ocean deep water properties and overturning cir-

culation rates. Errors in low and midlatitudes are rela-

tively small (,18C). Problems related to topography

truncation, as seen from the short-scale spotty patterns in

many regions, also contribute to uncertainties (Fig. 6a).

Signal-to-noise ratios for time-mean errors show low

noise (,20%) for most regions (Fig. 3i), but considerably

higher noise values in the tropics are present for time-

variable fields (Fig. 3j).

Time-mean (Fig. 6c) and time-variable errors (Fig. 6d)

in humidity are largest in tropical regions. Prominent

errors (.0.002 kg kg21) in timemean are observed in the

central basins of most tropical regions. Also, coastal re-

gions along SouthAmerica, southwest Africa, Brazil, and

southern Asia show significant errors. These errors can

be attributed to the moist bias introduced in the re-

analysis fields over the tropics due to assimilation of sat-

ellite data (Brodeau et al. 2010). Comparison of Tropical

FIG. 6. Global air temperature and humidity uncertainty estimates at 2 m in 8C and kg kg21, respectively. (a) Time-mean uncertainties

in air temperature. (b) Time-variable uncertainties in air temperature. (c) Time-mean uncertainties in humidity. (d) Time-variable un-

certainties in humidity.
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Atmosphere–Ocean (TAO) moorings with NCEP hu-

midity in the western tropical Pacific shows a year-round

positive bias of 2%–3% (Wang and McPhaden 2001).

This bias is likely due to shortcomings in the boundary

layer dynamics of NCEP reanalysis, which has a tendency

for excessive evaporation (Smith et al. 2001). Further-

more, Kent et al. (1993) shows that ship-based humidity

measurements ingested into the NCEP model have a

moist bias. Other reanalysis products could possibly be

affected by the same shortcomings.At high latitudes, cold

air constrains humidity to very low values and hence the

errors are relatively lower. Time-mean (Fig. 6c) errors in

humidity are larger than time-variable errors (Fig. 6d).

However, when compared against the signal, time-variable

fields (Fig. 3k) are noisier than time-mean fields (Fig. 3l),

with time-mean fields showing relatively low noise

(,20%) globally (Figs. 3k,l).

d. Precipitation and continental discharge

Similar to radiation and humidity, precipitation esti-

mates depend heavily on the representation of cloud

cover, which is the weakest feature of reanalysis models

(Taylor 2000). Both time-mean (Fig. 7a) and time-

variable (Fig. 7b) errors are largest in the tropical regions,

particularly in the ITCZ, but time-variable errors are

also substantial in some of the extratropical basins of the

Pacific and Atlantic. Brodeau et al. (2010) suggest that

excess tropical precipitation in ERA solutions result

from assimilation of ‘‘contaminated’’ satellite data due

to the influence of the Mt. Pinatubo disturbance. Uppala

et al. (2005) report that volcanic aerosols from the Mt.

Pinatubo eruption in 1991 were misinterpreted as in-

creased moisture in the High Resolution Infrared

Sounder (HIRS) infrared radiance data. Similar errors

FIG. 7. (a) Time-mean and (b) time-variable precipitation uncertainties in m s21. (c) Estimates of continental discharge from Dai et al.

(2009) database (dark gray) and Syed et al. (2010) global continental discharge (light gray) from 1994 to 2006 between 668N and 668S.
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are expected to occur in other reanalysis products.

Signal-to-noise ratios for time-mean fields show large

noise (.50%) in the tropical Atlantic and Pacific basins

and lower elsewhere (Fig. 3m). In contrast, time-variable

fields (Fig. 3n) are very noisy globally (.80%) and in fact

are the noisiest of all the variables examined in Fig. 3.

Spurious trends and inhomogeneities as a result of

changes in the observing system appear particularly

strong in the Southern Ocean (Bromwich et al. 2011).

The ocean’s density, and hence its pressure and cir-

culation, are strongly affected by the transport of water

across the ocean boundaries via continental discharge

(Carton 1991). Furthermore continental discharge also

provides minerals, nutrients, and contaminants to the

oceans, thus affecting biogeochemical processes in the

ocean. Since most OGCMs presently have formulations

to include continental discharge as runoff in their solu-

tions (Griffies et al. 2005; Danabasoglu et al. 2006),

uncertainties in discharge are considered here although

they are not directly obtained from reanalysis products.

Errors in continental runoff are difficult to estimate as

multiple observations at the same site are not available

globally in space and time. A comparison between Dai

et al. (2009) and Syed et al. (2010) runoff estimates be-

tween 668N and 668S show similar patterns in seasonal

variability with peak continental discharge in Northern

Hemisphere summer and low discharge in the winter

(Fig. 7c). The annual signals of both datasets show good

correspondence in phase but differ in amplitude. Syed

et al. (2010) show larger month-to-month variations

(Fig. 7c). From the differences of the monthly time se-

ries in Fig. 7c, estimated time-mean errors are 0.8 Sv

(1 Sv [ 106 m3 s21) and time-variable errors are

0.24 Sv. In comparison to the signal, time-mean errors

are ;10% and time-variable errors are ;45%, thus in-

dicating large uncertainties present in continental dis-

charge estimates.

5. Discussion and summary

Atmospheric forcing field uncertainties in this study

are obtained by comparing multiple products. In con-

trast, several studies estimate errors by taking differ-

ences between two specific products. Lucas et al. (2008)

compare ERA-40 and CORE fields, Leeuwenburgh

(2005) calculates differences between ERA-40 and

ERA-15, and Alves and Robert (2005) use differences

between NCEP and ERA-40 to estimate uncertainties

in their studies. Similarly, preliminary uncertainties

derived from differences between NCEP and ERA-

Interim at 14-day averages (at similar frequencies de-

scribed in section 2) are currently being used in the

ECCO optimization procedure. These uncertainties are

needed as a priori variance estimates in the cost function

term that penalizes too large atmospheric adjustments.

To evaluate differences in error estimates obtained from

using two-product and multiproduct approaches, we

have compared uncertainties based on differences be-

tween ERA-Interim and NCEP fields (ERA–NCEP)

with error estimates obtained from taking the maximum

of differences between ERA and all other products

discussed in this study.

For simplicity, we consider total uncertainties by

taking the RMS of the time-mean and time-variable

errors. Figure 8 shows comparisons for the case of zonal

wind stress and precipitation. Uncertainties based on

ERA–NCEP differences show relatively small errors,

with prevalent errors confined along the continental

margins (Fig. 8a). In contrast, errors obtained from

ERA compared to multiple products show considerably

larger errors over most ocean basins poleward of 408
(Fig. 8b). Similarly for precipitation, the ERA–NCEP

errors (Fig. 8c) are much smaller than errors derived

frommultiproduct comparisons (Fig. 8d). However both

estimates show similar spatial patterns, with largest er-

rors in regions equatorward of 408. Comparisons of

ERA–NCEP errors with multiproduct derived error

estimates for humidity, downwelling longwave and

shortwave radiation, and meridional wind stress fields

(not shown) display similar characteristics. Only air

temperature errors in ERA–NCEP and multiproduct

derived estimates show good correspondence in both

magnitude and spatial patterns. The disparity in esti-

mates can be attributed to evaluatingmultiple sources of

errors in a multiproduct approach. Moreover, a two-

product approach could be severely biased if the errors

from the two sources are strongly correlated. The use of

different products, including reanalysis and satellite-based

reference datasets, moderates the possibility of error

biases due to correlated errors in any single two-product

comparison. Table 2 further shows that no product pairs

dominate error estimates in most of the fields and

choosing any pair can result in significant differences in

error estimates. Uncertainty accuracy could be im-

proved by excluding products that have known errors

in certain regions (e.g., topography truncation errors in

NCEP solutions could be omitted from the uncertainty

analysis for these regions).

Large errors in atmospheric forcing fields discussed in

this study have several implications on ocean state es-

timates. For example, wind stress errors in the sub-

tropical and subpolar regions of the North Pacific and

North Atlantic (Fig. 2) can create large uncertainties in

the circulation patterns of these regions, including pre-

vailing currents such as theGulf Stream–NorthAtlantic,

Greenland–Labrador, and Kuroshio–Oyashio systems.
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Considerable errors in upwelling regions seen in short-

wave and longwave fields (Fig. 5) can likely affect solu-

tion accuracies in the most ecologically active regions

of the world. Moreover, for sea ice regions, a 1 W m22

flux imbalance equates to 10 cm of ice melt in a year,

which represents a significant fraction of the ice budget

(Bourassa et al. 2013). Substantial errors in air temper-

ature and humidity within the tropics will create biases

in the heat and salinity budgets of these regions (Fig. 6).

For example, Brodeau et al. (2010) compared solutions

of theAtlanticmeridional overturning circulation (AMOC)

by forcing an OGCM with the CORE dataset and a

bias-corrected ERA-40 dataset. They found that the

strength of the AMOC was weaker by 2 Sv in compar-

ison to both corrected ERA-dataset and in situ obser-

vations. They noted that weaker AMOC in the CORE

solution was due to warm and moist biases in near sur-

face air temperature and humidity fields respectively,

which decreased buoyancy loss in deep convection re-

gions and subsequently affected mixed layer depths and

AMOC strength. Significant uncertainties in precipita-

tion create large salinity imbalances in ocean models and

particularly affect halocline-driven polar ocean solu-

tions. Large uncertainties in surface atmospheric forc-

ing fields further complicate the task of optimizing internal

OGCM model parameters such as vertical mixing and

diffusion.

In summary, we present estimates of uncertainty in sur-

face atmospheric state fields commonly used to compute

air–sea fluxes.Uncertainties are derived fromcomparisons

between four reanalysis and satellite-based estimates of

forcing fields. In the case of uncorrelated errors, these

estimates provide an upper bound on uncertainty for each

respective surface field considered in this study. Solutions

from reanalysis products are mostly comparable because

of similar physical assumptions and assimilation of com-

mon observations. The reanalysis products show large

discrepancies particularly for wind stress and precipitation

fields in comparison to satellite-based references. No re-

analysis product shows best agreement for all fields when

compared against satellite-based references. Large differ-

ences between time-mean and time-variable errors inmost

atmospheric fields justify the need to separate them for

studying uncertainties as well as enhancing optimization

procedures. Precipitation and wind stress fields display

large time-mean and time-variable uncertainties when

compared to the signal. Adjusted atmospheric fields from

ECCO optimized solutions remain within the cluster

spanned by the reanalyses. Errors obtained by evaluating

multiple products in this study are significantly larger than

errors estimated from a single pair of products. While this

study estimates uncertainties in global atmospheric forcing

fields, the next phase would involve quantifying the im-

pacts of these atmospheric forcing field errors on ocean

state solutions.
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APPENDIX

Reanalysis- and Satellite-Derived Datasets

a. ERA-Interim

The ERA-Interim reanalysis is the most recent gen-

eration of ECMWF reanalysis (Simmons et al. 2006;

Dee et al. 2011). The ECMWF-Interim model run

covers the period 1979–present and has a horizontal

resolution of T255 (;70 km) with 60 vertical layers. The

model is an enhancement from the lower-resolution

ERA-40 reanalysis (Uppala et al. 2005). It uses a four-

dimensional variational data assimilation (4D-Var)

technique to ingest data from in situ measurements as

well as satellite-derived sources. These include water

vapor and surface wind speeds from the Special Sensor

Microwave Imager (SSM/I); ocean wave height and

surface wind from European remote sensing satellites

(ERS-1 and -2), clear-sky radiances and upper-level winds

from Meteosat-2, Global Ozone Monitoring Experi-

ment (GOME) ozone profiles, total column ozone from

the Total OzoneMapping Spectroradiometer (TOMS),

radio occultation measurements from the Challenging

Minisatellite Payload (CHAMP), the Constellation

Observing System for Meteorology, Ionosphere, and

Climate (COSMIC), and the Gravity Recovery and Cli-

mate Experiment (GRACE). Improvements in data as-

similation scheme, radiative transfer scheme, and model

physics are made in ERA-Interim in comparison to the

previous-generation ERA-40 product. The 6-hourly da-

taset of all atmospheric state variables is obtained from

Research Data Archive (RDA) maintained by the

Computational and Information Systems Laboratory

(CISL) at NCAR. ERA-Interim-derived global mean

zonal wind stress from 1999 to 2006 (Fig. A1) show strong

positive stresses in the subtropical regions [;(308 to 608)]
in both hemispheres and negative stresses in lower-

latitude tropical regions (,308).

b. JRA-25

The Japanese 25-Year Reanalysis (JRA-25) is the first

long-term reanalysis program undertaken in Asia (Onogi

et al. 2005, 2007). JRA-25 uses the Japan Meteorological

Agency (JMA)model and forecasting system to estimate

atmospheric conditions from 1979 to present. The global

model has a spatial resolution of T106 (;120 km) and 40

vertical levels. JRA-25 uses a 3D variational assimilation

scheme to ingest data from conventional and satellite-

derived data sources similar to NCEP and ERA-Interim.

In addition, JRA-25 also assimilates data from wind

profile retrievals surrounding tropical cyclones (TCR),

SSM/I snow coverage, digitizedChinese snow depth data,

and reprocessed atmosphericmotion vectors (AMV). The

6-hourly dataset of all JRA-25 atmospheric state fields is

downloaded from RDA/CISL. JRA-25-derived global

mean zonal wind stresses from 1999 to 2006 (Fig. A1)

show spatial patterns similar to those in ERA-Interim.

c. NCEP–NCAR

The NCEP reanalysis used here is the NCEP–NCAR

reanalysis (Kistler et al. 2001). The NCEP model is run

from 1948 to present and has a horizontal resolution of

T62 (;180 km) with 28 vertical layers. The model in-

gests data from ships, aircrafts, buoys, wind profilers,

radiosondes, and dropsondes. It also assimilates satellite-

derived data for winds and radiances. Both in situ and

remotely sensed data are assimilated into themodel using

spectral statistical interpolation (Kalnay et al. 1996). The

6-hourly dataset of all NCEP atmospheric state fields is

acquired from the Earth System Research Laboratory,

Physical Sciences Division (ESRL PSD), Boulder, Colo-

rado, from their website (http://www.esrl.noaa.gov/psd/).

NCEP-derived globalmean zonal wind stress from 1999 to

2006 shows good correspondence with wind stress profiles

of ERA-Interim and JRA-25 (Fig. A1); however, stronger

negative wind stress estimates are seen at higher latitudes

of Southern Hemisphere.

d. CORE2

The Coordinated Ocean Reference Experiment

(CORE) is a dataset developed by Large and Yeager

(2004). They take fields from NCEP reanalysis for near

surface wind, air temperature, specific humidity, den-

sity, and data from satellite-based instruments for ra-

diation, SST, sea ice concentration, and precipitation as

their base dataset. This dataset resolved on T62 grid

(;200 km) is then corrected by comparison with scat-

terometer winds, near-shore surface stations, and ocean

buoy and ship data. The corrected data are then used

together with the historical SST records to reproduce

the air–sea fluxes of momentum, sensible and latent

heat, and evaporation using bulk formulas. The major

adjustments are a general increase in wind speed, de-

crease in humidity, and 5% reduction in tropical solar

radiation (Large and Yeager 2009; Griffies et al. 2009).

Fields from CORE version 2, which has improvements

in continental runoff and air temperature and corrections

to errors found in version 1, are used in this study (Griffies

166 JOURNAL OF CL IMATE VOLUME 26



et al. 2012). The air temperature and humidity provided

at 10 m in CORE2 are readjusted to 2 m for this study to

match other reanalysis products. The adjustment from

10 m to 2 m is done by using the bulk algorithm described

by Large andYeager (2004).While the CORE2dataset is

a mix of reanalysis and satellite-derived data, for the

purposes of error estimation we consider it as a reanalysis

product. The 6-hourly CORE2 dataset of winds, specific

humidity, and air temperature, daily dataset of radiation,

and monthly dataset of precipitation and continental

discharge are downloaded from http://data1.gfdl.noaa.

gov/. CORE2-derived global mean zonal wind stress

profiles for the period between 1999 and 2006 show

stronger negative wind stress estimates and weaker pos-

itive wind stress estimates for most of the Northern

Hemisphere. In the Southern Hemisphere, the CORE2

wind stress show good correspondence with all the other

reanalysis datasets presented in Fig. A1 and closest

agreement with QuikSCAT data at higher latitudes.

e. ECCO

The ocean state estimate used in this study is the

new-generation fully global ECCO version 4 product

(G. Forget et al. 2012, unpublished manuscript), which

takes atmospheric fields from ERA-Interim as its initial

forcing state. The forcing fields together with initial

conditions and model parameters such as mixing and

dissipation form the control vector. The ECCO frame-

work computes model-data misfits using a cost function

(Wunsch and Heimbach 2007) with typical formulation

as described in Stammer et al. (2002). As part of an it-

erative optimization procedure, the control vector (in-

cluding atmospheric forcing) is adjusted to reduce the

model-data misfits and minimize the cost function. The

adjustment period for ECCO is 14 days. The minimi-

zation itself is dependent on the error covariances (or

weights) for each dataset supplied to the cost function.

Ideally a full error covariancematrix should be used, but

in practice only diagonal error estimates are provided

(Stammer et al. 2002). Here we use adjusted ERA-

Interim atmospheric fields from a preliminary solution

of an optimization in progress, mainly to make a first

assessment of typical changes in atmospheric fields re-

quired to best match available oceanic observations, and

how these changes compare to other atmospheric prod-

ucts. Although the optimization is not fully converged

yet, the magnitudes of adjustments are not expected to

change substantially as the optimization converges.

f. Satellite-based datasets

Zonal and meridional ocean wind stresses are derived

from the SeaWinds scatterometer onboard theQuikSCAT

satellite. The QuikSCAT satellite samples nearly 90%

of the world’s ocean, measuring the surface roughness of

the ocean from which neutral stability wind at 10-m

height is retrieved (Schlax et al. 2001) daily since 1999 at

25-km spatial resolution. Comparison of scatterometer

data against buoy observations suggests accuracies

within 0.75 m s21 in along-track and 1.5 m s21 in cross-

track directions (Chelton and Freilich 2005). The 10-m

FIG. A1. Zonally averaged profiles of zonal wind stress from 1999–2006 for ERA-Interim, JRA-25, NCEP1, CORE2,

and QuikSCAT.
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winds are then converted into wind stress by bulk

aerodynamic formulas (Risien and Chelton 2008). The

zonal andmeridional wind stress analysis for this study is

conducted from 1999 to 2006 to coincide with the data

available fromQuikSCAT. Daily QuikSCAT wind stress

fields are acquired from http://podaac.jpl.nasa.gov. The

global temporal mean of the scatterometer-derived

zonal wind stress shows considerable differences in

comparison to the four reanalysis products (Fig. A1)

with weaker stresses seen globally. A detailed analysis is

presented in section 4.

Downwelling longwave and shortwave radiative

fluxes from the reanalysis products are compared against

satellite-derived fluxes from the International Satellite

Cloud Climatology Product (ISCCP-FD) (Zhang et al.

2004), which are available at 280-km resolution. The FD

version is the newest dataset from ISCCP that reduces

noticeable errors from previous versions by using an ad-

vanced National Aeronautics and Space Administration

(NASA) Goddard Institute for Space Studies (GISS)

radiative transfer model, improved ISCCP cloud clima-

tology, and more ancillary datasets. Improvements are

also made in the treatment of ice clouds, aerosol clima-

tology, water vapor profiles, land surface albedos, and

emissivities (Zhang et al. 2004). We analyze downwelling

radiative flux fields from 1992 to 2007 for our study. The

3-hourly ISCCP data are obtained from the International

Satellite Cloud Climatology Project web site (http://isccp.

giss.nasa.gov) maintained by the ISCCP research group

at the NASA Goddard Institute for Space Studies, New

York, NY.

Precipitation and specific humidity reanalysis data are

compared against satellite-derived observations from

Hamburg Ocean Atmosphere Parameters and Fluxes

from Satellite Data (HOAPS; Andersson et al. 2010).

Near-surface specific humidity is derived from SSM/I

(Bentamy et al. 2003) using an improved version of the

Schultz model (Schultz et al. 1993). The precipitation

values are derived from a neural network–based pre-

cipitation algorithm that takes SSM/I data as input

(Andersson et al. 2010). The HOAPS product does not

account for ice-covered regions and thus large portions

of the polar region are missing in the dataset. It must be

noted that other global products such as Global Pre-

cipitation Climatology Project (GPCP) that composite

satellite and rain gauge data (Huffman et al. 1997) and

Climate Prediction Center (CPC) Merged Analysis of

Precipitation (CMAP) that combines satellite, rain

gauge, and atmospheric forecast models (Xie and Arkin

1997) are also available. Bosilovich et al. (2008) have

used these datasets to compare against each other as

well as against precipitation data from reanalysis prod-

ucts. However, we chose HOAPS for our study because

of its specific focus on ocean precipitation. Specific hu-

midity and precipitation are analyzed from 1992 to 2005.

The 5-day averages of HOAPS-G version 3 data are

obtained from the Climate and Environmental Data

Retrieval and Archive website (http://cera-www.dkrz.

de/CERA/) at theMax Planck Institute forMeteorology

at 0.58 (;60 km) resolution.

No long-term global satellite-based estimates of lower

atmosphere air temperature are currently available

(Curry et al. 2004). The Atmospheric Infrared Sounder

(AIRS) is a recent remote sensor that measures near-

surface air temperature. However, the currently avail-

able length of processed data is considered too short

for analysis in our study. We thus create an ensemble of

the air temperature at 2 m from the four reanalysis prod-

ucts for the period of 1992 to 2007. The reanalysis ensemble

mean air temperature is considered as the reference.

Very few global analyses of continental discharge

exist that can quantify variations and changes in global

freshwater discharge from land into the oceans, partly

because of a lack of reliable data (Peel and McMahon

2006). A global dataset of historical monthly streamflow

at the farthest downstream stations for the world’s 925

largest ocean-reaching rivers has been created by Dai

et al. (2009). They use gauge records from 80% of global

ocean-draining land areas. Gaps in gauge data are filled

by estimates from a land surface model. This dataset has

been included into CORE2 at monthly intervals from

1948 to 2007. Another attempt to quantify global con-

tinental discharge has been undertaken by Syed et al.

(2010) for the period 1994–2006. They have used 13

years of satellite-derived precipitation, evaporation, and

altimeter-based sea level data to estimate freshwater

discharge. Their formulation evaluates contributions of

sea level changes, precipitation, and evaporation data to

the global ocean mass balance. The residual mass is

equated to continental discharge. However, their esti-

mates are limited to 668 latitude in both hemispheres

and thus exclude the Arctic and ice-covered regions.We

subset the Dai et al. (2009) dataset from 668N to 668S to

spatially match with Syed et al. (2010). While mapping

temporal errors in space is not possible, we calculate

global continental discharge errors by comparing time

series of the two datasets.
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