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Abstract Measurements of atmospheric turbulence made during the Surface Heat1

Budget of the Arctic Ocean Experiment (SHEBA) are used to examine the profile2

stability functions of momentum, ϕm, and sensible heat, ϕh, in the stably stratified3

boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological4

data that cover different surface conditions and a wide range of stability conditions5

were continuously measured and reported hourly at five levels on a 20-m main tower6

for 11 months. The comprehensive dataset collected during SHEBA allows studying7

ϕm and ϕh in detail and includes ample data for the very stable case. New parameter-8

izations for ϕm(ζ ) and ϕh(ζ ) in stable conditions are proposed to describe the SHEBA9

data; these cover the entire range of the stability parameter ζ = z/L from neutral10

to very stable conditions, where L is the Obukhov length and z is the measurement11

height. In the limit of very strong stability, ϕm follows a ζ 1/3 dependence, whereas ϕh12

initially increases with increasing ζ , reaches a maximum at ζ ≈ 10, and then tends to13
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level off with increasing ζ . The effects of self-correlation, which occur in plots of ϕm14

and ϕh versus ζ , are reduced by using an independent bin-averaging method instead15

of conventional averaging.16

Keywords Arctic Ocean · Flux–profile relationships · Monin–Obukhov similarity17

theory · SHEBA Experiment · Stable boundary layer18

1 Introduction19

Understanding the characteristics of turbulent transport to and from the Earth’s20

surface is a central problem of atmospheric boundary-layer research. Traditionally,21

turbulent fluxes are derived from vertical wind speed and temperature profiles (flux–22

profile relationships), and the importance of the flux–profile relationships for climate23

modelling, weather forecasting, environmental impact studies, and many other appli-24

cations has long been recognized.25

Well-known predictions of the flux–profile relationships are based on the theory26

suggested over 50 years ago by Monin and Obukhov (1954). There is a long history27

of testing Monin–Obukhov predictions including profile functions (see, for example,28

the surveys in Monin and Yaglom 1971; Dyer 1974; Yaglom 1977; Dyer and Brad-29

ley 1982; Högström 1988; Sorbjan 1989; Garratt 1992; Andreas 2002). Perhaps the30

Businger–Dyer profile functions are the most widely and routinely used flux–pro-31

file relationships in the unstable case (Dyer and Hicks 1970; Paulson 1970; Businger32

et al. 1971). Considerably fewer studies exist that cover very stable conditions. In fact,33

a simple linear interpolation (log-linear law) proposed at the end of the 1960s by34

Zilitinkevich and Chalikov (1968) and Webb (1970) that provides blending between35

neutral and very stable cases is still widely used. Subsequently, several alternative36

empirical forms have been proposed for more strongly stable conditions (Holtslag37

and De Bruin 1988; Beljaars and Holtslag 1991).38

Investigating the turbulence structure in the SBL is of great practical importance,39

especially for air pollution studies (Mahrt 1999), because the SBL develops almost40

every night over land surfaces. Progress in understanding the stable boundary layer41

(SBL) has been restrained because the SBL is often continually evolving and the42

turbulence is generally weak. In addition, several scaling regimes are identified in43

the SBL that are associated with different physical mechanisms (e.g., Holtslag and44

Nieuwstadt 1986; Smedman 1988; Mahrt et al. 1998; Grachev et al. 2005). Further-45

more, several different definitions are possible for the SBL height (e.g., Zilitinkevich46

and Mironov 1996; Zilitinkevich and Baklanov 2002). Examining the SBL is also47

complicated by slope flows, low-level jets, meandering motions, influence of gravity48

waves, and other phenomena (e.g., Mahrt 1999). Some insight into the SBL structure49

has been gained through several experimental studies (e.g., Forrer and Rotach 1997;50

Mahrt et al. 1998; Howell and Sun 1999; Pahlow et al. 2001; Yagüe et al. 2001; Mahrt51

and Vickers 2002; Klipp and Mahrt 2004; Cheng and Brutsaert 2005; Hartogensis and52

De Bruin 2005; Yagüe et al. 2006).53

In this paper, we use the extensive dataset from the Surface Heat Budget of the54

Arctic Ocean Experiment (SHEBA) to study the profile stability functions and to55

derive new parameterizations for them in stable conditions. The SHEBA measure-56

ment program, which took place from October 1997 to October 1998, was the most57

ambitious scientific effort ever attempted in the Arctic (Andreas et al. 1999; Persson58
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Boundary-Layer Meteorol 3

et al. 2002). Turbulent fluxes and mean meteorological data were continuously mea-59

sured at five levels on a 20-m main tower, supported by comprehensive atmospheric,60

oceanographic, and ice/snow data (Uttal et al. 2002). The 11 months of measurements61

during SHEBA cover a wide range of stability conditions, from weakly unstable to very62

stable stratification, and allow us to study the physical nature of the SBL, including63

the very stable cases, in detail.64

Limited observations still remain a problem for SBL model validation. However,65

the turbulence data collected over the Arctic pack ice during SHEBA offer several66

advantages for studying the structure of the SBL compared to traditional nocturnal67

boundary-layer measurements at mid-latitudes. The theme that the polar regions are68

ideal meteorological “laboratories” is a recurrent one in the literature (cf. Andreas69

et al. 2000). At high latitudes, especially during the polar night, the long-lived SBL can70

reach very stable and quasi-stationary states. Besides, the Arctic pack ice is a rather71

uniform, flat surface without large-scale slopes, and as a result, our SHEBA data are72

not contaminated by drainage (katabatic) or strong advective flows. The almost unlim-73

ited and extremely uniform fetch provides an opportunity to isolate many physical74

processes, with conditions that are nearly ideal for studying flux–profile relationships75

under stable conditions.76

2 Formal background77

Monin–Obukhov similarity theory (MOST) has provided a framework for describing78

turbulence in the stratified atmospheric surface layer. According to MOST (Monin79

and Obukhov 1954), properly scaled dimensionless statistics of the turbulence are80

universal functions of a stability parameter, ζ = z/L, defined as the ratio of the81

reference height z and the Obukhov length scale (Obukhov 1946, 1971),82

L = −
u3

∗ θv

κg < w′θ ′
v >

, (1)83

where u∗ is the friction velocity, θv is the virtual potential temperature,κ is the von84

Kármán constant, and g is the acceleration due to gravity. It should be noted that Eq.85

1 is based on the surface momentum flux, τo = ρu2
∗ = −ρ < u′w′ >, and the surface86

buoyancy flux, bo = (g/θv) < w′θ ′
v > (ρ is air density, u and w are the longitudinal and87

vertical velocity components, respectively, (′) denotes fluctuations about the mean88

value, and < > is a time/space averaging operator).89

Specifically, the non-dimensional vertical gradients of mean wind speed (U) and90

potential temperature (θ) in the MOST are assumed to be91

κz

u∗

dU

dz
= ϕm(ζ ), (2a)92

93

κz

θ∗

dθ

dz
= ϕh(ζ ), (2b)94

where θ∗ = − < w′θ ′ > /u∗ is the temperature scale based on the surface potential95

temperature flux, and ϕm(ζ ) and ϕh(ζ ) are non-dimensional universal functions (‘sta-96

bility profile functions’). In this study, the traditional value of κ = 0.4 is used for both97

wind speed and temperature profiles.98
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4 Boundary-Layer Meteorol

The exact forms of the universal functions (2) are not predicted by MOST and99

must be determined from measurements. However, in the neutral case (ζ ≡ 0) these100

functions equal unity by definition, and MOST does predict the asymptotic behaviour101

of these functions under very stable (ζ >> 1) and extremely unstable stratification102

(free convection, ζ << −1).103

In the very stable case (ζ >> 1), MOST predicts that specific quantities become104

independent of z; that is, z is no longer a primary scaling variable (Obukhov 1946;105

Monin and Obukhov 1954). This result is because stable stratification inhibits vertical106

motion, and the turbulence no longer communicates significantly with the surface107

(Monin and Yaglom 1971; Holtslag and Nieuwstadt 1986; Mahrt 1999). Wyngaard108

and Coté (1972) and Wyngaard (1973) apparently first referred to this limit as ‘z-less109

stratification’. The z-less concept requires that z cancels in Eq. 2a,b, which leads to110

(e.g., Garratt 1992)111

ϕm(ζ ) = βmζ , (3a)112

ϕh(ζ ) = βhζ , (3b)113

where βm and βh are numerical coefficients. It is worth noting that the original MOST114

predicts that only βm in Eq. 3a is a constant, whereas βh in Eq. 3b may be a function115

of ζ (see the discussion in Monin and Yaglom 1971, Sect. 7.3). Since MOST does not116

specify βh, a constant value was subsequently accepted for βh (e.g., Garratt 1992).117

For near-neutral conditions and moderate ranges of ζ , observations suggest (e.g.118

Zilitinkevich and Chalikov 1968; Webb 1970)119

ϕm(ζ ) = 1 + βmζ , (4a)120

ϕh(ζ ) = 1 + βhζ . (4b)121

with these linear equations fitting the available experimental data well for ζ < 1 (Bu-122

singer et al. 1971; Dyer 1974; Yaglom 1977; Dyer and Bradley 1982; Högström 1988;123

King 1990). Measurements suggest βm ≈ βh ≈ 5 (Sorbjan 1989; Garratt 1992). Note124

that Eq. 4a, b would be the linear approximation for fairly small values of ζ if Eq. 2a,125

b were expanded in a power series to yield (3a) and (3b) in the limit ζ → ∞.126

During 1960–1980, the idea arose that Eq. 4 also applied for stronger stability,127

including the limit of very stable stratification (e.g., Garratt 1992). However, during128

the past decade, this view has been seriously challenged. Forrer and Rotach (1997),129

Howell and Sun (1999), Yagüe et al. (2001, 2006), Klipp and Mahrt (2004), and Cheng130

and Brutsaert (2005) reported that the stability functions increase more slowly with131

increasing stability than predicted by Eqs. 3 or 4; and moreover, one (ϕh) or both func-132

tions become approximately constant in very stable conditions. Based on an analysis133

of standard deviations covering almost five orders of magnitude in ζ , Pahlow et al.134

(2001) found that they do not follow the z-less predictions; their results, therefore,135

suggest that the concept of z-less stratification generally does not hold. In Sect. 4, we136

consider in detail the behaviour of the ϕm and ϕh functions in the limit of very strong137

stability based on the SHEBA data.138

The wind speed and temperature profiles in the general, non-neutral case are139

derived by integrating Eq. 2a, b (Panofsky 1963). Traditionally, these integral forms of140

the flux–gradient relations are expressed with the neutral and diabatic contributions141

separated:142

U(z) =
u∗

κ

[

ln
z

zo
− �m

( z

L

)

+ �m

(zo

L

)

]

, (5a)143
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θ(z) − θo =
θ∗

κ

[

ln
z

zot
− �h

( z

L

)

+ �h

(zot
L

)

]

. (5b)144

Here, θo is the surface potential temperature, zo is the aerodynamic roughness length,145

and zot is the temperature roughness length. The functions �m in Eq. 5a and �h in146

Eq. 5b obey147

�m (ζ ) =
∫ ζ

0

1 − ϕm(ξ)

ξ
dξ , (6a)148

149

� h (ζ ) =
∫ ζ

0

1 − ϕ h(ξ)

ξ
dξ . (6b)150

The purpose of our study is to revisit the empirical functional forms of ϕm, ϕh, �m,151

and �h for stable conditions based on the SHEBA data.152

3 The SHEBA dataset153

The SHEBA ice camp was centred around the Canadian icebreaker Des Groseilliers,154

which was frozen into the Arctic ice pack and drifted in the Beaufort Gyre from early155

October 1997 until early October 1998. During this period, the icebreaker drifted156

more than 2800 km in the Beaufort and Chukchi seas, with coordinates varying from157

approximately 74◦ N and 144◦ W to 81◦ N and 166◦ W.158

Turbulent fluxes and mean meteorological data were continuously measured at five159

levels, nominally 2.2, 3.2, 5.1, 8.9, and 18.2 m (or 14 m during most of the winter), on160

the 20-m main SHEBA tower. Each level on the main tower had a Väisälä HMP-235161

temperature and relative humidity probe and identical Applied Technologies, Inc.162

(ATI) three-axis sonic anemometer/thermometers (K-probe) that sampled at 10 Hz.163

An Ophir fast infrared hygrometer was mounted at about 8 m above the snow or ice164

surface (just below level 4). Except for rare periods, instruments ran almost contin-165

uously during 11 months. Turbulent covariance values and appropriate variances at166

each level are based on 1-h averaging and derived through the frequency integration167

of the cospectra and spectra (for other details, see in Persson et al. (2002)).168

Several data-quality indicators based on objective and subjective methods have169

been applied to the original flux data. Flux data have been edited for unfavourable170

relative wind direction for which the tower and the other camp structures were upwind171

of the sonic anemometers, noting that the wind blew from disturbed areas only about172

10% of the time. Most of the station structures and the Des Groseilliers itself were173

located within these sectors. The undisturbed sector at SHEBA had a natural sea ice174

surface for many hundreds of kilometres with almost unlimited and uniform fetch.175

Some other quality-control criteria are based on validity limits for the horizontal (σu176

and σv) and vertical (σw) velocity standard deviations: σu < 2 m s−1, σv < 2 m s−1, and177

σw < 0.7 m s−1. The main SHEBA tower was instrumented for over 8000 h, with over178

6000 h of that period yielding useful data.179

A number of corrections traditionally are applied for eddy-covariance measure-180

ments, many of which result from limitations in the instruments or non-ideal bound-181

ary-layer conditions (i.e., advection, non-simple terrain). As mentioned earlier the182

Arctic pack ice is a rather uniform, flat surface without large-scale slopes and heter-183

ogeneity. For this reason, coordinate system rotation to account for the slope of the184
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6 Boundary-Layer Meteorol

terrain (Wilczak et al. 2001) and corrections for advection (Paw U et al. 2000) are not185

required in our case.186

Note that while Kaimal and Finnigan (1994, p. 219) suggested that ATI sonic ane-187

mometers not be used below a height of 4 m for adequate flux estimates, Kristensen188

and Fitzjarrald (1984) pointed out that adequate flux measurements can be made at189

heights of several (4–5) times the anemometer path separation. With a path length190

between transducers of 0.15 m, the ATI anemometer can be used for accurate variance191

measurements as low as 0.6 m. Andreas et al. (2006) showed that, because of path sep-192

aration, flux measurements made by ATI sonic anemometers should be performed193

at least 1.7 m above the surface to avoid significant flux loss in SHEBA data. This194

result is a little stronger than Kristensen and Fitzjarrald (1984) estimations above. All195

measurements at SHEBA, including level 1 (2.2 m), satisfied these criteria.196

In our analysis no corrections on the turbulent fluxes for loss of spectral energy197

(e.g., Moore 1986; Horst 2000; Massman 2000) were performed. Errors caused by inad-198

equate frequency response and sensor separations depend on wind speed, boundary-199

layer stability, the height of the sensors above the ground, and the type of instruments200

deployed. However, they are insignificant for the sensible heat and momentum fluxes201

in our case (Andreas et al. 2006, pp. 123–124). Note also that according to Forrer and202

Rotach (1997), the corrections for the sensible heat flux and for friction velocity, which203

were measured with one single instrument (i.e., anemometer/thermometer), are typi-204

cally less than 10% for ζ = 0.1. These corrections on the latent heat flux (basically due205

to the sensor separation) may be 40% (their Fig. 4), but the moisture correction term206

in ζ and in sonic temperature is usually small for Arctic conditions (Grachev et al.207

2005, p. 205).208

Comprehensive analysis of different flux frequency response correction methods209

(Moore 1986: Horst 2000; Massman 2000; and their variations) was performed by210

Clement (2004). According to the Clement (2004) study, different methods for stable211

conditions give an average net correction between 1% and 2% for sensible heat flux212

(Ibid. Fig. 7.9) and less than 2% for the momentum flux (Ibid. Fig. 7.13). However,213

Clement (2004) also found that, for low wind speeds, flux loss for sensible heat flux can214

be up to 30% (Ibid. Fig. 7.11). Because low wind speeds are usually associated with215

strong stability, these corrections to the sensible heat flux at ζ = 100 can be as large as216

5–30% for different methods (Ibid. Fig. 7.12). The same conclusions can be applied217

to the momentum flux; large corrections are associated with low wind speeds (Ibid.218

Fig. 7.15) and very stable stratification (Ibid. Fig. 7.16). To avoid possible significant219

flux loss, wind speeds ≤ m s−1 have been excluded from our data. According to the220

Clement (2004) study, flux loss corrections for stable conditions are less than 5–10%221

(for the different methods tested) under this restriction (Ibid. Figs. 7.11 and 7.15).222

The ‘slow’ temperature and humidity probes provided air temperature and rel-223

ative-humidity measurements at five levels and were used to evaluate the vertical224

temperature gradient in Eq. 2. The mean wind speed was derived from the sonic ane-225

mometers. Rotation is needed to place the measured wind components in a streamwise226

coordinate system. We used the most common method, which is a double rotation of227

the anemometer coordinate system, to compute the longitudinal, lateral, and vertical228

velocity components.229

The vertical gradients in Eq. 2 were obtained by fitting the following second-order230

polynomial through the 1-h profiles:231

x(z) = p1(ln z)2 + p2 ln z + p3, (7)232
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where x(z) represents either the wind speed, U, or the potential temperature, θ , at233

measurement level z, and p1, p2, and p3 are the polynomial coefficients. The gradients234

and, thus, ϕm and ϕh were determined by taking the derivative of Eq. 7 with respect235

to z and evaluating it at each of the five tower levels.236

Other details of the SHEBA program, the ice camp, deployed instruments, data237

processing, accuracy, calibration, and archived data files can be found in Andreas et al.238

(1999, 2002, 2003, 2006), Persson et al. (2002), Uttal et al. (2002), and Grachev et al.239

(2002, 2005).240

4 Profile functions observed during SHEBA241

The comprehensive SHEBA dataset allows us to study in detail the behaviour of ϕm242

and ϕh and other relevant turbulent features under stable conditions and sheds light243

on their behaviour in the limit of very strong stability. In this section, we consider244

different aspects of how ϕm and ϕh depend on the bulk Richardson number and ζ ,245

with special emphasis on spurious self-correlation.246

Traditionally, the non-dimensional gradients ϕm and ϕh are plotted versus ζ . How-247

ever, a troubling feature of this analysis is that the same variables (primarily u∗) appear248

in both the definitions of ϕm and ϕh and in ζ , see Eqs. 1 and 2. For this reason, analyses249

for ϕm and ϕh versus ζ may have built-in correlation (or self-correlation) that can lead250

to erroneous results (e.g., Hicks 1978; Mahrt et al. 1998; Andreas and Hicks 2002;251

Klipp and Mahrt 2004). For example, decreasing u∗ increases ζ and ϕm and decreases252

ϕh. As a result, dependencies of ϕm and ϕh on ζ could be due to self-correlation, is253

also referred to as artificial, fictitious, or spurious correlation.254

To obtain more reliable and independent estimates of the stability profile func-255

tions (2) over a wide range of stable conditions, we plot ϕm and ϕh versus the bulk256

Richardson number,257

RiB = −
(

gz

θv

)

(�θ + 0.61θv�q)

U2
, (8)258

where �θ and �q are differences in the potential temperature and the specific humid-259

ity, respectively, between the surface and reference level z. Figures 1 and 2 show such260

plots for ϕm and ϕh for both surface and local scaling. Functions ϕm (1) and ϕh (1) in Figs.261

1a and 2a are based on the fluxes measured at level 1 (‘surface fluxes’), whereas ϕm (n)262

and ϕh (n) in Figs. 1b and 2b are based on the local fluxes at height zn (n = 1−5) rather263

than on the surface values (Nieuwstadt 1984; Holtslag and Nieuwstadt 1986; Sorbjan264

1989). Wind-speed and temperature gradients in these functions, ϕm (1), ϕm (n), ϕh (1),265

and ϕh (n), are referred to level n. The bin-averaged points in Figs. 1 and 2, based on266

the averaging of the individual one-hour data for RiB, ϕm, and ϕh are indicated by267

different symbols for each measurement level.268

The individual 1-h-averaged data based on the median fluxes and other medians269

(heights, temperatures, etc.) for the five levels are also shown in Figs. 1 and 2 as270

background x-symbols. These points give an estimate of the available data at all levels271

and the typical scatter of the data. The median fluxes are computed from the median272

cospectra (i.e., at each frequency a median is computed from the values from the273

heights where data are available). The vertical dashed lines correspond to a critical274

Richardson number. According to the SHEBA data (Grachev et al. 2002, 2005), a275
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Fig. 1 Plots of the bin-averaged non-dimensional velocity gradient, ϕm, against the bulk Richardson
number, RiB, for levels 1–5 during the 11 months of measurements. The functions ϕm in panel a are
based on the fluxes measured at level 1 (‘surface fluxes’), whereas ϕm in panel b are based on the
local fluxes (n = 1 − 5). The vertical dashed lines correspond to RiB = 0.2. Individual 1-h averaged
data based on the median fluxes for the five levels are shown as the background x-symbols

bulk Richardson number, Eq. 8, of about 0.2 may be considered as the critical value;276

that is, RiB cr ≈ 0.2.277

Figures 1 and 2 show that the averaged stability functions have different behaviours278

in the very stable regime. According to Fig. 1, ϕm increases with increasing stability279

up to the critical Richardson number. At the same time, ϕh, shown in Fig. 2, initially280

increases with increasing RiB and then almost levels off at RiB ≈ 0.1 (Fig. 2a). Figure281

1 shows that there is no visible difference in plots for ϕm if we use surface (Fig. 1a)282

or local scaling (Fig. 1b). However, according to Fig. 2, using surface scaling instead283

of local scaling leads to less scatter between different observation levels for ϕh (cf.284

Grachev et al. 2005).285

Although plots of ϕm and ϕh versus RiB are useful for qualitative analyses of286

these functions, theoretical formulations and parameterizations assume a functional287

dependence of ϕm and ϕh on ζ . Before plotting the ϕm and ϕh functions versus ζ , it288

is necessary to determine a range of ζ that corresponds to values RiB < 0.2. Figure289

3 shows ζ plotted against RiB for different levels. Although the dependence of ζ on290

RiB is not a universal function an average value of ζ = O(10) may be associated with291

RiB ≈ 0.2. However, some individual points in Fig. 3 for which RiB < 0.2 reach values292
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Fig. 2 Same as Fig. 1 but for the non-dimensional temperature gradient, ϕh. Data with a temperature
difference between the air (at median level) and the snow surface less than 0.5◦C have been omitted
to avoid the large uncertainty in determining the sensible heat flux

up to ζ ≈ 100. Therefore, it makes sense to plot the ϕm and ϕh functions versus ζ in293

the range ζ ≤ 100.294

Plots of the non-dimensional gradients of the wind speed and temperature versus295

the stability parameter for the five tower levels during the 11 months of the SHEBA296

measurements are presented in Figs. 4 and 5. These functions are plotted in the log-log297

coordinates for zn/L1 and zn/Ln ≤ 100 (cf. Fig. 3).298

As discussed above, plots of ϕm(ζ ) and ϕh(ζ ) versus ζ are affected by self-correla-299

tion. For this reason, the plain bin-averaging used in Figs. 1 and 2 would be affected300

if used in Figs. 4 and 5, too. To reduce or even to avoid the averaging problems asso-301

ciated with self-correlation, in Figs. 4 and 5 we used an independent bin-averaging302

method instead of conventional averaging in Figs. 1 and 2. First, we sorted the data for303

the value of one parameter (sorting parameter) into bins. We averaged zn/L1 (Figs.304

4a, 5a) and zn/Ln (Figs. 4b, 5b) in bins of width 100.2. We then computed mean and305

median values of < u′w′ >, < w′T ′ >, dU/dz, dθ/dz, and other relevant variables for306

each bin. Based on these averaged values, we finally computed stability parameters307

(1) and ϕ functions (2) for the surface and local scaling. Furthermore, stability param-308

eters plotted on the horizontal axis are based on the mean values, and the ϕ functions309

plotted on the vertical axis are based on the medians.310
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Fig. 3 Dependence of the local stability parameter, zn/Ln, on the bulk Richardson number, RiB.
The vertical dashed line corresponds to the critical Richardson number, RiB = 0.2. Symbols are the
same as in Fig. 1

According to the SHEBA data presented in Fig. 4, the stability function ϕm311

increases more slowly than predicted by the linear Eq. 4a and follows a ζ 1/3 depen-312

dence in the very stable regime (cf. Grachev et al. 2005, their Fig. 14; Yagüe et al.313

2006, their Figs. 3, 4). At the same time, the stability function ϕh initially increases314

with increasing ζ , reaches a maximum at ζ ≈ 10, and tends to level off at large315

ζ (Fig. 5). This behaviour means that the temperature profile becomes logarithmic316

again under very stable conditions. According to Figs. 4 and 5, using surface scaling317

instead of local scaling leads to less scatter between different observation levels for318

both ϕm and ϕh, especially for strong stability (cf. Figs. 1, 2). However, both stability319

functions ϕm and ϕh expressed with local scaling (Figs. 4b, 5b) show slightly better320

fits with the Beljaars–Holtslag relationships than those expressed with surface scaling321

(Figs. 4a, 5a). Cheng and Brutsaert’s (2005) parameterization, based on the CASES-322

99 data (ζ ≤ 5), assumes that both functions level off for strongly stable conditions.323

The SHEBA data agree well with the Cheng and Brutsaert relationship for ϕm (their324

Eq. 22) up to ζ ≤ 3 but do not support their asymptotic behaviour for this function325

(Fig. 4a). In contrast, the Cheng and Brutsaert relationship for ϕh (their Eq. 24)326

describes well the asymptotic behaviour of the SHEBA data but overestimates the327

data in the range 0.1 ≤ ζ ≤ 5 (Fig. 5a). In addition, the variation of the turbulent328

Prandtl number based on the Cheng and Brutsaert parameterization with stability329
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Fig. 4 Plots of the bin-averaged non-dimensional velocity gradient, ϕm, in log–log coordinates against
(a) the surface stability parameter, zn/L1, and (b) the local stability parameter, zn/Ln, for five levels
(n = 1 − 5) during the 11 months of measurements. The dashed line represents ϕm = ϕh = 1 + βζ

with β = 5(ζ < 1), the dashed-dotted line is based on the Beljaars and Holtslag (1991) formula
(ζ < 10), and the dotted line is the Cheng and Brutsaert (2005) parameterization (ζ < 5). The solid
line is ϕm SHEBA, Eq. 9a. Function ϕm (1) and L1 (upper panel) are based on the ‘surface fluxes’,

whereas ϕm (n) and Ln (bottom panel) are based on the ‘local fluxes’. The wind speed gradient in
both functions, ϕm (1) and ϕm (n), is based on the measurements at level n. Individual 1-h averaged
data based on the median fluxes for the five levels are shown as the background x-symbols

is not monotonic in contrast to the monotonic decrease in the SHEBA data (see330

Sect. 5). Note, that Yagüe et al. (2006) using SABLES-98 data also reported that ϕm331

and ϕh tend to level off for ζ > 1 − 2, whereas Hartogensis and De Bruin (2005)332

found good agreement between CASES-99 data and the Beljaars and Holtslag (1991)333

relationships.334

Grachev et al. (2005) noted that the observed dependence ϕm ∝ ζ 1/3 (Fig. 4a) can335

be formally derived from Eq. 2a if one assumes that dU/dz is independent of u∗ for336

ζ >> 1, implying that the stress (or friction velocity, u∗) is no longer a primary scaling337

parameter in the equation for dU/dz; they termed this regime frictionless (or ‘u∗-less’)338

scaling by analogy with the concept of ‘z-less’ scaling. The dramatic reduction of the339

surface stress is responsible for the main features of the atmospheric boundary layer340

in the limit of very strong stability. First, this regime is associated with the strong influ-341

ence of the Earth’s rotation. Frictional effects become negligible and the influence of342

the Coriolis effect becomes significant. Observed wind speeds show features of the343
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Fig. 5 Same as Fig. 4 but for the non-dimensional temperature gradient, ϕh. Data with a temperature
difference between the air (at median level) and the snow surface less than 0.5◦C have been omitted
to avoid the large uncertainty in determining the sensible heat flux

Ekman spiral even near the surface (Grachev et al. 2002, 2005). Second, the stress falls344

off faster with increasing stability than the heat flux (Grachev et al. 2002, 2003, 2005),345

and the stress ceases to be a relevant scaling parameter in the relationship for dU/dz346

in the limit of very strong stability. However, it is unlikely that the ‘u∗-less’ concept347

can be applied to ϕh. This approach would lead to the dependence ϕh ∝ ζ−1/3, but348

according to Fig. 5, ϕh tends to be a constant in the range 10 < ζ < 100. According to349

Grachev et al. (2005, Fig. 15), some decrease in ϕh is observed for ζ > 100 (cf. Yagüe350

et al. 2006, their Figs. 7, 8), but this is associated with the supercritical regime and may351

result largely from self-correlation.352

According to Figs. 4 and 5, the bin averages for both ϕm and ϕh at levels 3–5 collapse353

better to a single curve over a wide range of z/L than the data obtained at levels 1354

and 2. The data for these two lower levels are systematically lower than the data at355

the three higher levels. This bias is more pronounced in the wind speed profile for356

weakly and moderately stable conditions (0.01 < z/L < 1) and a possible reason of357

this phenomenon is discussed below. For this reason new parameterizations for ϕm358

and ϕh (Sect. 5) are based on the data collected at levels 3–5.359

In Fig. 6, we examine the departure of the wind-speed at levels 1–5 from the loga-360

rithmic profile for near-neutral conditions (zn/Ln < 0.1 and U > 4 m s−1). According361

to Fig. 6, the wind speeds at levels 4 and 5 are more or less described by the logarith-362
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Fig. 6 Deviation of the wind speed at levels 1–5 from the logarithmic law for near-neutral conditions

(zn/Ln < 0.1 and U > 4 m s−1). In the calculations, u∗ m is the median friction velocity, while um and
zm refer to level 3. For simplicity, stability corrections are not used here

mic law. For U > 7 − 8 m s−1, the wind speed at level 1 is systematically lower and at363

level 2 is systematically higher than predicted by the logarithmic law. Although the364

deviation is small (about 0.2 m s−1 at U ≈ 10 m s−1, i.e. 2%) this behaviour may lead365

to the pronounced bias in the wind-speed gradients. The observed departure from the366

logarithmic profile in Fig. 6 may represent a real physical process, e.g. the logarithmic367

profile along the lower part of the tower is not in steady-state for winds higher than368

7–8 m s−1, a surface flux footprint effect, or a blowing snow effect. It may also be a369

measurement artefact associated with this wind speed range. However as mentioned370

earlier, this effect has no impact on our parameterizations derived in this range from371

the measurements at levels 3–5 only.372

5 The SHEBA stability functions373

Traditional linear (Webb 1970; Businger et al. 1971; Dyer 1974) and Beljaars and374

Holtslag (1991) relationships fit most atmospheric datasets well for small and mod-375

erate values ζ when ζ > 0. However, they overestimate existing data for large ζ . In376

essence, for large ζ , the linear relationships (4) and the Beljaars–Holtslag equation for377

ϕm are based on the z-less stratification concept. Although the Cheng and Brutsaert378
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Fig. 7 Plots of the bin-averaged turbulent Prandtl number, Prt , (a) and gradient Richardson number,
Ri, (b) versus ζ . Notation for symbols and lines is the same as in Figs. 4 and 5

(2005) parameterization is based on the recent CASES-99 data and covers a range379

up to ζ ≈ 5, there is some discrepancy between their results and the SHEBA data,380

as discussed above. In this section, we propose new functional forms for ϕm and ϕh in381

stable conditions based on the SHEBA data.382

The functional forms for ϕm(ζ ) and ϕh(ζ ) proposed here are based on the following383

principals: (i) the functions should have proper behaviour, i.e., ϕm(ζ ) → 1 + βmζ and384

ϕh(ζ ) → 1 + βhζ for small ζ , and ϕm ∝ ζ 1/3 and ϕh → constant for ζ → ∞; (ii) ϕm(ζ )385

and ϕh(ζ ) should fit the SHEBA data reasonably well for the entire range of ζ > 0;386

and (iii) ϕm(ζ ) and ϕh(ζ ) should be analytically integrable, that is, �m(ζ ) and � h(ζ )387

should be analytical functions (see Eq. 6).388

A number of functions that satisfy the above criteria have been tested. Note that389

some interpolations suggested earlier for free convection and modified for ζ > 0 can390

be applied here for ϕm(ζ ). Power law interpolations have the general form suggested391

by Wilson (2001), ϕm(ζ ) = (1 + γm ζ km)nm and ϕh(ζ ) = (1 + γh ζ kh)nh , while the392

exponent combination used by Carl et al. (1973) is (km , nm ) = (kh , nh ) = (1, –1/3).393

Kansas-type relationships are associated with the combination (km , nm ) = (1, –1/4)394

and (kh , nh ) = (1, –1/2) for unstable conditions and (km , nm ) = (kh , nh ) = (1, 1) for395

stable stratification (see Eq. 4), and Wilson (2001) suggested an alternative function396

(km , nm ) = (kh , nh ) = (2/3, – 1/2) for ζ < 0. These functions, however, have the397
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undesirable property that the derivatives of both ϕm and ϕh approach infinity as ζ398

approaches zero.399

The concept of ‘u∗-less’ stratification requires that kmnm = 1/3. The following com-400

binations have been tested on the SHEBA dataset (km , nm ) = (1/3, 1), (1, 1/3), (2/3,401

1/2), (1/2, 2/3). Our analysis demonstrated that all these cases lead to unsatisfactory402

agreement with the data. Thus, a simple interpolation with one coefficient (γm) cannot403

describe the SHEBA data. Functional forms suggested by Kader and Yaglom (1990,404

their Eq. 3.6) for ζ < 0 with several calibration coefficients could also be adopted for405

the stable case, but these equations are not analytically integrable.406

We thus suggest the following functional forms of ϕm(ζ ) and ϕh(ζ ) based on the407

SHEBA data (‘the SHEBA profile functions’):408

ϕm SHEBA = 1 +
amζ(1 + ζ )1/3

1 + bmζ
≡ 1 +

6.5ζ(1 + ζ )1/3

1.3 + ζ
, (9a)409

410

ϕh SHEBA = 1 +
ahζ + bhζ 2

1 + chζ + ζ 2
≡ 1 +

5ζ + 5ζ 2

1 + 3ζ + ζ 2
, (9b)411

where am ≡ βm = 5, bm = am/6.5, ah ≡ βh = 5, bh = 5, and ch = 3. Coefficients am412

and ah are determined from the asymptotic behaviour of ϕm(ζ ) and ϕ h(ζ ) for small413

ζ (see Eq. 4); the ratio am/bm and coefficient bh are derived from the asymptotic414

behaviour of these functions at ζ → ∞. Note that ϕm → (am/bm)ζ 1/3 = 6.5ζ 1/3 and415

ϕh → 1 + bh = 6 as ζ → ∞. Coefficient c h is derived by fitting the data for moderate416

ranges of ζ . The proposed parameterizations for the stability functions ϕm and ϕh, Eq.417

9, are plotted versus the stability parameter in Figs. 4 and 5 (solid lines). As discussed418

above, the surface scaling is superior to the local scaling.419

Parameterizations (9) have also been used to study the behaviour of the turbulent420

Prandtl number and the gradient Richardson number (Fig. 7) (cf. Andreas 2002). Note421

that the difference between ϕm and ϕh is best demonstrated by plots of the turbulent422

Prandtl number defined by423

Prt =
km

kh
=

< u′w′ > dθ/dz

< w′θ ′ > dU/dz
≡

ϕh

ϕm
, (10)424

where km = −<u′w′>

dU/dz
is the turbulent viscosity, and kh = −<w′θ ′>

dθ/dz
is the turbulent425

thermal diffusivity. The turbulent Prandtl number (10) describes the difference in tur-426

bulent transfer between momentum and sensible heat; turbulent momentum transfer427

is more efficient than turbulent heat transfer when Prt > 1 and vice versa.428

The gradient Richardson number, Ri, is defined by429

Ri =
(

g

θv

)

dθv/dz

(dU/dz)2
=

ζϕh

ϕ2
m

. (11)430

Note that Prt and Ri depend more sensitively on the parameterizations for ϕm(ζ ) and431

ϕh(ζ ) because both parameters numbers are combinations of ϕm and ϕh. The flux432

Richardson number, in contrast, contains only one function, Rf = ζ/ϕm. According to433

Eq. 10, Prt may be defined for local and for surface scaling as we have done for ϕm(ζ )434

and ϕh(ζ ). The relationship (11) for Ri contains no fluxes, and therefore Ri is defined435

only locally.436

According to Fig. 7a, on average, Prt tends to be less than 1 with increasing stability437

by virtue of the asymmetric behaviour of the ϕm and ϕh functions (Figs. 1, 2, 4 and 5).438
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Note also that according to Grachev et al. (2002, 2003, 2005), a small but still signifi-439

cant heat flux (several w m−2) and negligibly small stress characterize the very stable440

regime. This asymmetric flux decay causes km to decrease faster than kh and therefore441

leads Prt to decrease (see Eq. 10). Our result Prt < 1 is consistent with Howell and Sun442

(1999) but disagrees with the measurements of Kondo et al. (1978) and Yagüe et al.443

(2001), the Beljaars and Holtslag (1991) relation, and the Zilitinkevich and Calanca444

(2000) model.445

Note also that a plot of Ri versus ζ by definition is not affected by the self-corre-446

lation. For this reason, Fig. 7b is simply a plot of Ri versus zn/Ln. The plots in Fig.447

7 are an additional verification of the proposed SHEBA profile functions (9) (solid448

lines in the figure). The greater scatter of points in Fig. 7 for ζ < 0.05 results from the449

relatively small sensible heat flux and unreliable temperature-gradient measurements450

in near-neutral conditions. The obtained asymptotic behaviours of ϕm(ζ ) and ϕh(ζ )451

for ζ → ∞ imply that Prt ∝ ζ−1/3, Ri ∝ ζ 1/3, and Rf ∝ ζ 2/3 in the limit of very strong452

stability.453

The integral form of ϕm SHEBA can be obtained by integrating Eq. 6a with ϕm(ζ )454

defined by Eq. 9a,455

�m SHEBA (ζ ) =
∫ ζ

0

1 − ϕm SHEBA(ξ)

ξ
dξ456

= −
3am

bm
(x − 1) +

amBm

2bm

[

2 ln
x + Bm

1 + Bm
− ln

x2 − xBm + B2
m

1 − Bm + B2
m

457

+2
√

3

(

arctan
2x − Bm√

3Bm

− arctan
2 − Bm√

3Bm

)]

, (12)458

where x = (1 + ζ )1/3, Bm =
(

1−bm
bm

)1/3
> 0. In a similar way to Eq. 12, the integral459

form of the ϕh SHEBA can be obtained from Eqs. 6b, 9b:460

�h SHEBA (ζ ) =
∫ ζ

0

1 − ϕh SHEBA(ξ)

ξ
dξ461

= −
bh

2
ln

(

1 + chζ + ζ 2
)

+
(

−
ah

Bh
+

bhch

2Bh

)

462

×
(

ln
2ζ + ch − Bh

2ζ + ch + Bh
− ln

ch − Bh

ch + Bh

)

, (13)463

where Bh =
√

c2
h

− 4 =
√

5. Equations 12 and 13 are more complicated than the464

Kansas-type, the Beljaars–Holtslag, and Cheng–Brutsaert �m(ζ ) and �h(ζ )functions.465

However, Eqs. 12 and 13 are analytical relationships based on the ϕm(ζ ) and ϕh(ζ )466

functions (9a) and (9b) that better fit the SHEBA data. Applying the functional forms467

(12) and (13) to wind speed (5a) and temperature (5b) profiles is straightforward. The468

proposed SHEBA profile functions (9) are valid for RiB < RiB cr ≈ 0.2. The bulk469

Richardson number, Eq. 8, may be estimated from Eqs. 5, 12, and 13.470

6 Conclusions471

We have used the comprehensive SHEBA flux–profile data to understand the472

behaviour of the profile stability functions, ϕm and ϕh, and derive quantities such473
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as the turbulent Prandtl number, Prt, and the gradient Richardson number in the474

stably stratified atmospheric boundary layer.475

According to the SHEBA data, both stability functions ϕm and ϕh increase more476

slowly in very stable conditions than predicted by the linear equations (4) and the477

Beljaars–Holtslag relationship. In the limit of very strong stability, ϕm varies as ζ 1/3;478

whereas ϕh initially increases with increasing ζ , reaches a maximum at ζ ≈ 10, and479

then tends to level off with increasing ζ . The scaling law ϕm ∝ ζ 1/3 is associated with480

our proposed frictionless or ‘u∗-less’ scaling. As a consequence of the observed depen-481

dences for the stability functions ϕm and ϕh, the turbulent Prandtl number decreases482

and tends to be less than 1 (Prt ∝ ζ−1/3) with increasing stability. This result implies483

that heat transfer is more efficient than momentum transfer in the very stable regime.484

Based on the SHEBA data, we propose new mathematical forms for ϕm and ϕh485

in stable conditions, Eq. 9. The SHEBA measurements also show that profile stabil-486

ity functions based on local scaling are more scattered than those based on surface487

scaling. We took special care when analyzing ϕm and ϕh as functions of ζ in light of488

the self-correlation problem. For independent estimates of how ϕm and ϕh behave489

in very stable stratification, we plotted these functions against the bulk Richardson490

number. In addition, to analyze ϕm and ϕh as functions of ζ , we used an independent491

bin-averaging method instead of conventional averaging.492
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