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Abstract. This paper examines the interpolation between Businger–Dyer (Kansas-type) formulae,
ϕu = (1 − 16ζ )−1/4 andϕt = (1 − 16ζ )−1/2, and free convection forms. Based on matching
constraints, the constants,au andat , in the convective flux-gradient relations,ϕu = (1− auζ )−1/3

andϕt = (1−at ζ )−1/3, are determined. It is shown thatau andat cannot be completely independent
if convective forms are blended with the Kansas formulae. In other words, these relationships already
carry information aboutau andat . This follows because the Kansas relations cover a wide stability
range (up toζ = −2), which includes a lower part of the convective sublayer (about 0.1< −ζ < 2).
Thus, there is a subrange where both Kansas and convective formulae are valid. Matching Kansas
formulae and free convection relations within the subrange 0.1 < −ζ < 2 and independently
smoothing of the blending function are used to determineau andat . The valuesau = 10 for velocity
andat = 34 for scalars (temperature and humidity) give a good fit. This new approach eliminates
the need for additional independent model constants and yields a ‘smooth’ blending between Kansas
and free-convection profile forms in the COARE bulk algorithm.

Keywords: Monin–Obukhov theory, Flux-gradient relations, Businger–Dyer formulae, Free convec-
tion.

1. Introduction

The Monin–Obukhov (M–O) similarity theory (Obukhov, 1946; Monin and Obuk-
hov, 1954) has provided a framework for the description of turbulence in the at-
mospheric surface layer. According to M–O theory, the dimensionless vertical
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gradients for mean wind speed and temperature are universal functions of a non-
dimensional stability parameter,

ζ = z/L, (1)

wherez is the reference height, andL = −u3∗Tv/(κgw′θ ′v) is the Obukhov (or M–
O) length (whereu∗ is the friction velocity,Tv is the virtual temperature,κ is the
von Karman constant,g is the acceleration due to gravity,θv is the virtual potential
temperature,w is vertical velocity, and primes indicate fluctuations from the mean
values). The gradients of the mean wind and potential temperature profiles are
assumed to be

dU/dz = (u∗/κz) ϕu(ζ ) , dθ/dz = (θ∗/κz) ϕt (ζ ), (2)

whereθ∗ = −w′θ ′/u∗ is the temperature scale; dimensionless velocity,ϕu(ζ ),
and temperature,ϕt(ζ ), gradients are the presumably universal functions of a non-
dimensional stability parameter (1). The von Karman constant is defined such that
for neutral conditions,ζ = 0,

ϕu(0) = 1, ϕt (0) = Prt , (3)

where Prt is the neutral turbulent Prandtl number (Prt ≈ 0.9 according to Kader and
Yaglom (1990)). Equations (2) and (3) represent the logarithmic profile law. In the
free convection limit,ζ →−∞ (butU 6= 0), the stress becomes insignificant, and
the friction velocity ceases to be a scaling parameter. According to M–O theory,
this assumption leads to

ϕu(ζ ) = Au(−ζ )−1/3, ϕt (ζ ) = At(−ζ )−1/3. (4)

In the strict sense, convective constants,Au andAt , are fundamental constants
similar to the von Karman constant and the neutral turbulent Prandtl number. They
must be determined from measurements. Because measurements in free convection
are technically difficult, most determinations are from analyses for values ofζ with
modest departures from neutral. The earliest measurements during the 1960s (e.g.,
Gurvich, 1965; Zilitinkevich and Chalikov, 1968) indicated that formulae (4) agree
with the data beginning atζ on the order of−0.1 (see also Monin and Yaglom,
1971). However, subsequent observations under strong convective conditions were
not so clear. Among other things, more recent observations suggest that

ϕu(ζ ) ≡ ϕuKansas= (1− γuζ )−1/4,

ϕt (ζ ) ≡ ϕt Kansas= (1− γtζ )−1/2. (5)

The empirical formulae (5) have been independently suggested by Businger (1966)
and Dyer (1974) and are called the Businger–Dyer relationships or the Kansas-type
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formulae (see also Businger et al., 1971; Dyer and Bradley, 1982; Businger, 1988;
Högström, 1988). It is widely accepted that over land, and at sea provided sea spray
effects are negligible (i.e., wind speed less than about 10 m s−1 (e.g., Andreas et al.,
1995), the humidity profile is similar to that for temperature. Hereafter, we discuss
only the temperature profile for simplicity.

Note that Equation (5) is empirical and inconsistent with the M–O similarity
predictions, since they do not satisfy the theoretical free convection asymptotic
limit expressed in Equation (4). For−ζ � 1,ϕu(ζ ) tends toζ−1/4, andϕt (ζ ) tends
to ζ−1/2, in contrast to the theoreticalζ−1/3 behaviour. Delage and Girard (1992)
demonstrated that using Kansas-type functions in the free convection limit leads
to results that are not physically reasonable. A number of models have been sug-
gested to explain observed results under strongly unstable conditions. We briefly
summarize these models in Section 5.

Businger–Dyer relationships (5) fit the available experimental data well in the
stability range of 0.1 < −ζ < 2, and they have been commonly used since the
Kansas experiment (Businger et al., 1971). Today, there is a broad consensus that
formulae (5) would be adequate for most purposes of numerical modelling and field
data analysis. However, for the Tropical Ocean-Global Atmosphere (TOGA) pro-
gram’s Coupled Ocean-Atmosphere Response Experiment (COARE; see Webster
and Lukas, 1992), bulk algorithm (hereafter called the COARE bulk algorithm),
which was expected to be often applied in unusually light-wind convective con-
ditions, Fairall et al. (1996a) proposed to interpolate between the Kansas and the
free convection formulae. This approach gives good agreement with the standard
Businger–Dyer formulation for near-neutral stratification and obeys the correct
free convection limit forζ → −∞. Fairall et al. (1996a) assign values for the
convective profile constants based on values found in the literature. In this pa-
per, we show that if the Kansas and convective forms are blended in this manner,
the convective and Kansas constants are not mathematically independent. In other
words, simultaneous use of the Kansas and the convective formulae requires mutu-
ally adjusted numerical coefficients in (4) and (5). This follows from the fact that
there is a stability subrange (about 0.1< −ζ < 2) where both the Kansas-type and
convective formulae adequately describe the measurements.

The purpose of this study, first, is to specify the values for constants in the con-
vective flux-gradient relations on the basis of the Kansas-type formulae (Section
3). This is useful because there are only a few experimental studies directed toward
determination of the convective profile constants, while the Kansas formulae have
been extensively studied in numerous field programs. The second aim of the paper
is to specify the convective profile constants in the COARE bulk algorithm (Section
4).
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2. Integral Forms of the Flux-Profile Relations

The integral forms of the universal functions (2) are widely used to describe the dia-
batic wind and temperature (humidity) profiles. Integration of (2) for the velocity
profile, following Panofsky (1963), yields

U(z) = u∗
κ

[
ln

z

zou
−9u(ζ )

]
, (6)

wherezou is the aerodynamic surface roughness length. The term9(zou/L) in
(6) has been omitted since it is small. This term is important only in a pure free
convection regime when no logarithmic portion in the velocity profile exists (Fairall
and Grachev, 1996; Grachev et al., 1997, 1998). This special case is not considered
here. Another issue concerns inclusion of a gustiness correction in Equation (6)
(e.g., Fairall et al., 1996a) to take account of the random gusts caused by large-scale
eddies. The gustiness correction appears because of replacing the vector averaged
wind speed with the scalar average (Mahrt and Sun, 1996; Mahrt et al., 1996;
Grachev et al., 1998). For clarity of presentation, we omit the gustiness effect in
(6).

A general expression for the temperature profile is

θ(z)− θo = θ∗
κt

[
ln
z

zot
−9t(ζ )

]
, (7)

whereθ(z) is the mean potential temperature,zot is the scalar (temperature) rough-
ness length,θo = θ(zot), andκt = κ/Prt .

The9α(ζ ) function in (6) and (7) obeys

9α(ζ ) =
∫ ζ

o

1− ϕα(ξ)
ξ

dξ, α = u, t, (8)

where subscriptα = u denotes the velocity profile, andα = t corresponds to the
temperature field.

2.1. BUSINGER–DYER (KANSAS) FORMULATION

The analytic forms of the universal functionsϕu(ζ ) andϕt(ζ ) in (2) have been
extensively studied in the past from many field observations. The Kansas form (5)
is by far the most widely used. Carrying out integration of (8) withϕu(ζ ) defined
by (5), one may obtain (Panofsky, 1963; Paulson, 1970),

9u(ζ ) ≡ 9uKansas= 2 ln

(
1+ x

2

)
+ ln

(
1+ x2

2

)
− 2 arctanx + π

2
, (9)
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wherex = (1− γuζ )1/4. In a similar manner, substitution ofϕt (ζ ) from (5) in (8)
yields

9t(ζ ) ≡ 9t Kansas= 2 ln

[
1

2

(
1+√1− γtζ

)]
. (10)

A review of the numerical constants involved in (5) can be found in Sorbjan (1989)
and Garratt (1992). The valuesγu = γt = 16 are the most commonly used.
Traditionally, it is assumed that the Businger–Dyer formulation should be used for
0 < −ζ < 2 (Businger et al., 1971); Garratt (1992) indicated that (5) is expected
to apply toζ ≈ −5. A wider experimental stability range, 0< −ζ < 10, was
obtained by Dyer and Bradley (1982).

2.2. FREE-CONVECTION REPRESENTATION

The integral forms,9α(z/L), of the universal free convection functions (4) cannot
be obtained directly from (8), since the functions (4) are not valid in the near-
neutral limit. Several approaches have been suggested to obtain the forms for
ϕα(ζ ) that have both neutral and free convection correct limits. One of them is
the replacement of both the−1/4 exponent forϕu(ζ ) and the−1/2 exponent for
ϕt(ζ ) in (5) by−1/3:

ϕα(ζ ) ≡ ϕα conv= (1− aαζ )−1/3, α = u, t. (11)

Carrying out the integration of (8) withϕα(ζ ) given by (11), we have (Fairall et al.,
1996a)

9α(ζ ) ≡ 9α conv= 3

2
ln

(
y2 + y + 1

3

)
−√3 ln

(
2y + 1√

3

)
+ π√

3
, (12)

wherey = (1− aαζ )1/3. Expanding (12) for| −aαζ |≥ 1, we obtain (Fairall and
Grachev, 1996; Grachev et al., 1997)

9α conv≈ ln(−aαζ )+ 3(−aαζ )−1/3+ C, (13)

whereC = − ln
√

27−√3π/6≈ −2.55.
Note thatC is not a universal constant. For example, employing the interpola-

tion functionϕα conv= [1+ (−aαζ )1/3]−1 instead of (11) leads to

9α conv= 3 ln[1+ (−aαζ )1/3], (14)

instead of (12). Expansion of (14) for| −aαζ |≥ 1 results in (13) withC = 0.
Equation (13) can be considered as a9 function, which follows from the free-
convection ‘−1/3’ law (4). The relationship in (13) can be also obtained by the
simple matching of logarithmic and convective profiles followed by comparison
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with (6). In this case, the numerical coefficientC is a function of the matching
point.

Numerical coefficientsaα in (11) have been estimated only in a few studies.
Carl et al. (1973) obtainedau = 15 from field data analysis; Delage and Girard
(1992) estimatedau = 12 andat = 40 from numerical calculations. Fairall et al.
(1996a) for the COARE bulk algorithm recommendedau = at = 12.87, which
follows from ln(

√
27/aα) +

√
3π/6 = 0. Large et al. (1994) proposed blending

relationshipsϕu = (1.26− 8.38ζ )−1/3, andϕt = (−28.86− 98.96ζ )−1/3, match-
ing appropriate Kansas and free-convection profile forms,ϕα(ζ ), and their first
derivatives at the pointsζM = −0.2 for velocity andζM = −1.0 for temperature.

Other estimates ofaα can be obtained using asymptotic free convective forms
(4), aα = A−3

α . A review of the field estimates ofAα can be found in Monin and
Yaglom (1971). Among other studies, Gurvich (1965) foundAu = 1.4/3 ≈ 0.47,
andAt = 3.7κ4/3/3 ≈ 0.4 (whereκ = 0.43), which corresponds toau ≈ 9.6, and
at ≈ 16. Zilitinkevich and Chalikov (1968), analysing the Tsimlyansk field data
(obtained in 1963–1965), foundAu = 1.25/3 ≈ 0.42, andAt = 1.43/3 ≈ 0.48,
which corresponds toau ≈ 13.5, andat ≈ 9.0. Also, Petukhov and Polyakov
(1988) obtained in laboratory experimentsau = 1.9−3 · κ−4 ≈ 5.7, andat =
1.3−3 · κ−4Pr3t ≈ 15.2 (see also, Kader and Yaglom, 1990; Figure 2). According
to the experimental data of Kader and Yaglom (1990),au = 1.7−3 · κ−4 ≈ 8,
andat = 1.1−3 · κ−4Pr3t ≈ 26 for the stability subrange 0.3 < −ζ/κ < 3 (i.e.,
0.12< −ζ < 1.2, since Kader and Yaglom (1990) used definitions ofζ , (refer Eq.
1), andϕα(ζ ), (refer Eq. 2), withoutκ).

3. Matching Condition

In many cases, it is convenient to have explicit relationships that make it possible
to calculateϕα(ζ ) and9α(ζ ) for all ζ < 0. Such formulae can be derived by
simple matching of near-neutral and free convection forms. A variety of papers
have been devoted to this problem. Most of them are associated with matching the
logarithmic, or ‘logarithmic + linear’, formulae and theζ−1/3 law (see a survey
in Monin and Yaglom, 1971). Matching conditions are based on the requirement
that profiles, i.e.,9α(ζ ), are continuous with continuous first derivatives (e.g.,
Zilitinkevich and Chalikov, 1968), or bothϕα(ζ ) and its first derivative are con-
tinuous (e.g., Large et al., 1994). Priestley (1960) proposed to interpolate between
ϕα(ζ ) = 1+β1ζ+· · ·+βnζ n and (4); he assumed that theϕ function hasn continu-
ous derivatives at the matching point. According to Priestley (1960), coefficients
βn are products of smoothing rather than true physical constants.
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3.1. SIMPLE MATCHING CONSTRAINTS

In this section, we consider matching Kansas and free convection forms for the
determination of the convective constants. There are many ways of matching, and
we consider several. A simple procedure is matching appropriateϕα(ζ ) and9α(ζ )
functions at a fixed pointζM . The choice of a matching pointζM in the case of
the convective limit forms (4) is not obvious, but for (11) or (12) we can choose
−ζM = 1/aα. Matching Equations (5) and (11) at−ζM = 1/aα results inau =
γu/(24/3−1) ≈ 10.53, andat = γt/(22/3−1) ≈ 27.24 forγu = γt = 16. Matching
appropriate9αKansaswith 9α conv functions (see ((9)), (10), (12)) at−ζM = 1/aα
results inau ≈ 11.6, andat ≈ 25.5, which are close toaα obtained for match-
ing appropriateϕα(ζ ). A disadvantage of this approach is that a fixed matching
point does not lead to a smooth function. To avoid fixing the matching point, we
can follow Large et al. (1994), matching bothϕα(ζ ) and its first derivative. The
matching procedure for the appropriate Kansas Equation (5) and the convective
limit (4) ϕt (ζ ) andϕ′t (ζ ) functions givesζM ≈ −0.125 andat ≈ 41.6, which is
close to estimates ofat by Delage and Girard (1992). However, a similar procedure
for velocity functions shows that there is no matching point in this case. Also, we
cannot match both velocity and temperatureϕα(ζ ) andϕ′α(ζ ) if we replace (4) by
(11). Matching is only possible in the case of modified functions (11) in the spirit of
Large et al. (1994). However, matchingϕα(ζ ) andϕ′α(ζ ) functions may not provide
continuity of the velocity and temperature profiles, i.e.,9α(ζ ) functions.

Now, we examine matching the appropriate Kansas forms of9α(ζ ) andϕα(ζ )
functions with their convective counterparts. Mathematically, it means matching a
function, i.e.,9α(ζ ), and its first derivative since according to (8):

ϕα(ζ ) = 1− ζ d9α(ζ )
dζ

, α = u, t. (15)

The matching of9α(ζ ) functions ensures continuity of velocity (or temperature)
profiles (see (6) and (7)), and the matching ofϕα(ζ ) ensures continuity of the
appropriate gradients (see (2)). Among the variety of convective forms considered
earlier, there is only one case when it is possible to match appropriate Kansas and
convective9 andϕ functions at the same point. Matching (4) and (13) forα = u
with appropriate Kansas functions givesau ≈ 9.67, andζM ≈ −0.625, whereas the
same equations forα = t cannot be matched with their Kansas counterparts. Also,
there are no matching points when convective9 functions (12) and (14) are used.
Matching constraints for convective forms (11) and (12) are considered further.

3.2. MATCHING RANGES

We have found that there are no preferable convective forms that can be exactly
matched with Kansas formulae; however, different approaches give similar results.
It is found thatat > au, au ≈ 9.7–11.6 andat ≈ 26–42.
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Now, we examine in more detail the necessary conditions for matchingϕα Kansas

and9α Kansasand their convective counterparts, (11) and (12), which are used in
the COARE bulk algorithm. Since it is impossible to match (11) and (12) with
Kansas forms at the same point, we can minimize the deviation of (11) and (12)
from appropriate Kansas formulae by optimizing the convective constantsaα. The
approach under consideration here is based on the assumption that there is a stabil-
ity subrange where both Kansas and convective equations are applicable. Note that
9α(ζ ) has the same range of applicability asϕα(ζ ) by virtue of (8) or (15). But, as
indicated above in Sections 1 and 2, there is no consensus about limits of validity
for the Kansas and convective formulae. However, the Kansas formulae cover the
stability range up toζ = −2 (e.g., Businger et al., 1971), and the convective flux-
profile relationships start to apply fromζ at about−0.1 (e.g., Zilitinkevich and
Chalikov, 1968; Kader and Yaglom, 1990). Thus, a common stability subrange is
0.1 < −ζ < 2. One could propose another matching subrange, say 1< −ζ < 5,
but there is definitely a matching subrange between Kansas and convective forms,
so we adopt this.

Figure 1 shows the dependence ofau on the matching pointζM based on appro-
priate matching forϕu(ζ ) and9u(ζ ) functions in the range−10 < ζM < −0.01.
The solid line indicates the dependence ofau upon ζM derived fromϕuKansas=
ϕu conv, and the dashed line is obtained from9uKansas= 9u conv. Figure 2 shows sim-
ilar dependencies for the temperature field,at onζM , derived fromϕt Kansas= ϕt conv

(solid line), and9t Kansas= 9t conv (dashed line).
Figure 1 shows that matchingϕuKansaswith ϕu conv and9uKansaswith 9u conv at

the same matching pointζM leads to two different values ofau. Conversely, using a
fixed value ofau will result in two different matching points for appropriateϕu and
9u functions. This is also true for the temperature profiles (Figure 2). Mathemat-
ically, this means that it is impossible to match simultaneously the convective and
Kansas9α functions and their derivatives at the sameζM point for the sameaα.
(Strictly speaking, this is possible only forζM = 0.) By virtue of (15), matching
of the appropriateϕα(ζ ) functions is equivalent to the matching of the appropriate
first derivatives of9α(ζ ).

Another important point is that there are limiting values for the convective con-
stants:au ≤ 12 andat ≥ 24, they correspond to matching in the limit−ζM → 0.
Mathematically, we may match the Kansas and the convective forms near zero
since (11) and (12) formally work for all negativeζ including−ζ → 0. Expanding
for −ζ → 0 and then equatingϕα Kansaswith ϕα conv (or9α Kansaswith 9α conv), one
can easily obtain

au = 3

4
γu = 12, at = 3

2
γt = 24, (16)

using the most common valuesγu = γt = 16. These estimates (16) can be
considered as the upper limit forau and the lower limit forat .
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Figure 1.Convective profile constantau versus matching pointζM . The solid line is obtained from
matching of the appropriate Kansas and convectiveφu(ζ ) functions, Equations (5) and (11), re-
spectively. The dashed line is obtained from matching the appropriate Kansas and convective9u(ζ )

functions, Equations (9) and (12);γu = 16.

Using the requirement that matching pointsζM fall in the subrange 0.1 < −ζ <
2, we can estimate a range of values forau andat . The requirement ofϕα Kansas

andϕα conv matching within the subrange 0.1 < −ζ < 2 gives 6.38 < au <

10.48 and 31.92< at < 94.29. Matching of9α Kansaswith 9α conv within the same
subrange leads to estimates 9.29 < au < 11.25 and 27.0 < at < 35.48. Since
it is impossible to match the appropriateϕα(ζ ) and9α(ζ ) functions at the same
point for fixedaα, it is reasonable to suggest that matching points located as close
as possible within the 0.1 < −ζ < 2 subrange will yield the smoothest blending
between Kansas and free-convection profile forms. For example, let us assume
that for fixedau, ϕuKansasandϕu conv intercept at the pointM1. Functions9uKansas

with 9u conv for the same value ofau would match at another point,M2. Thus, we
choose only such values ofau where both pointsM1 andM2 fall in the subrange
0.1< −ζ < 2.

After this procedure, the ranges forau andat are narrowed:

9.29< au < 10.48, and 31.92< at < 35.48. (17)

Thus, a simple matching requirement with Kansas formulae imposes a strict limit-
ation on the convective constants.
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Figure 2.As in Figure 1, but matching the appropriate temperature functions,ϕt (ζ ) (solid line) and
9t (ζ ) (dashed line), Equations (5), (11) and (10), (12) respectively;γt = 16.

In general, different matching conditions (i.e., a specific fixed point) or more
rigorous criteria on the minimum deviation ofϕα(ζ ) and9α(ζ ) functions could
be applied to determineaα. However, the above simple matching is an adequate
method since, for a relatively wide matching subrange ofζ , it leads to a reasonably
narrow subrange ofau and at values (17), especially considering the scatter of
experimental estimates and the accuracy of profile measurements. We believe that
the convective constantsau = 10 andat = 34 (the mid-ranges of (17)) can be
recommended for practical use (see also estimates ofaα obtained in Section 4.1).
The valueau = 10 gives a matching pointζM ≈ −0.15 for ϕu(ζ ), andζM ≈
−0.72 for9u(ζ ), functions. For the temperature profile, we have a matching point
ζM ≈ −0.132 forϕt(ζ ), andζM ≈ −1.24 for9t(ζ ), functions. Obtained values
au = 10 andat = 34 are in good agreement with our previous estimates, and they
correspond to coefficientsAu = a−1/3

u ≈ 0.46 andAt = a−1/3
t ≈ 0.31 in Equations

(4). Obtained values make possible an estimation of the turbulent Prandtl number
in the free convection limit Prt = ϕt/ϕu = At/Au ≈ 0.67.

4. Application for the COARE Bulk Algorithms

The COARE bulk algorithm (Fairall et al., 1996a) can be considered as a state
of the art example for advanced methods of bulk air-sea flux calculation. One
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motivation for this study is improvement of the profile function specifications for
the algorithm.

4.1. BLENDING BETWEEN NEUTRAL AND FREE-CONVECTION FORMS

For practical purposes, it is useful to have a function that interpolates between neut-
ral conditions and free convection. Although (11) and (12) have the theoretically-
correct free convection limit, the Kansas-type functions (5) and (9)–(10) better
describe experimental data for near-neutral values ofζ . For this reason, Fairall et
al. (1996a) proposed an interpolation between the Kansas Equations (9) or (10) and
the free convection form (12):

9α = 9α Kansas+ ζ 29α conv

1+ ζ 2
, α = u, t. (18)

Equation (18) gives good agreement with the standard Kansas-type expressions for
near-neutral stratification and obeys the asymptotic convective limit. Besides, (18)
is a single formula for allζ < 0, since we use (12) rather than (13). A variation
on this approach is to use a form such as (18) to interpolate the gradient functions,
ϕα(ζ ), instead of the mean profile functions,9α(ζ ). This means that the interpol-
atedϕα(ζ )must then be integrated via (8) to obtain9α(ζ ). A numerical integration
gives a result only about 5% different from (18), so in the interest of simplicity, we
chose to use the interpolation of9α(ζ ).

Note that Equation (18) is not the first relationship that satisfies both near-
neutral and convective limits. Blending between neutral and convective forms has
been suggested previously. The original KEYPS* equation (ϕ4

u − σϕ3
u = 1, where

σ is about 15, Panofsky et al. (1960)) satisfies both near-neutral and convect-
ive stability regimes but is awkward to use, and a simple form for9α(ζ ) is not
available (although a polynomial fit to a numerical integration would be fairly
trivial). However, it forces the convective and near-neutral constants to be identical
(au = γu ≡ σ ), which is an undesirable feature. Also, the transition between forms
occurs at−ζ ≈ 1/σ , which may be too near neutral to give a good fit to the Kansas
data. An alternative set of interpolation functions forϕu(ζ ) has been proposed by
Kader and Perepelkin (1989) on the basis of the Kader (1988), and Kader and
Yaglom (1990) approach (see also equation (3.6) in Kader and Yaglom (1990)).
Unfortunately, it is not clear how these functions can be applied to calculate the
velocity and temperature profiles by integration of Equation (8). For this reason,
the model by Kader and Yaglom (1990) has been modified by Brutsaert (1992) to
derive integrated forms,9α(ζ ). Sugita et al. (1995) found that the Brutsaert (1992)
formulation better describes measurements of the sensible heat flux under strongly

* The name is formed from the initials of the authors (Kazanski, Ellison, Yamomoto, Panofsky
and Sellers) in whose papers the formula is found although it appeared earlier in a paper by Obukhov
(1946).
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unstable conditions than the standard Businger–Dyer algorithm, although for the
scalar9 function, the difference between (10) and the Brutsaert approach is small
(see figure 1 in Sugita et al., 1995).

The Businger–Dyer formulation and its modifications are still very popular
today; it is used in many modern air-sea fluxes parameterization schemes including
the COARE bulk algorithm (Fairall et al., 1996a). With increasing attention to
theoretically rigorous treatments of flux parameterization in convective conditions,
it is important to obtain mutually adjusted Kansas and convective coefficients in
the blending formula (18).

As was discussed in Sections 1 and 2, for the COARE bulk algorithm, Fairall et
al. (1996a) chose values for the convective constantsau = at = 12.87. According
to the analysis in Section 3, the valueau = 12.87 is close enough to (17), but
the valueat = 12.87 cannot be considered satisfactory. In this section, we will
examine blending conditions for the COARE algorithm for different values ofaα.

Figure 3 shows the behaviour of9u(ζ ), ϕu(ζ ), andϕ′u(ζ ) for severalau. In
Figure 3,9u(ζ ) is calculated from (18);ϕu(ζ ) is based on (15) with the9 function
determined by (18). First,ϕ′u(ζ ), and higher derivatives are derived by the sequen-
tial differentiation ofϕu(ζ ); similar dependencies for temperature are shown in
Figure 4. We have not shown9 ′α(ζ ) since it is closely related toϕα(ζ ) because of
(15). According to Figures 3 and 4, valuesau = 10 andat = 34 obtained in Section
3 yield a smooth blending between Kansas and free-convection profile forms in the
COARE bulk algorithm. These constants provide monotonic behaviour for9α(ζ )

andϕα(ζ ); i.e.,9 ′α(ζ ) < 0, andϕ′α(ζ ) > 0. They give smooth behaviour (without
‘kinks’) for the first (e.g., Figure 3c and Figure 4c) and higher derivatives ofϕα(ζ ).
We have also examined functionsϕ′′α(ζ ),ϕ′′′α (ζ ), andϕIVα (ζ ), but they are not shown
here. The higher derivatives of9α(ζ ) are not analyzed here since they are closely
related toϕα(ζ ) derivatives due to (15).

Now, we determineaα more rigorously. As mentioned in Section 3 (see also
Figures 1 and 2), we cannot match simultaneously at the same pointϕα Kansasand
9α Kansas with the appropriate convective forms (11) and (12). For this reason,
we cannot strictly determineaα mathematically. However, ‘smoothing’ϕα(ζ ) or
9α(ζ ) functions (cf. Priestley, 1960) and its higher derivatives makes possible
narrowing down to a range of acceptable values ofaα . The requirement of the
monotonic behaviour for9u(ζ ) andϕu(ζ ), i.e.,9 ′u(ζ ) < 0 andϕ′u(ζ ) > 0, leads
to au > 1.54 and 5.74 < au < 16.8, respectively. The sequential smoothing
of the higher derivatives ofϕu(ζ ) leads to a narrower range forau. Requirement
ϕ′′u(ζ ) > 0 gives 7.98 < au < 15.05, ϕ′′′u (ζ ) > 0 yields 8.95 < au < 13.39,
andϕIVu (ζ ) > 0 leads to 10.077< au < 10.216. The median valueau = 10.15
provides the best fit; note thatϕ′′′u (ζ ) is the last monotonic derivative. Coefficientat
can be found in a similar manner; requirementϕ′t (ζ ) > 0 yields 25.5< at < 40.5.
However,ϕ′t (ζ ) is already a non-monotonic function so there is a range where
ϕ′′t (ζ ) < 0. Minimization of theϕ′′t (ζ ) negative part leads toat = 34.15. The
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Figure 3.TOGA COARE functions (a)9u(ζ ), (b) ϕu(ζ ), and (c)ϕ′u(ζ ) for differentau. Plots are
based on Equations (15) and (18), whereα = u, andγu = 16.

Figure 3b.
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Figure 3c.

Figure 4a.

Figure 4.As in Figure 3, but for the temperature functions,α = t .
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Figure 4b.

Figure 4c.
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values obtained here,au = 10.15 andat = 34.15, are close to estimates (17) found
in Section 3 on the basis of different arguments.

4.2. TOGA COAREFLUX DATA ANALYSIS

The TOGA COARE program placed strong emphasis on improving the accuracy
of air-sea flux estimates over the tropical oceans. To meet the COARE requirement
of an uncertainty of about 10 W m−2 in the total oceanic surface energy budget,
Fairall et al. (1996a) estimated that uncertainty in the estimates of latent heat flux
needed to be significantly less than 5 W m−2 (about 5% of the anticipated equatorial
average). To accomplish this, the COARE Flux Working Group embarked on a
series of measurements and intercomparisons during the COARE field program
and a series of workshops in the subsequent years. As part of this effort, a bulk
flux algorithm (Fairall et al., 1996a) was developed and continues to be evaluated
and improved (e.g., Bradley and Weller, 1998). The COARE bulk algorithm in-
corporates three recent innovations to deal specifically with problems in estimating
fluxes in convective, light-wind conditions: an ocean surface temperature algorithm
to account for solar-driven diurnal warming of the near surface (Fairall et al.,
1996b), a gustiness parameter Godfrey and Beljaars, 1991), and modified mean
wind and scalar profile functions that obey the proper similarity limits in convection
(Equation (18)).

Fairall et al. (1996a) showed that effects of the surface-layer stratification on the
fluxes in the tropical West Pacific become significant (i.e., greater than 5%) when
wind speeds are less than about 7 m s−1 (or about 80% of the time). Note that the
gustiness effect tends to reduce the importance of stability by about a factor of two,
so stability effects are even more important in conventional bulk models.

Figure 5 shows the resultant change in latent heat flux obtained by changing
from the original COARE valueau = at = 12.87 toau = 10.15, andat = 34.15
for 1622 hourly-averaged bulk flux estimates using the R/V ‘Moana Wave’ data,
which was obtained over three cruise legs during COARE. The measurements are
described in Fairall et al. (1996a, 1997). At low wind speeds, the latent heat flux
is increased about 4 W m−2 from a nominal value of 50 W m−2, while the change
becomes negligible for winds exceeding 5 m s−1. Overall, the mean latent heat flux
increases from 101.9 to 103.5 W m−2. Miller et al. (1992) found the structure of
tropical rainfall to be quite sensitive to changes in latent heat flux in the western
Pacific. The atmospheric measurements from the R/V ‘Moana Wave’ were made at
15 m above the sea surface; the exact nature of the profile functions becomes more
important when evaluating data obtained at greater heights from the surface, such
as from aircraft (Friehe et al., 1996).
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Figure 5. Difference in the latent heat flux,1HL ≡ HL2 − HL1, due to changing the convective
profile constants from the original COARE value 12.87 (Fairall et al., 1996a) to 10.15 for momentum
and 34.15 for scalars (present model) in Equation (11) versus the latent heat flux derived from the
COARE bulk algorithm (horizontal axis) for data obtained aboard R/V ‘Moana Wave’ during TOGA
COARE, 1992–1993 (Fairall et al., 1996a). Latent heat fluxHL1 corresponds to original values
au = at = 12.87, andHL2 is based onau = 10.15 andat = 34.15.

5. Discussion

In this paper, we consider velocity and temperature profiles in the unstable atmo-
spheric surface layer including the free convection limit. It should be emphasized
that the situation, namely with profiles under strong convection, are unclear so
far. As mentioned above, early measurements (Priestley, 1960; Gurvich, 1965;
Zilitinkevich and Chalikov, 1968; among others) confirm theoretical formulae (4).
Data obtained later in the Kansas experiment (e.g., Businger 1971) lead to em-
pirical relationships (5) that are inconsistent with M–O similarity predictions (4).
However, relations (5) became very popular, and in fact, they are standard for
profile calculations.

A number of theories have been proposed to explain the structure of the atmo-
spheric surface layer under convective conditions. In a remarkable study, Kader
(1988), Kader and Perepelkin (1989), and Kader and Yaglom (1990) proposed a
three sublayer model for the unstable surface layer. These include a dynamic (or
logarithmic) sublayer for 0< −ζ < 0.04, a dynamic-convective sublayer for
0.12< −ζ < 1.2 whereϕα(ζ ) is described by (4), and a free convection sublayer
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for −ζ < 2, approximately. In the last case,ϕt(ζ ) ∝ ζ−1/3 is similar to (4), but
ϕu(ζ ) ∝ ζ+1/3 is in contrast to (4). Thus, a novel feature of the results of this
approach is the non-monotonic behaviour ofϕu(ζ ).

An alternative approach is associated with the effect of large-scale convective
circulations. Such coherent structures can create random gusts and generate local
stress and local logarithmic profiles in the surface layer even during calm weather.
For this reason, this regime is referred as the convection-induced stress regime or
‘minimum friction velocity’ concept (Businger, 1973; Schumann, 1988).

The intention of the present paper is not a conceptual model of free convection
in the atmospheric surface layer. For this reason, different aspects of the Kader –
Yaglom model or ‘minimum friction velocity’ concept are not discussed here. The
main motivation of the study is to propose profile functions for flux calculations
which, firstly, fit the standard Businger–Dyer forms for near neutral conditions,
and, secondly, satisfy M–O similarity predictions forζ →−∞.

6. Conclusions

In this study, a method of determination of the convective constantsau for the
velocity andat for the scalars (temperature and humidity) in the flux-gradient re-
lations (4) and (11) is proposed. The constantsaα (orAα) are derived by matching
the Businger–Dyer and convective relationships (Section 3). In the strict sense,au
andat are fundamental constants similar to the von Karman constant. They may be
determined from measurements. However, it is shown that the convective constants,
au and at , cannot be completely independent if the Businger–Dyer formulation
(Kansas-type formulae) is used. In other words, relationships (5) already carry
information aboutaα, and the convective constants can be considered just as para-
meters. From a theoretical viewpoint, the coefficientsγu andγt in the relationships
(5) would be properly classified as parameters, andau andat should be knowna
priori . However,γu andγt are determined experimentally much more easily than
au andat ; also, the Businger–Dyer formulation (5) is a standard method for flux
calculations and fits most sets of experimental data very well in the near-neutral
stability region.

Using the matching idea, the convective constantsau andat have been estimated
based on the requirement of a minimum deviation of the convective relations from
Kansas formulae for theϕα(ζ ) and9α(ζ ) functions within the subrange 0.1 <

−ζ < 2 (Section 3). The valuesau = 10, andat = 34 give the best fit. These
coefficients correspond to coefficientsAu = a−1/3

u ≈ 0.46 andAt = a−1/3
t ≈ 0.31

in Equations (4).
Alternative estimates ofaα are obtained in Section 4 based on the smoothing

of the blending function (18), which interpolates between Kansas and convective
forms. This gives convective constantsau = 10.15, andat = 34.15, which are
within estimates (17). Our approach reduces the number of independent model
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constants and yields a smooth blending between Kansas and free-convection profile
forms in the COARE bulk algorithm (Fairall et al., 1996a). We recommend values
au = 10.15≈ 10, andat = 34.15≈ 34 for practical use.
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