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ABSTRACT

In this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz,

or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount

importance in deriving radar-based and combined radar–radiometer precipitation estimates from observa-

tions provided by the forthcoming NASA Global Precipitation Measurement (GPM) mission. In GPM, dual-

frequency Ku-/Ka-band radar observations will be available only within a narrow swath (approximately

one-half of the width of the Ku-band radar swath) over the earth’s surface. Therefore, a particular challenge is

to develop a flexible radar retrieval algorithm that can be used to derive physically consistent precipitation

profile estimates across the radar swath irrespective of the availability of Ka-band radar observations at any

specific location inside that swath, in other words, an algorithm capable of exploiting the information provided

by dual-frequency measurements but robust in the absence of Ka-band channel. In the present study, a unified,

robust precipitation retrieval algorithm able to interpret either Ku-only or dual-frequency Ku-/Ka-band radar

observations in a manner consistent with the information content of the observations is formulated. The for-

mulation is based on 1) a generalized Hitschfeld–Bordan attenuation correction method that yields generic

Ku-only precipitation profile estimates and 2) an optimization procedure that adjusts the Ku-band estimates

to be physically consistent with coincident Ka-band reflectivity observations and surface reference technique–

based path-integrated attenuation estimates at both Ku and Ka bands. The algorithm is investigated using

synthetic and actual airborne radar observations collected in the NASA Tropical Composition, Cloud, and

Climate Coupling (TC4) campaign. In the synthetic data investigation, the dual-frequency algorithm per-

formed significantly better than a single-frequency algorithm; dual-frequency estimates, however, are still

sensitive to various assumptions such as the particle size distribution shape, vertical and cloud water distri-

butions, and scattering properties of the ice-phase precipitation.

1. Introduction

Knowledge regarding the three-dimensional vari-

ability of precipitation is essential in the development of

precipitation retrieval algorithms from satellite radiometer

observations. This is because satellite radiometer obser-

vations cannot be uniquely associated with precipitation,

and statistical information is required to determine

optimal precipitation estimates. Spaceborne radar ob-

servations may be used to derive such information. For

example, it is anticipated that in the Global Precipitation

Measurement (GPM) era, observations from spaceborne

dual-frequency radar will be used to develop algo-

rithms capable of providing consistent precipitation

estimates from satellite radiometers featuring various

channel frequencies and footprint resolutions (Hou

et al. 2008). Consistency among precipitation retrievals

from these various radiometers will be achieved through
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the development of common precipitation–radiance

databases derived from combined radar–radiometer

precipitation profile estimates (Hou et al. 2008). From

this perspective, spaceborne radar profiling algorithms

are crucial for the derivation of global satellite pre-

cipitation estimates.

Various algorithms for retrieving precipitation from

dual-frequency radar observations have been devel-

oped. These include, but are not limited to, methods

by Meneghini et al. (1992), Mardiana et al. (2004), Grecu

and Anagnostou (2004), Liao et al. (2005), and Rose and

Chandrasekar (2006). In addition, methodologies for

incorporating Ku-band radar observations in combined

radar–radiometer retrieval frameworks have been for-

mulated, for example, in Haddad et al. (1997), Grecu

et al. (2004), and Masunaga and Kummerow (2005).

However, further research must be conducted to de-

velop dual-frequency retrieval algorithms that would

perform optimally within the GPM context. The GPM

core satellite will feature a Ku-/Ka-band dual-frequency

precipitation radar (DPR) (Senbokuya et al. 2004).

The dual-frequency radar observations will be available

within a 125-km-wide swath, centered within a 245-km-

wide swath of single-frequency Ku-band radar obser-

vations. From the science perspective, it is desirable to

develop a physically consistent radar profiling algorithm

that can operate using either single-frequency (Ku band

only) or dual-frequency (Ku/Ka band) observations, and

one that can make use of path-integrated attenuation

(PIA) estimates from the radar surface reference tech-

nique (SRT) (Meneghini et al. 2000, 2004) when deemed

reliable.

In this study, we formulate a GPM DPR profiling al-

gorithm that can be applied to both the inner and outer

swaths and can optimally incorporate SRT information

into the retrievals. The algorithm is based on a general-

ized Hitschfeld and Bordan (1954) attenuation correc-

tion methodology that yields generic Ku-band radar

precipitation profile estimates and an optimization pro-

cedure that adjusts the Ku-band estimates to be phys-

ically consistent with coincident Ka-band observations

and Ku-/Ka-band SRT PIA estimates. The algorithm is

computationally efficient and can be used within a com-

bined radar–radiometer framework.

2. Method

a. Overview

The dual-frequency profiling algorithm formulated

in this study is based on a computationally efficient meth-

odology to derive generic precipitation profiles from single-

frequency Ku-band radar observations. Specifically,

assuming that the hydrometeor particle size distri-

butions follow a gamma function (Ulbrich 1983)—that

is, N(D) 5 N
0
Dm exp(2LD), where D is the particle

diameter and N0, L, and m are the intercept, slope,

and shape parameters, respectively—and that N0 and

m along with the cloud water and water vapor attenua-

tion are known for every gate, a Ku-band reflectivity

profile is inverted to derive profiles of L. Various studies

(e.g., Testud et al. 2001; Illingworth and Blackman 2002)

showed that normalized gamma distributions are pref-

erable to standard gamma distributions in some in-

stances. However, because the number concentration

still depends on the shape factor irrespective of whether

a normalization is used (Liao et al. 2005), a standard

gamma distribution is used in this study. To perform the

dual-wavelength inversion, the L profiles are optimized

as a function of adjustable N0 profiles to minimize,

in a least squares sense, the differences between Ka-

band predicted and actual reflectivity observations,

as well as the differences between predicted and SRT-

derived Ku- and Ka-band PIAs. Additional constraint

(background) terms are included in the function to be

minimized to prevent the derivation of unrealistic N0

values.

b. Single-frequency retrieval

A computationally efficient methodology to derive

generic solutions from Ku-band observations was for-

mulated by Hitschfeld and Bordan (1954, hereinafter

HB). The traditional HB approach requires a power-

law relationship between specific attenuation and re-

flectivity; that is,

k 5 aZb, (1)

where k is the specific attenuation, Z is the reflectivity

factor, and a and b are known parameters. In addition to

the power-law dependence, b has to be constant with

range for the HB methodology to apply. A generaliza-

tion of the HB method can be derived from the radar

equation,

Zm(r) 5 Z(r) exp

�
20:2 ln10

ðr

0
k[Z(s)] ds

�
, (2)

where r is the radar range; Zm(r) and Z(r) are the

measured and unattenuated reflectivity factors, respec-

tively; and k[Z(s)] (dB km21) is the specific attenuation

as a function of Z(s). By raising (2) to power of b and

then multiplying the result by k[Z(r)], the following

equation can be derived:
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Zb
m(r)

k[Z(r)]

Zb(r)
5 k[Z(r)] exp

�
20:2b ln10

ðr

0
k[Z(s)] ds

�
:

(3)

The integration of (3) from 0 to r yields

0:2b ln10

ðr

0
Zb

m(s)
k[Z(s)]

Zb(s)
ds

5 1 2 exp

�
20:2b ln10

ðr

0
k[Z(s)] ds

�
, or (4)

PIA(r)5210/b log10

�
1 2 0:2b ln10

ðr

0
Zb

m(s)
k[Z(s)]

Zb(s)
ds

�
,

(5)

where PIA is the two-way path-integrated attenuation.

By defining

S(r) 5

ðr

0
Zb

m(s)
k[Z(s)]

Zb(s)
ds, (6)

(5) can be rewritten

PIA(r) 5 210/b log10[1 2 qS(r)], (7)

where q [ 0.2b ln10. From (6), (7), and (2), it follows

that the unattenuated reflectivity is related to the mea-

sured reflectivity by

Z(r) 5 Zm(r)/[1 2 qS(r)]1/b: (8)

Equation (8), together with (6), is a generalization of

the attenuation correction formula derived by HB. It is

apparent from (6) and (8) that k does not have to satisfy

(1) for the attenuation correction procedure to work.

However, parameter b has to be constant in range and

for numerical convergence considerations is chosen to

minimize the variance of k/Zb. However, if (1) holds,

then the unattenuated reflectivity values do not need to

be known to derive the PIA using (7) and (8). If (1) does

not hold, an iterative solution is generally required.

Shown in Fig. 1 is a flowchart describing an iterative

attenuation correction procedure based on (6) and (8).

The procedure starts by reading the observed reflectivity

factors Zm. Because (6) accounts only for attenuation

due to solid, liquid, and mixed-phase precipitation, the

measured reflectivity factors first need to be corrected

for attenuation due to cloud and water vapor. This is done

using parameterizations derived from cloud-resolving

model simulations, as in Iguchi et al. (2009). Then, the

initial estimates of the unattenuated reflectivity factors

Z are set to Zm. Because (8) does not have a closed

FIG. 1. Flowchart of the generalized Hitschfeld–Bordan procedure.
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form (i.e., Z occurs on both sides of the equation), it-

erative improvement of the approximations of Z on the

right-hand side of (8) is required.

The next step consists of calculating S(r) for r varying

from 0 (radar altitude) to rs (range to the surface). When

the quantity qS(rs) is greater than or equal to 1, (8)

cannot be applied. Iguchi and Meneghini (1994) pro-

posed the adjustment of qS(rs) by a factor «, while

Durden and Haddad (1998) and Ferreira et al. (2001)

showed the importance of relating this type of adjust-

ment to changes in the assumptions regarding the par-

ticle size distributions. Indeed, if the intercepts in the

particle size distributions at all levels are changed by dN,

then qS(rs) (where rs is the range to the surface) changes

dN (12b), which implies that dN(12b) 5 «. A simple pro-

cedure is implemented to keep the quantity qS(rs) be-

low a maximum value zmax (slightly less than 1) that

corresponds to a maximum retrievable PIA value

of 210/b log
10

(1 2 qz
max

). That is, if qS(rs) becomes

greater than zmax, it is set to zmax and all particle size

distribution (PSD) intercepts are changed by a factor of

fzmax/[qS(rs)]g1(12b). The unattenuated reflectivity fac-

tors can then be updated using (8).

The iterative procedure is continued until the root-mean-

square difference between the updated and previous

reflectivity factors does not change by more than 5 3

1022 dB. Convergence is generally faster than that of

the correction procedure of Meneghini (1978). This is

because k(Z)/Zb is a weak function of Z (which may be

a constant for certain ranges and drop size distributions,

as assumed by HB). Moreover, (7) and (8) provide an

effective and physically consistent mechanism of avoiding

divergence in the attenuation correction process.

c. Lookup tables and forward model

To efficiently make use of the generality of formulas

(6) and (8), lookup tables of attenuation and associated

reflectivity, equivalent precipitation water content, and

precipitation rate normalized by N0 are derived as a

function of L for constant m at both Ku and Ka bands.

Since these bulk radiative properties are normalized by

N0, properties for different values of N0 can be easily

derived through simple calculations done on the fly. For

example, if the attenuation for a given Ku-band re-

flectivity is desired, a quick search can be used to locate

the two consecutive Z/N0 entries in the lookup table that

bound the actual Z/N0. The associated Ku-band k/N0

value is determined through linear interpolation be-

tween the corresponding two consecutive k/N0 values in

the lookup table. Finally, k is determined by multiplying

the interpolated k/N0 by the actual N0 value. A bisection

method (Press et al. 2007) is used to quickly find the

desired entries in the lookup tables.

Five values of m are considered, that is, m2 f22, 21, 0,

1, 2g. The values of L are chosen such that the mass-

weighted mean diameter, defined as the ratio of the

fourth moment of the gamma distribution to the third

moment, varies from 0.1 to 5.0 mm with a step of

0.1 mm. That is, given a value of m in the above set and

a value of mean diameter, L is analytically determined

and the normalized reflectivity and attenuation are de-

termined by numerical integration. Multiple hydrome-

teor phases are considered as well. For stratiform rain

exhibiting a clear bright band, the five-node storm

structure of Iguchi et al. (2009) is used. That is, the bright

band (if it exists) is first identified and used to define the

geometry of the melting layer. Then, depending on the

altitude of a given range gate relative to the melting

layer boundaries, specific lookup tables are used for at-

tenuation correction and PSD estimation. Within the

melting layer itself, a brightband model similar to the first

model of Bauer et al. (2000) is used to derive the atten-

uation and reflectivity. That is, snow is assumed to have

a constant density at the top of the melting layer and the

precipitation flux is assumed to be constant within the

melting layer. The first model of Bauer et al. (2000) is

integrated downward to derive the amount of melted

mass as a function of the distance below the 0.08C iso-

therm. The electromagnetic properties of melting snow

are calculated using the model proposed by Klaassen

(1988). The attenuation, reflectivity, and associated pre-

cipitation table for the brightband peak (node C) is

constructed by matching the peak reflectivity in the

computational melting layer model. A snow lookup ta-

ble is used at the top of the melting layer (node B). Snow

particles are modeled as a spherical mixture of air and

ice in this study. The Maxwell-Garnett formula (Maxwell-

Garnett 1904) is used to determine the snow refractive

index. A water lookup table is used at the bottom of the

melting layer (node D). Nodes B and D are set at 500 m

above and below the brightband peak. Tables for the

top and bottom nodes (A and E) are derived using snow

and water properties at temperatures estimated as a

function of the distance from the bright band, assuming

a 6 K km21 lapse rate. The attenuation versus reflectivity

relationships in between these nodes are determined

through linear interpolation. It should be mentioned that

the lapse rate can also be determined using meteorolog-

ical analyses. Moreover, nodes B and D might be more

accurately determined based on the reflectivity derivative

with range. A similar methodology, but based only on

four nodes, is used in stratiform rain not exhibiting a

bright band and in convective rain. That is, node C is

eliminated and the attenuation versus reflectivity rela-

tionships within the transition are determined by inter-

polating between the node B and node D tables.
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The lookup tables and multiple-node structures are

used not only in the generalized HB retrievals, but

also in simulating the measured reflectivity factors

at Ka-band. Note that given the Ku-band normalized

reflectivity value Z/N0 and the lookup tables for both

Ku- and Ka-band normalized reflectivity and attenua-

tion, the associated Ka reflectivity and attenuation can

be readily determined. The Ka-band measured re-

flectivity factors are simulated using (2). Attenuation

due to cloud and water vapor is parameterized as de-

scribed in Iguchi et al. (2009). The benefit of simulating

measured Ka-band reflectivity from Ku-band preci-

pitation profile estimates is that an objective procedure

to optimally derive the N0 values that make the Ku-band

estimates most consistent with Ka-band observations

can be derived. Such a procedure is described in the next

subsection.

d. Optimal estimation framework

The agreement between simulated and actual mea-

sured Ka-band reflectivity factors could be assessed us-

ing the following cost function:

FZ(N0) 5
1

2
[Zm,Ka2 Zsim,Ka(N0)]TW21

Z

3 [Zm,Ka2 Zsim,Ka(N0)], (9)

where Zm,Ka is the actual Ka-band measured reflectivity

vector (dBZ), Zsim,Ka(N
0
) is the Ka-band reflectivity

vector simulated from Ku-band retrievals, and WZ is

the reflectivity error covariance. The formulation in (9)

is generally insufficient to derive well-defined estimates

of N0 (i.e., estimates that are unique and insensitive

to small perturbations in the measurements), based on

the agreement between simulated and actual measured

Ka-band reflectivity factors. A more complete formu-

lation that accounts for the agreement between simu-

lated and SRT-derived PIAs and between estimated N0

and a priori N0 estimates is

F(N0) 5 FZ(N0) 1
1

2
[PIASRT 2 PIAsim(N0)]TW21

PIA

3 [PIASRT 2 PIAsim(N0)]

1
1

2
[ln(Na

0) 2 ln(N0)]TW21
N [ln(Na

0) 2 ln(N0)],

(10)

where PIASRT is the two-component vector of SRT es-

timates of Ku- and Ka-band PIA, PIAsim(N0) is the

vector of Ku- and Ka-band PIA simulated from the Ku

retrievals, WPIA is a matrix of associated uncertainties,

ln(Na
0) is an a priori independent estimate of ln(N0), and

WN is a matrix of associated uncertainties. In this study,

WZ and WPIA are specified as in Grecu and Olson (2008).

Vector Na
0 and matrix WN are derived from Weather

Research and Forecasting Model (WRF, Skamarock et al.

2005) simulations of tropical convection using the WRF

two-moment microphysical scheme (Morrison et al. 2005).

Specifically, two 48-h-long simulations of convection

that occurred during the period and in the region of the

Tropical Composition, Cloud and Climate Coupling (TC4)

Experiment (Toon et al. 2010) are produced and used to

derive vector Na
0 and matrix WN. Previous studies (e.g.,

Rao et al. 2001; Bringi et al. 2003; Rosenfeld and Ulbrich

2003; Steiner et al. 2004) indicate that particle size dis-

tributions vary considerably in time and space as a func-

tion of a multitude of factors such as aerosol load, surface

type, synoptic conditions, and orographic forcing. It is

therefore unlikely that the indiscriminate use of Na
0 and

matrix WN derived using simulations of a specific type of

precipitation would produce globally optimal rain esti-

mates. Therefore, additional simulations and estimates of

Na
0 and matrix WN are necessary for the algorithm to be

optimal in different meteorological contexts.

Function F does not depend exclusively on N0 but on

other parameters as well (e.g., the shape factors, cloud

water, and relative humidity). However, given that these

parameters cannot be reliably retrieved along with N0

from dual-frequency radar observations, they are spec-

ified rather than retrieved. Some information regarding

the relative humidity and cloud water distribution can be

derived from coincident microwave radiometer obser-

vations if available, but this study’s focus is exclusively

dual-frequency spaceborne radar retrievals. Combined

radar–radiometer retrievals will be investigated in a fu-

ture study, and so only the sensitivity of precipitation

estimates to parameters that cannot be retrieved from

radar observations alone will be considered here.

To derive a Ku-band retrieval that is physically con-

sistent with both Ka-band radar observations and SRT

PIA estimates, the functional F in (10) is minimized as

a function of ln(N0) using the Gauss–Newton method

(Rodgers 2000). Addressing the minimization problem

as a function of ln(N0), rather than N0, is advantageous

because it requires the linearization of only the first two

terms on the right-hand side of (10). The flowchart of the

minimization procedure is shown in Fig. 2. The Gauss–

Newton method requires the Jacobian of the forward

model operator, that is, the operator that, given the vector

N0, produces the simulated observations Zsim,Ka(N0) and

PIAsim(N0). In this study, the derivatives of the forward

model operator’s Jacobian, called H here, are calculated

using a finite-difference technique. That is, each com-

ponent of the state vector N0 is varied independently of

the other components, and the simulated observations

are recalculated and then differenced with respect to

the unperturbed simulated observations. The cost of
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calculating the Jacobian in this way is an order of mag-

nitude higher than calculating the gradient of F through

a reverse evaluation technique (Wunsch 2006). However,

because the Gauss–Newton method is a second-order

method, the minimization process requires a signifi-

cantly smaller number of iterations than steepest de-

scent techniques based on reverse gradient evaluations,

which makes the Gauss–Newton method similar in terms

of computational effort to the reverse-gradient-based

techniques. The vector N0 is updated using the following

formula:

ln(N0,k11) 5 ln(N0,k)1 A21[ATR21 dY

1 W21
N (Na

0 2 N0)], (11)

where

R21 5

�
W21

Z 0

0 W21
PIA

�
,

A 5 HTR21H 1 W21
N , and dY is the difference between

the observations and simulations. Another advantage of

the Gauss–Newton method is that A21 represents the

error covariance of the ln(N0) estimates.

The whole process of deriving L as a function of N0

from the Ku-band observations, simulating the Ka-band

measurements and the PIA vector, and updating the N0

vector is illustrated in Fig. 2. For the purposes of com-

putational efficiency as well as numerical robustness, it is

preferable to retrieve a reduced-order representation of

N0 rather than N0 at every single radar gate where dual-

frequency observations are available; see Hogan (2007).

That is, N0 is retrieved every 500 m, and the interme-

diate values are determined by spline interpolation of

log(N0). Although the resulting N0 is smoother than it

would be if it were explicitly retrieved for every gate, the

associated estimates of L and other variables are not

necessarily smooth because independent L retrievals are

carried out for every radar gate using the generalized

HB method. It is worth mentioning that Rose and

Chandrasekar (2006) also used a parameterized rep-

resentation of log(N0): they assumed that for liquid rain,

log(N0) varies linearly with height. However, unlike in

the current approach, the mass-weighted mean diameter

was also parameterized. In subsequent sections, the

least squares–based algorithm described in this section

will be referred to as LSA.

3. Application to synthetic data

To assess the LSA’s ability to yield a well-defined

solution, a synthetic data experiment is devised. That is,

FIG. 2. Flowchart of the optimal estimation procedure.
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the algorithm is applied to simulated dual-frequency

Ku-/Ka-band observations, and the results are evaluated

against the PSD variables used to simulate the obser-

vations. Actual Ku-band airborne radar observations

collected in the TC4 experiment (Toon et al. 2010) are

used to derive vertical profiles of slope profiles (L) as

a function of randomly generated N0 profiles. Uncor-

related, lognormally distributed N0 values with a mean

of log(0.08 cm24) and a standard deviation of 1.0 are

generated every 500 m starting from the Ku-band echo

top down to surface. The intermediate N0 values are

computed by spline interpolation, as explained in pre-

vious section. The shape factor m is assumed constant

in the vertical and equal to 0.0. Given the randomly

generated N0 profiles, fixed m, and Ku-band reflectivity

profile, a synthesized L profile is derived using the gen-

eralized HB method. The cloud water and relative

humidity profiles are assumed known and set based on

the WRF simulations. These profiles are assumed to be

representative of tropical precipitation. Finally, Ka-band

reflectivities, as well as Ku- and Ka-band PIAs, are then

synthesized from the known atmospheric profile and the

forward model. Although the vertical distributions of

cloud and relative humidity may have a significant impact

on both Ku- and Ka-band retrievals, only the mechanics

of the algorithm and not the impact of uncertainties in

forward models are tested in this section.

Shown in Fig. 3 are the synthetic Ku-band and

Ka-band reflectivity observations. Single-frequency (Ku

only; left-hand panel) and dual-frequency (Ku/Ka; right-

hand panel) estimates of precipitation water content are

plotted versus the ‘‘true’’ precipitation water contents

in Fig. 4. Data points from all levels are shown in the

figure. It is apparent from Fig. 4 that the dual-frequency,

FIG. 3. Synthetic Ku- and Ka-band reflectivity observations.
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Ku-/Ka-band estimates are superior to single-frequency,

Ku-band estimates, and that the LSA estimates are rea-

sonably accurate. In applications to actual radar data, the

vertical distributions of m, cloud water, and relative hu-

midity are not known, and any reasonable assumption

may have a notable impact on retrievals. The electro-

magnetic properties of the melting layer represent a

source of significant uncertainty as well. Therefore, the

results described in this section should be regarded only

as an evaluation of the LSA’s ability to provide a correct

solution to the numerical problem associated with the

retrieval process.

Shown in Fig. 5 are single-frequency (Ku band; left-

hand panel) and dual-frequency (Ku/Ka band; right-

hand panel) retrievals of mass-weighted mean diameters

from the semisynthetic observations. Similar to the re-

sults in Fig. 4, the dual-frequency retrievals are superior

to single-frequency retrievals. However, as previously

FIG. 4. True vs estimated equivalent precipitation water content derived from (left) single (Ku band) and (right)

dual-frequency synthetic (Ku/Ka band) observations.

FIG. 5. True vs estimated equivalent mass-weighted mean diameters derived from (left) single (Ku band) and (right)

dual-frequency synthetic (Ku/Ka band) observations.
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explained, additional uncertainties are expected to arise

in real-life applications.

4. Application to airborne data

In this section, the dual-frequency algorithm is ap-

plied to actual radar observations collected by the Air-

borne Second Generation Precipitation Radar (APR-2)

during the TC4 experiment. TC4 was based in Costa

Rica and Panama during July and August 2007. Its major

objective was to better understand the role that the

tropical tropospheric layer (TTL) plays in the earth’s

climate and atmospheric chemistry (Toon et al. 2010).

APR-2 provides collocated beam reflectivity observa-

tions at 13.4 and 35.6 GHz in a downward-looking, cross-

track-scanning geometry (Sadowy et al. 2003). Given its

similarity to the future GPM DPR, APR-2 data repre-

sent an excellent opportunity to test DPR algorithms.

The real Ku-/Ka-band data used in this section were

collected during a flight leg that occurred from 1936 to

1944 UTC 17 July 2007. During this flight leg, the APR-2

sampled both convective (apparent near scan index 40 in

Fig. 6) and stratiform precipitation. The dual-frequency

retrievals are expected to be more accurate in stratiform

precipitation, since the vertical distribution of precipi-

tation phases are better defined in stratiform regions.

However, the algorithm developed here is applicable to

both convective and stratiform precipitation.

Shown in Fig. 7 are the equivalent mass-weighted mean

diameter (top panel) and the equivalent precipitation

water content (middle panel) derived by the applica-

tion of the LSA to the observations shown in Fig. 6. The

shape factor m is assumed to be 0.0 in this algorithm ap-

plication. Generic relative humidity and cloud profiles

derived from WRF simulations are assumed, as explained

in the previous section. A snow density of 0.1 g cm23 is

also assumed. The impact of these assumptions on the

retrieved precipitation will be investigated later in this

section.

Although some artifacts are apparent, the precipita-

tion estimates appear to be realistic. The reason why the

mass-weighted mean diameter tends to be larger in the

melting layer than in the immediate neighboring layers

is most likely an underestimation of the dual-frequency

reflectivity ratio (DFR) in the melting layer due to the

relatively simple model of electromagnetic properties of

melting ice particles. It should be noted here that not

only the model of Klaassen (1988) is deficient in this

respect. Several other simple models of similar design

(i.e., based on the assumption that melting particles are

spherical mixtures of air, ice, and liquid water) have been

explored and did not produce better results. Although

FIG. 6. Ku- and Ka-band reflectivity observations from the APR-2 at the TC4 field experiment

on 17 Jul 2007.
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the more complex approach of Liao and Meneghini

(2005) is likely to yield a more continuous transition

from the ice to the liquid water phase, tables of elec-

tromagnetic scattering properties (e.g., extinction, scat-

tering, phase function) at all GPM frequencies are not

yet available. However, such tables will be become avail-

able in the near future (L. Liao and R. Meneghini 2010,

personal communications), and they will be incorporated

into the LSA. Until then, the electromagnetic model of

Klaassen (1988) will be used. The consequence of DFR

underestimation in the bright band is the underestimation

of N0 in the bright band. Therefore, the Ku-band re-

flectivity in the bright band is interpreted as being caused

by unrealistically few but relatively large particles, lead-

ing to an underestimation of precipitation water contents

in the bright band.

Shown in the bottom panel of Fig. 7 are the Ka-band

SRT PIA and the algorithm-estimated PIA. There is

good agreement between the two variables, which in-

dicates that the precipitation estimates are consistent

with Ka-band reflectivity observations as well as the

SRT PIA at Ka band. The agreement is good even in the

convective region, which is characterized by very large

Ka-band PIA—an illustration of the algorithm’s ability

to make use of all existing information. That is to say,

even though the Ka-band reflectivity signal can become

completely attenuated (see Fig. 6), the SRT PIA estimate

may still provide useful information to the algorithm.

Note that formulations that make explicit use of the dual-

frequency reflectivity ratio cannot use this type of in-

formation in the retrieval process. The Ku-band SRT and

retrieved PIAs exhibit similar agreement (not shown).

FIG. 7. (top) Equivalent mass-weighted mean diameters, (middle) equivalent precipitation

water contents, and (bottom) PIAs estimated from the APR-2 data between 1936 and 1944 UTC

17 Jul 2007.
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The retrieved number density NT, defined as the total

number of precipitation particles per volume unit, is

shown in Fig. 8. A trend of increasing NT with the dis-

tance below the cloud top is apparent above 5-km alti-

tude. Lo and Passarelli (1982) noted a similar trend in

airborne data and attributed it to depositional growth of

ice nuclei. In the freezing regions close to the 08C iso-

therm, a decrease of NT with the distance from cloud top

is expected because of aggregation processes. Uncer-

tainties in modeling the electromagnetic scattering prop-

erties and size distributions of ice-phase precipitation

are likely to significantly affect the NT retrieval in the ice

phase. Although progress in modeling the scattering

properties using advanced electromagnetic solvers and

complex particle shapes (Liu 2008) and better parame-

terizations of snow distributions (Tian et al. 2010) are

likely to reduce uncertainties in the ice-phase estimates

of NT, it is expected that ice-phase retrievals will con-

tinue to be more uncertain than liquid-phase retrievals

simply because of the additional degrees of freedom

involved in the characterization of frozen hydrometeors

versus raindrops. Similarly, NT estimates in the melting

layer are likely to have significant uncertainties due to

uncertainties in both electromagnetic properties and

particle size distribution parameterizations. Estimates

of NT near the ground in clutter-free regions are ex-

pected to be most accurate when the SRT estimates of

PIA are accurate. This is because, irrespective of for-

ward modeling uncertainties, the algorithm derives a

solution that is consistent with Ku- and Ka-band reflec-

tivity observations as well as the associated SRT PIAs.

Therefore if the SRT PIAs are reasonably accurate, then

precipitation estimates from LSA will be similar to those

of Meneghini et al. (1992), which are deemed most ac-

curate near the ground. In sum, the LSA does not re-

quire SRT estimates of PIAs, but it does make effective

use of them if they are available and accurate.

To investigate the impact of the SRT PIA estimates, re-

trievals without the use of these estimates are performed.

This is done by setting the elements of WPIA to very

large values, which makes the contribution of the second

term on the right-hand side of (10) essentially zero ir-

respective of the model-derived PIAs. The differences

between the reference precipitation estimates and the

estimates derived without PIA information are shown in

the top panel of Fig. 9. Note that the differences are neg-

ligible at and above the freezing level, but they increase

close to the ground, where the ratios of attenuation-

corrected reflectivity factors to attenuated reflectivity

factors should be approximately equal to the SRT PIAs.

This is an indication that SRT PIA estimates may have

a significant impact on retrievals of near-surface precipi-

tation and that estimates derived exclusively from re-

flectivity observations may not be necessarily consistent

with the SRT estimates of PIA.

The differences between the SRT-based LSA esti-

mates and single-frequency (Ku only) estimates are

shown in the bottom panel of Fig. 9. The differences be-

tween the two retrievals are significant both above and

below the freezing level. Nevertheless, it is still possible

to make the single-frequency radar precipitation esti-

mates more consistent with dual-frequency radar esti-

mates. In the LSA applications shown in Fig. 9, the

a priori ln(Na
0) estimate and its associated covariance

matrix (derived here from WRF simulations) are not

consistent with the N0 estimates derived from the dual-

frequency observations. However, in satellite applica-

tions, more representative estimates of ln(Na
0) and WN

for single-frequency applications can be derived from

the long-term application of the LSA to dual-frequency

observations. The use of such a priori estimates is likely

to produce single-frequency (Ku only) retrievals that are

more consistent with the dual-frequency retrievals than

those utilizing WRF estimates of ln(Na
0) and WN. It

should be mentioned that in light rain, a Ka-band signal

above the noise threshold may occur while the Ku-band

signal is below the noise threshold. For such situations,

a single-frequency Ka-band retrieval algorithm may be

FIG. 8. Estimated NT values from the APR-2 between 1936 and 1944 UTC 17 Jul 2007.
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developed using the ln(Na
0) and WN information derived

from the dual-frequency retrievals. It should be men-

tioned that the ln(Na
0) and WN information derived from

dual-frequency observations may not be representative

of light rain in situations in which only Ka band is above

the noise threshold. However, better information may

be difficult to derive and, until such information be-

comes available, the dual-frequency retrievals can pro-

vide a temporary solution.

To evaluate the sensitivity of precipitation estimates

to parameters that cannot be reliably estimated from

radar observations alone, retrievals under various as-

sumptions are performed. Shown in the top panel of

Fig. 10 is the difference between the LSA retrieval for

m 5 0 and the LSA retrieval for m 5 1. As illustrated by

Fig. 10, the PSD shape factor has a significant impact

on precipitation water content estimates; the estimates

for m 5 0 being approximately 15% larger than those

for m 5 1. Cloud and relative humidity uncertainties

may also result in uncertainties up to 10% in estimated

water contents (results not shown). It is anticipated that

these uncertainties can be reduced by incorporating

LSA into a combined radar–radiometer framework, but

the performance of such an algorithm will be the subject

of a separate study, and so the investigation of com-

bined radar–radiometer retrievals is deferred. Finally,

the differences between LSA estimates derived using

two different snow densities, namely 0.10 g m23 and

0.15 g m23, are displayed in the bottom panel of Fig. 7.

As discussed previously, retrievals above the freezing

level are highly sensitive to assumed snow particle elec-

tromagnetic scattering properties, which depend on the

snow density. The use of high-frequency radiometer ob-

servations may reduce the uncertainties in snow water

content estimates if more complex scattering calcula-

tions (e.g., Liu 2008) based on realistic snow habits (e.g.,

Westbrook et al. 2004) are employed.

5. Conclusions

In this study, an algorithm to retrieve precipitation

vertical profiles from spaceborne dual-frequency (Ku/Ka

band) radar observations is formulated and investigated.

The algorithm is based on a generalized HB attenuation

correction methodology that yields generic PSD profiles

from Ku-band radar data and an optimization procedure

that adjusts the Ku-band-derived PSDs to make them more

consistent with coincident Ka-band reflectivity observa-

tions and SRT PIA estimates at both Ku and Ka bands.

The consistency between the Ku-band retrievals, the

Ka-band reflectivity observations, and SRT PIA estimates

at both Ku and Ka bands is quantified using a quadratic cost

function that is minimized with respect to parameterized

profiles of PSD intercepts using a Gauss–Newton method.

FIG. 9. (top) Differences of precipitation water contents estimated using LSA with and

without SRT information and (bottom) differences estimated using LSA with dual-frequency

(Ku/Ka band) and single-frequency (Ku band) data.
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The algorithm is tested using both synthetic and actual

airborne data. In the synthetic data evaluation, actual

Ku-band radar observations along with assumed profiles

of PSD intercepts, cloud water, and relative humidity

are used to generate Ka-band observations. Retrievals

using the synthetic data show the algorithm’s ability to

estimate two-parameter PSD information from dual-

frequency observations. Alternatively, if only Ku-band

data are available, the same algorithm yields estimates of

PSDs with reasonable, but greater, levels of uncertainty.

The algorithm is applied to actual airborne observa-

tions from the TC4 field experiment with and without

SRT PIA incorporated into the retrieval process. The

SRT PIA information is found to have a significant im-

pact on precipitation estimates, especially near the earth’s

surface, which is an indication that dual-frequency above-

ground reflectivity observations alone may be insufficient

for deriving unbiased precipitation estimates, and that

SRT PIA information, when reliable, should be utilized

in the retrieval process. Retrieved precipitation is also

shown to be sensitive to the assumed shape of the particle

size distribution, the assumed cloud water and water va-

por distributions, and the assumed snow density. The

inclusion of the dual-frequency algorithm within a com-

bined radar–radiometer retrieval framework is expected

to reduce the sensitivity of precipitation estimates to

these factors. Also, valuable insight should be gained

from the analysis of dual-frequency radar and in situ

observations originating from future field campaigns.

Future work needs to be carried out to assess this

algorithm’s performance and robustness within a com-

bined radar–radiometer retrieval framework. Given

the sensitivity of radiometer observations to variables

that cannot be estimated from radar observations alone

(e.g., cloud water, water vapor, snow density) combined

radar–radiometer retrievals are likely to be better con-

ditioned and consequently less uncertain than radar-

only retrievals. However, because the physical modeling

of both radar reflectivities and radiometer-sensitive mi-

crowave radiances is subject to uncertainties, the effort to

develop combined radar–radiometer retrieval methods

should be coupled with rigorous studies to accurately

assess the uncertainties in radar and radiometer forward

modeling.
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FIG. 10. Differences of estimated precipitation water contents using LSA, assuming different

(top) shape factors and (bottom) snow densities. The assumed shape factors in the top panel are m 5

0.0 and m 5 1.0, while the assumed snow densities in the bottom panel are 0.1 and 0.15 g m23.
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