
 
 

 
 
 
 
 

 
Monthly Weather Review 

 

EARLY ONLINE RELEASE 
 

This is a preliminary PDF of the author-produced 
manuscript that has been peer-reviewed and 
accepted for publication. Since it is being posted 
so soon after acceptance, it has not yet been 
copyedited, formatted, or processed by AMS 
Publications. This preliminary version of the 
manuscript may be downloaded, distributed, and 
cited, but please be aware that there will be visual 
differences and possibly some content differences 
between this version and the final published version. 
 
The DOI for this manuscript is doi: 10.1175/MWR-D-12-00309.1 
 
The final published version of this manuscript will replace the 
preliminary version at the above DOI once it is available. 
 
If you would like to cite this EOR in a separate work, please use the following full 
citation: 
 
Hamill, T., F. Yang, C. Cardinali, and S. Majumdar, 2013: Impact of Targeted 
Winter Storm Reconnaissance Dropwindsonde Data on Mid-latitude Numerical 
Weather Predictions. Mon. Wea. Rev. doi:10.1175/MWR-D-12-00309.1, in press. 
 
© 2013 American Meteorological Society 

 
AMERICAN  
METEOROLOGICAL  

SOCIETY 



 1 

Impact of Targeted Winter Storm Reconnaissance Dropwindsonde Data 1 

on Mid-latitude Numerical Weather Predictions 2 

Thomas M. Hamill1, Fanglin Yang2,3,  Carla Cardinali4, 3 

and Sharanya J. Majumdar5 4 

1 NOAA Earth System Research Lab, Physical Sciences Division, Boulder, Colorado 5 

2 I.M. Systems Group, Inc., Rockville, Maryland 6 

3 NOAA/NCEP Environmental Modeling Center, College Park, Maryland 7 

4 European Centre for Medium Range Weather Forecasts, Reading, England 8 

5 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida. 9 

 10 

Revised for Monthly Weather Review as an expedited contribution 11 

4 December 2012 12 

Corresponding author address: 13 

Dr. Thomas M. Hamill 14 

NOAA Earth System Research Lab, Physical Sciences Division 15 

R/PSD1, 325 Broadway 16 

Boulder, Colorado, USA 80305 17 

tom.hamill@noaa.gov, (303) 497-306018 

Manuscript (non-LaTeX)
Click here to download Manuscript (non-LaTeX): targobs_mwr_hamilletal_2012-rev1.docx 

mailto:Tom.hamill@noaa.gov


 2 

Abstract 19 

 The impact of assimilating data from the 2011 Winter Storm Reconnaissance (WSR) 20 

program on numerical weather forecasts was assessed.  Parallel sets of analyses and 21 

deterministic 120-h numerical forecasts were generated using the ECMWF 4D-Var and 22 

Integrated Forecast System.  One set of analyses was generated with all of the normally 23 

assimilated data plus WSR targeted dropwindsonde data, the other with only the normally 24 

assimilated data.  Forecasts were then generated from the two analyses.  The comparison 25 

covered the period from 10 January 2011 to 28 March 2011, during which 98 flights and 26 

776 total dropwindsondes were deployed from four different air bases in the Pacific basin 27 

and US.  The dropwindsondes were deployed in situations where guidance indicated the 28 

potential for high-impact weather and/or the potential for large subsequent forecast errors 29 

Downstream target verification regions where the high-impact weather was expected were 30 

identified for each case.  Forecast errors around the target verification regions were 31 

evaluated using an approximation to the total-energy norm.  Precipitation forecasts were 32 

also evaluated over the contiguous US using the equitable threat score and bias. 33 

 Forecast impacts were generally neutral and thus smaller than reported in previous 34 

studies, most from over a decade ago, perhaps because of the improved forecast and 35 

assimilation system and the somewhat denser observation network.  Target areas may also 36 

have been under-sampled in this study.  The neutral results from 2011 suggest that it may 37 

be more beneficial to explore other targeted observation concepts for the mid-latitudes, 38 

such as assimilation of a denser set of cloud-drift winds and radiance data in dynamically 39 

sensitive regions. 40 

41 
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1.  Introduction 42 

Since the mid-1990s, supplementary “targeted” atmospheric observations have 43 

been deployed in relative data voids in the extratropics, such as the open ocean under 44 

cloud shields.  The additional data were collected in an attempt to improve the operational 45 

numerical weather prediction (NWP) of potential high-impact weather events through 46 

assimilation of these extra data.  The most extensive use of targeted observations in the 47 

extratropics has been through the annual National Oceanographic and Atmospheric 48 

Administration (NOAA) Winter Storm Reconnaissance (WSR) program, which has been 49 

operational since 2001.  During each day of WSR, NOAA forecasters identify weather 50 

systems that may impact the contiguous United States and Alaska up to a week in advance 51 

and estimate the uncertainty associated with the forecast of each system.  They pick a 52 

“target verification location” where the high-impact weather is centered and then 53 

subjectively assign a low, medium or high priority to each case depending on the severity of 54 

the event and the potential impact to society.  The Ensemble Transform Kalman Filter 55 

technique (ETKF, Bishop et al. 2001) is then used to identify potential upstream “sensitive 56 

areas,” primarily over the northern Pacific Ocean, in which the assimilation of targeted 57 

observations is expected to maximally improve the subsequent forecast of the weather 58 

event in question.   More specifically, the ETKF uses wind and temperature output at the 59 

200, 500 and 850 hPa pressure levels from operational ensemble forecasts generated at the 60 

National Centers for Environmental Prediction (NCEP), the European Centre for Medium-61 

Range Weather Forecasts (ECMWF) and the Canadian Meteorological Centre (CMC).  62 

Perturbations from these ensemble forecasts about their respective center’s ensemble 63 

means are used to predict error covariance matrices, and thereby the reduction in forecast 64 
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error variance due to any potential deployment of targeted observations (for example, a 65 

flight track).  In other words, the variance of the “signal”, meaning the impact of the 66 

targeted observations using a difference total energy metric, is predicted and mapped as a 67 

composite ‘summary map’ that depict sensitive areas for sampling, and also as a function of 68 

a pre-defined series of flight tracks (Majumdar et al. 2002a).  Once the optimal flight tracks 69 

have been determined by the ETKF for the aircraft that release the Global Positioning 70 

System (GPS) dropwindsondes, a flight request is submitted two days prior to the actual 71 

flight deployment.  These data are then assimilated into operational global NWP systems.   72 

For more comprehensive details of the field of targeted observations, the interested reader 73 

is referred to review articles by Langland (2005) and Majumdar et al. (2011). 74 

The decision to implement WSR in NOAA’s operations was based on the promising 75 

results of the NORPEX-98 and experimental WSR field campaigns in 1999 and 2000, in 76 

which verification studies found that the majority of lower-resolution targeted forecasts 77 

were significantly improved (Langland et al. 1999; Szunyogh et al. 2000, 2002).  78 

Additionally, evaluations of the ETKF had demonstrated that it can efficiently and 79 

accurately predict the reduction in the error variance of 1-3 day forecasts due to targeted 80 

observations, prior to each deployment (Majumdar et al. 2001, 2002a).  The broader-scale 81 

aspects of ETKF targets were largely found to agree with those of adjoint-based techniques 82 

such as singular vectors (Majumdar et al. 2002b).  Recent studies have demonstrated the 83 

utility of the ETKF out to 7 days, with sensitive areas traceable as far upstream as Japan 84 

(Sellwood et al. 2008; Majumdar et al. 2010).   Consequently, WSR aircraft have been 85 

stationed in Japan since 2009 to collect targeted observations, in an attempt to improve 86 

medium-range forecasts. 87 
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Since the advent of WSR, much has changed in numerical weather prediction (NWP), 88 

and there are concerns in the community that previous optimistic results from over a 89 

decade ago may not be replicable today.  Forecast models are now much higher in 90 

resolution and incorporate better physical parameterizations, thus producing better prior 91 

forecasts for the data assimilation.  Additionally, advanced data assimilation methods such 92 

as 4-dimensional variational assimilation (4D-Var) are now operational at almost all NWP 93 

centers, reducing analysis errors further.  The observing network is also more extensive 94 

than it was a decade ago, as is the assimilation of satellite data in operational NWP systems.  95 

Finally, there is concern that the areas that need to be sampled may be so prohibitively 96 

large that ~10-20 additional dropwindsondes per flight may be inadequate (Langland 97 

2005). 98 

WSR has not recently performed careful data denial experiments with a modern 99 

data assimilation and forecast system, testing the forecast impact with and without the 100 

targeted observations.  This paper reports on an attempt to perform such an experiment 101 

using 2011 WSR data and the ECMWF assimilation and forecast system.  The hypothesis to 102 

be tested is as follows:  given a reasonably selected set of targeted observations, forecasts 103 

that incorporate the assimilation of these additional observations will be significantly more 104 

skillful than forecasts that do not, and the extra observations will be especially important 105 

for cases with anticipated high-impact weather, often associated with rapidly developing 106 

cyclones and rapid growth of forecast error.  Examples of cases in which large forecast 107 

errors are associated with deepening cyclones are presented in Colle and Charles (2011).  108 

Further, we hypothesize that the impact of the targeted observations will be larger in 109 
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specific downstream ‘verification regions’ focused on the expected area with high-impact 110 

weather and that the impact will be smaller when evaluated over continental-sized areas. 111 

2.  Targeted data, model, and data assimilation system 112 

 The WSR program is coordinated each year by the NOAA National Centers for 113 

Environmental Prediction (NCEP), who have kept a log of daily flight requests, and the 114 

forecast lead time, verification time, target verification locations, and the priority of each 115 

forecast case at http://www.nco.ncep.noaa.gov/pmb/sdm_wsr/ from 2003 to the present.  116 

In 2011, a total of 776 dropwindsondes were deployed by the NOAA and USAF aircraft 117 

which took off from four different air bases (Anchorage, Biloxi, Yokota Japan, and 118 

Honolulu). During the 2011 WSR period there were 22 high-priority cases, 62 medium-119 

priority cases, and 14 low-priority cases.  The forecast lead time associated with a given 120 

target verification for an event ranged from +12 hours to +120 hours post assimilation.  121 

The lead time was calculated as the difference between the forecast target verification time 122 

and the initialization time.   A plot of the target verification locations during the 2011 WSR 123 

campaign from 10 January 2011 through 26 March 2011 is shown in Fig. 1, including the 124 

assigned priority for each target and the forecast lead time.   125 

 Two parallel forecast experiments were carried out using the ECMWF’s 4D-Var data 126 

assimilation system and global weather forecast model for the period from 9 January 2011 127 

through 28 March 2011.  The first set included the 2011 WSR dropwindsonde data 128 

(“CONTROL”) and the second set excluded the dropwindsonde data (“NODROP”).  For both 129 

assimilation cycles, ~ 107 other observations were assimilated in both CONTROL and 130 

NODROP experiments, i.e., the full data stream normally assimilated at ECMWF.  In 131 

http://www.nco.ncep.noaa.gov/pmb/sdm_wsr/
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particular, the surface-based observations were SYNOP (measuring surface pressure, 10-m 132 

winds, and 2-m relative humidity), DRIBU (buoys measuring surface pressure and 10-m 133 

winds), radiosonde (measuring temperature, winds, and humidity profiles), aircraft 134 

(measuring temperature and wind profile), profilers, and PIBAL (measuring wind profiles).  135 

From the geostationary platforms (Meteosat, GOES, MTSAT, and MODIS), two different 136 

observation types were assimilated, atmospheric motion vectors (retrieved wind profiles) 137 

and infrared sounder radiances.  From the polar orbiting platforms, the following were 138 

assimilated: AMSU-A, AMSU-B, MHS and MSG (all measuring microwave-sounder radiance), 139 

IASI, AIRS and HIRS (measuring infrared-sounder radiance), SSMI, SSMIS, TMI, AMSR-E 140 

(microwave-imager radiance), ASCAT and ERS (retrieved wind product from microwave 141 

scatterometer backscatter coefficients), and GPS-Radio Occultation  (measuring radio 142 

occultation bending angle).  Both CONTROL and NODROP were cycled continuously for the 143 

entire campaign period, whether the targeted dropwindsonde data were available or not.   144 

When targeted observations were taken, subsequent deterministic forecasts were 145 

produced to +120 hours lead.  In all cases, the CONTROL analysis was used for verification, 146 

which may bias the results at the early leads slightly to favor the CONTROL forecasts.  For 147 

both cycles, ECMWF used version 37r2 of their Integrated Forecast System (IFS; 148 

www.ecmwf.int/products/data/operational_system/evolution/evolution_2011.html).  The 149 

resolution of the forecast model was T511 (~0.35-degree grid spacing on reduced linear 150 

Gaussian grid), with 91 vertical levels.  The data assimilation, ECMWF’s 4D-Var system, 151 

uses a full nonlinear trajectory at T511 L91 (outer loop) and a linearized model (Janiskova 152 

and Lopez 2012) at the resolutions T159, T159, and T255 for the three minimization inner 153 

loops, respectively.  The ECMWF 4D-Var system also used background error variances “of 154 
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the day” as estimated from the low resolution (T399 L91 outer loop, linearized T159 inner 155 

loops) ensemble data assimilation (Bonavita et al. 2010). 156 

3.  Description of norms used to evaluate forecast impact. 157 

The impact of assimilating the dropwindsonde data on ECMWF forecast skill was 158 

calculated using a crude approximation to the commonly used dry total-energy norm.  This 159 

norm is similar to the total-energy metric used in the ETKF computations of signal variance.  160 

Let u represent a gridded state vector of forecast minus analysis differences for the u-wind 161 

component.  Similarly, v, t, and p represent fields of differences in v-wind, temperature, and 162 

surface pressure.  Then the error E for a domain A was 163 
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where the state vector subscripts denote the constant pressure level (250 hPa, 500 hPa, 165 

850 hPa) or the height above ground (10 m, 2 m).  cp represents the specific heat content of 166 

dry air at constant pressure ( = 1004 J K-1 kg-1), Tr is the reference temperature ( = 300K), 167 

Rd is the gas constant for dry air ( = 287 J K-1 kg-1) , and Pr is the reference pressure ( = 1000 168 

hPa).  The integral sign indicates that the error was integrated and averaged over the 169 

domain A, accounting for latitudinal variations in grid spacing.  The domain A will differ 170 
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with different tests.  This approximation to the total-energy norm provides a little extra 171 

weight to near-surface fields, which may be desirable given their greater societal relevance.  172 

The impact was first evaluated in relatively confined verification regions, +/- 10 degrees 173 

latitude and longitude around the verification location of interest at the specific lead time 174 

of the target forecast, which may change from +12 h to +120 h depending on the case day.  175 

This size of verification region was chosen to closely resemble the 10-degree radius region 176 

used in previous WSR evaluations.  Next, similar statistics were computed within a larger 177 

Pacific/North American (PNA) region covering North America and adjacent coastal waters 178 

(20° N - 75° N, 180° E - 320° E).   Equitable threat scores and bias (Wilks 2006, eqs. 7.18 179 

and 7.10, respectively) were also computed over the contiguous United States (CONUS).    180 

Precipitation forecasts were evaluated at stations, bilinearly interpolating the forecast data 181 

to gauges within the CONUS that report 24-h accumulated amounts.  182 

4.  Forecast impact. 183 

 Figure 2 provides a comparison of the forecast errors for NODROP vs. CONTROL.   184 

Panel (a) provides a scatterplot of the data, with the CONTROL errors on the abscissa and 185 

NODROP errors on the ordinate.   There is a symbol associated with each case, with 186 

different symbols for the different lead times.  Cases above the diagonal line indicate cases 187 

with some improvement from the assimilation of dropwindsonde data.  Panel (b) provides 188 

another way of viewing the differences, this time as a scatterplot as a function of the 189 

forecast lead time.   Different symbols indicate the different priorities assigned to the cases.  190 

The solid line provides the mean difference for each lead time, and the dashed line 191 

indicates one standard deviation.  While there are some slight positive differences, there 192 
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are about as many negative differences.  This 2011 data do not support the hypothesis that 193 

the differences with vs. without targeted observations are statistically significant in the 194 

localized verification region.   From visual inspection, there is no obvious relationship 195 

between the priority of the case and the impact; in fact, the forecast impact of high-priority 196 

cases appear well mixed with the ones of medium- and low-priority cases.   Objective 197 

statistics as a function of the priority were not calculated because of the small sample sizes.  198 

Figure 3 provides the same type of information, but here over the PNA region.  The forecast 199 

errors averaged over this larger area are also very similar between CONTROL and NODROP.  200 

A different forecast skill index such as the anomaly correlation (e.g, 500 hPa time series, 201 

not shown) also showed a similar lack of impact.   202 

 We also examined the precipitation equitable threat scores and biases for both +24 203 

to +48 h accumulations (Fig. 4) and for +48 to +72 h accumulations (Fig. 5) over the 204 

contiguous US.  The differences are not statistically significant. 205 

5.  Discussions and conclusions. 206 

 This study has briefly summarized the impact from the assimilation of targeted 207 

observations from the 2011 Winter Storms Reconnaissance Program.  Parallel cycles of 208 

ECMWF’s data assimilation and deterministic forecasts were conducted, including and 209 

excluding the targeted observations with the rest of the regularly assimilated data.   210 

Differences were not statistically significant.  The 2011 results do not support the 211 

hypothesis that differences between forecasts with and without these assimilated 212 

dropwindsondes are statistically significantly improved in the localized verification region.  213 

There may be several reasons for the lack of impact noted here.  Observing systems have 214 



 11 

gotten denser in the ~10 years since the last systematic, peer-reviewed studies including 215 

the Pacific basin, with more cloud-track winds, aircraft, satellite radiance, and radio 216 

occultation data from global positioning satellites.  Many other observing systems may now 217 

have relatively limited impact were they evaluated in a similar observing systems 218 

experiment.  Data assimilation and forecast systems have improved as well.  Additionally, it 219 

is recognized that a handful of dropwindsondes will incompletely sample the initial 220 

sensitive area due to limitations on how far and where the plane deploying them can fly.   It 221 

is also worth recognizing that while the ETKF targeting technique has quantitatively 222 

proven to be skillful in predicting signal variance for short-range forecasts of winter 223 

weather, it is imperfect and also inconsistent with the operational data assimilation scheme 224 

used in this study.  One might expect the ETKF to be more effective if an ensemble-based 225 

data assimilation scheme is used to assimilate the targeted data.  However, it is generally 226 

accepted (e.g. Majumdar et al. 2011) that the targeting method is not the first-order 227 

problem. 228 

 It might be possible that data from different years or seasons has a different impact.  229 

Recently, R. Gelaro (personal communication, 2012) found that using NASA’s adjoint 230 

sensitivity method and their assimilation system (Gelaro et al. 2010), the assimilated 231 

dropwindsonde data had a large positive impact on a global measure of 24-h forecast error 232 

in several cases during WSR 2012.  However, these impact results have not yet been 233 

measured with an observing system experiment such as were conducted here.   234 

For the foreseeable future, the global observing network will continue to have 235 

regions with relatively sparse in-situ data.  The challenge will be to supplement the existing 236 
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network in the most cost-effective manner.  WSR plane flights into the central Pacific are 237 

typically quite expensive, with fuel costs alone typically in the tens of thousands of US 238 

dollars.   In a comparison study of observation impacts in three forecast systems, Gelaro et 239 

al. (2010) showed that only a small majority of the total number of assimilated 240 

observations actually improve the 24-h forecast, with much of the improvement coming 241 

from a large number of observations having relatively small individual impacts.  Those 242 

authors argue that accounting for this behavior may be especially important when 243 

considering strategies for deploying adaptive components of the observing system.  Given 244 

this and the results of the present study, we suggest refocusing the targeting concept to use 245 

available resources such as high-resolution satellite data.  Sensitive areas, whether they are 246 

determined by forecasters or by objective algorithms, can potentially be monitored more 247 

closely by turning on the rapid-scan feature on geostationary satellites and then 248 

assimilating a denser network of motion vectors, such as in Berger et al. (2011).  Perhaps a 249 

denser network of radiance data can be assimilated in sensitive regions (Bauer et al. 2011).  250 

 251 

252 
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Figure captions. 317 

Figure 1:  Scatterplot of the target central locations.  Triangles denote low-priority cases, 318 

filled circles for medium-priority, squares for high priority.  The forecast lead time is 319 

denoted by the color of the symbol, indicated by the legend on the left-hand side. 320 

Figure 2.  (a) Scatterplot of forecast errors for the target verification regions, CONTROL (x-321 

axis) vs. NODROP (y-axis).  Data for the different forecast lead times are denoted by 322 

different symbols, as shown in the figure legend. (b) Differences of RMS errors in the 323 

energy norm between the NODROP and CONTROL experiments.  Bold line indicates the 324 

mean difference for each lead time and dashed lines indicate +/- one standard deviations 325 

around the mean for the samples at a given lead time, averaged over all of the low, medium, 326 

and high-priority cases. 327 

Figure 3:  As in Fig. 2, but for the PNA region (20° N - 75° N, 180° E - 320° E). 328 

Figure 4:  Equitable threat score and bias score for 24-hour accumulated precipitation 329 

from forecast hours +24 to +48 verified over the contiguous US.  Top panels provide the 330 

scores, and bottom panels provide the difference (solid lines) between the NODROP and 331 

CONTROL experiments and 95% confidence intervals (bars) based on 1000 realizations of 332 

Monte-Carlo tests. 333 

Figure 5:  As in Fig. 4, but for 24-hour accumulated precipitation from forecast hours +48 334 

to +72. 335 

  336 
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Figure 2.  (a) Scatterplot of forecast errors for the target verification regions, CONTROL (x-axis) vs. 347 

NODROP (y-axis).  Data for the different forecast lead times are denoted by different symbols, as 348 

shown in the figure legend. (b) Differences of the energy norm between the NODROP and CONTROL 349 

experiments.  Bold line indicates the mean difference for each lead time and dashed lines indicate 350 

+/- one standard deviations around the mean for the samples at a given lead time, averaged over all 351 

of the low, medium, and high-priority cases. 352 
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Figure 3:  As in Fig. 2, but for the PNA region (20° N - 75° N, 180° E - 320° E). 356 
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 362 

Figure 4:  Equitable threat score and bias score for 24-hour accumulated precipitation from 363 

forecast hours +24 to +48 verified over the contiguous US.  Top panels provide the scores, and 364 

bottom panels provide the difference (solid lines) between the NODROP and CONTROL 365 

experiments and 95% confidence intervals (bars) based on 1000 realizations of Monte-Carlo tests. 366 
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Figure 5:  As in Fig. 4, but for 24-hour accumulated precipitation from forecast hours +48 to +72. 370 
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