1 2	Turbulent bulk transfer coefficients and ozone deposition velocity in ICARTT
3 4	C. W. Fairall ¹ , L. Bariteau ^{1, 2} , A. A. Grachev ^{1, 2} , R. J. Hill ^{1, 2} , D. E. Wolfe ¹ , W.A.Brewer ¹ ,
5	S. C. Tucker ^{1,2} , J. E. Hare ^{1, 2, 3} , and W. M. Angevine ^{1,2}
6	
7	¹ NOAA Earth System Research Laboratory, Boulder, Colorado USA
8	² Cooperative Institute for Research in Environmental Sciences (CIRES), University of
9	Colorado, Boulder, Colorado, USA
10	³ SOLAS International Project Office, School of Environmental Sciences, University of
11	East Anglia, Norwich NR47TJ, United Kingdom
12	
13	Revised for JGR August 30, 2006
14	
15	
16	Corresponding author: C. W. Fairall, NOAA ESRL R/PSD03, 325 Broadway, Boulder
17	CO 80305-3337, USA. (Chris.Fairall@noaa.gov)
18	tel: (303) 497-3253 fax: (303) 497-6181
19	
20	

- 21 Abstract.
- 22

23 In this paper, we examine observations of shallow, stable boundary-layers in the 24 cool waters of the Gulf of Maine between Cape Cod, MA, and Nova Scotia, obtained in 25 the 2004 New England Air Quality Study (NEAQS-04), which was part of the 26 International Consortium for Atmospheric Research into Transport and Transformation 27 (ICARTT). The observations described herein were made from the NOAA Research 28 Vessel Ronald H. Brown. The ship was instrumented for measurements of 29 meteorological, gas-phase and aerosol atmospheric chemistry variables. Meteorological 30 instrumentation included a Doppler lidar, a radar wind profiler, rawinsonde equipment, 31 and a surface flux package. In this study, we focus on direct comparisons of the NEAQS-32 04 flux observations with the COARE bulk flux algorithm to investigate possible coastal 33 influences on air-sea interactions. We found significant suppression of the transfer 34 coefficients for momentum, sensible heat, and latent heat; the suppression was correlated 35 with lighter winds, more stable surface layers, S-SE wind direction, and lower boundary-36 layer heights. Analysis of the details shows the suppression is not a measurement, 37 stability correction, or surface wave effect. The correlation with boundary-layer height is 38 consistent with an interpretation that our measurements at 18-m height do not realize the 39 full surface flux in shallow boundary-layers. We also find that a bulk Richardson number 40 threshold of 0.1 gives a better estimate of boundary-layer height than 0.25 or 0.5. Mean ozone deposition velocity is estimated as 0.44 mms⁻¹, corresponding to a boundary 41 42 removal time scale of about one day.

43

45 **1.** Introduction

46

47 According to a study by the Department of Commerce, almost half the population 48 of the United States lives in coastal areas and so is affected by the unique weather and 49 climate of coastal zones [e.g. Rotunno, 1994]. Coastal zones are subjectively defined as 50 extending approximately 100 km to either side of the coastline. Examples of coastal 51 meteorological phenomena include the sea breeze, sea-breeze related thunderstorms, 52 coastal fronts, marine stratus, fog and haze, enhanced winter snowstorms, and strong 53 winds associated with coastal orography. For example, the land-sea breeze is produced by 54 the generally different temperatures of the land and sea. The practical application of the 55 coastal meteorology is vital for more accurate prediction of the coastal weather and sea 56 state, which affect defense, transportation, commerce, and pollutant dispersal. The highly 57 variable winds near the coast may sweep pollutants out to sea on a land breeze but then 58 bring them back with the sea breeze [Rotunno, 1994].

59 The transfer of heat, momentum, and water vapor between the atmosphere and the 60 lower surface (over land or over sea) is basic to the coastal meteorology. The atmospheric 61 boundary-layer (ABL) in a coastal zone usually is not horizontally homogeneous and is 62 often associated with nonequilibrium conditions. Over the ocean, the surface drag is 63 determined by the sea state, which in turn may be associated with fetch-limited offshore 64 atmospheric flow. There is another order of complexity over the coastal ocean, because 65 the sea state is significantly influenced by the ocean shelf and shoaling phenomena. 66 Another challenging problem is an internal boundary-layer (IBL) above sea and land. In

the coastal waters, advective effects may lead to deviation of flux-gradient relationships
from those predicted by Monin-Obukhov similarity theory (MOST) and to violation of
the approximation of height-independent flux assumed by MOST.

70 In July and August 2004, the International Consortium for Atmospheric Research 71 into Transport and Transformation (ICARTT) was the umbrella organization for a large-72 scale study in the northeastern United States, Canada, and the North Atlantic. The part of 73 that study that focused on regional air quality in northern New England (New Hampshire, 74 Maine, and the Gulf of Maine) was called the New England Air Quality Study (NEAQS-75 04). The NOAA Research Vessel Ronald H. Brown was a key component of NEAQS-04 76 [Fehsenfeld et al., 2006]. The ship was heavily instrumented for *in situ* measurements of 77 gas-phase and aerosol atmospheric chemistry. Meteorological instrumentation included a 78 Doppler lidar, a radar wind profiler, rawinsonde equipment, and a surface flux package. 79 The cool waters of the Gulf of Maine cause a shallow stable boundary-layer to 80 form in the summer whenever air flows from the adjacent land. Since the prevailing 81 winds are westerly, these stable boundary-layers are very common in summer. The 82 meteorological instrumentation provided a unique combination of observations to 83 evaluate air-sea transfer processes in the coastal zone with predominantly offshore flow 84 and to contrast those observations with well-established relationships from thousands of 85 hours of open-ocean observations obtained during the last ten years [Fairall et al., 1996a, 86 2003]. The open-ocean observations formed the basis of version 3.0 of the COARE bulk 87 flux algorithm [*Fairall et al.*, 2003]. In this paper, we report on direct comparisons of the 88 NEAQS-04 flux observations used to investigate possible coastal influences on air-sea 89 interactions. The analysis presented herein emphasizes the mean transfer coefficients in

the coastal region. This complements the work of *Angevine et al.* [2006], who provide a
more detailed look at boundary-layer profiles and turbulence parameters as they evolve
downwind for a few selected cases of offshore flow. More information on the ship track,
instrumentation, and an overview of activities can be found in *Fehsenfeld et al.* [2006].

- 94
- 95

2. Surface-Layer Scaling

96

97 Determination and parameterization of momentum, heat, and mass fluxes across 98 the air-sea interface is a central problem in the modeling of the coupled atmosphere-99 ocean system. Traditional Monin-Obukhov similarity theory (MOST), or surface-layer 100 scaling, is the commonly accepted approach used to describe atmospheric turbulence in 101 the surface layer. This approach is based on the number of assumptions such as a constant-flux layer (shear stress and sensible and latent heat fluxes are approximately 102 103 constant with height), horizontal homogeneity, temporal stationary etc. It is generally 104 believed that MOST is valid in the marine surface layer as long as turbulent 105 measurements are taken above the wave boundary-layer, WBL [e.g., Edson and Fairall, 106 1998]. In many cases the WBL (the layer where the wave-induced influence cannot be 107 neglected) is typically only of order of O(1 m). However, above-ocean swells the WBL 108 may extend considerably higher during light winds [e.g., Sullivan et al., 2004; Grachev 109 and Fairall, 2001; Sullivan et al., 2006]. 110 According to MOST, properly scaled dimensionless characteristics of the turbulence at reference height z are universal functions of a stability parameter, $\zeta = z/L$, 111

112 defined as the ratio of the reference height *z* and the Obukhov length scale

113
$$L = -\frac{u_*^3 T_v}{\kappa g \left(\overline{w'\theta'} + 0.61T \overline{w'q'}\right)},\tag{1}$$

114 where $u_* = \sqrt{-w'u'}$ is the friction velocity, T_v is the virtual air temperature, κ is the von 115 Kármán constant, and g is the acceleration due to gravity. For later use, we define the 116 MOST temperature and humidity scaling parameters $\theta_* = -\overline{w'\theta'}/u_*$, $q_* = -\overline{w'q'}/u_*$. 117 So-called bulk algorithms to estimate surface air-sea fluxes are widely used in 118 numerical modeling and other important applications. According to this approach, the 119 turbulent fluxes are represented in terms of the bulk meteorological variables of mean 120 wind speed, air and sea surface temperature, and air humidity:

121
$$\overline{w'x'} = c_x^{1/2} c_d^{1/2} S \Delta X = C_x S \Delta X , \qquad (2)$$

where *x* can be *u*, *v* wind components, the potential temperature, θ , the water vapor specific humidity, *q*, or some atmospheric trace species mixing ratio. Here c_x is the bulk transfer coefficient for the variable *x* (*d* being used for wind speed) and C_x is the total transfer coefficient. Here ΔX is the sea-air difference in the mean value of *x*, and *S* is the mean wind speed (relative to the ocean surface), which is composed of a magnitude of the mean wind vector part *U* and a gustiness part U_x :

128
$$\Delta X = X_{sea} - X(z); \qquad S = \sqrt{U^2 + U_g^2} \equiv UG.$$
(3)

Here z is the height of measurements of the mean quantity X(z) above the sea surface (usually 10 m) and $G = \sqrt{1 + (U_g/U)^2}$ is the gustiness factor. The gustiness term in (3) represents the near-surface wind induced by the BL-scale circulations [*Godfrey and Beljaars*, 1991]. In unstable conditions, it is assumed that it is proportional to the *Deardorff* [1970] convective velocity scale

134
$$U_g = \beta w_* = \beta \left[\left(g / T \right) \left(\overline{w' \theta'} + 0.61T \overline{w' q'} \right) z_i \right]^{1/3}, \tag{4}$$

where z_i is the depth of the convective boundary-layer and $\beta = 1.25$ is an empirical coefficient [*Fairall et al.*, 1996a]. Note that (2) with (3)–(4) implies that sensible and latent heat fluxes have a finite limit as *U* approaches zero. In stable conditions, the COARE algorithm specifies $Ug=0.2 \text{ ms}^{-1}$.

139 The transfer coefficients in (2) have a dependence on surface stability prescribed140 by MOST:

141
$$c_x^{1/2}(\zeta) = \frac{c_{xn}^{1/2}}{1 - (c_{xn}^{1/2} / \kappa) \Psi_x(\zeta)}, \qquad c_{xn}^{1/2} = \frac{\kappa}{\ln(z/z_{ox})}, \tag{5}$$

where the subscript *n* refers to neutral ($\zeta = 0$) stability, Ψ_x is an empirical function describing the stability dependence of the mean profile, and z_{ox} is a parameter called the roughness length that characterizes the neutral transfer properties of the surface for the quantity, *x* (see also *Fairall et al.* [2003] for details). The roughness lengths are specified in Section 6 below.

147

3. Background on Fluxes in Coastal Regions

149

A number of important results on the air-sea interaction in coastal zone are based on data obtained during the Risø Air-Sea Experiment (RASEX) at Vindeby, Denmark in 1994 [*Vickers and Mahrt*, 1997, 1999; *Mahrt et al.* 1998; *Mahrt*, 1999]. In RASEX the flux measurements were made at a tower located 2 km off the northwest coast of the island of Lolland in shallow water (~ 4 m average depth). Eddy correlation fluxes of momentum and virtual temperature were calculated from sonic anemometers at four

156	levels located at 6, 10, 18, and 32 m above the mean sea level. However, the studies of
157	Vickers and Mahrt [1997] and Mahrt et al. [1998] used flux data only from the 10 m
158	sonic (Gill/Solent). Compared to the open-ocean situations, the RASEX data are
159	characterized by fetch-limited conditions. Local offshore flow conditions are
160	characterized by a sea fetch ranging between 2 km and 5 km. Onshore flow has a fetch
161	between 15 km and 25 km. The nearby land surface is relatively flat. The observation
162	period is also characterized by a near absence of large amplitude swell. Both stable and
163	unstable stratifications in the ABL have been observed during RASEX.
164	According to Vickers and Mahrt [1997] variation of the neutral drag coefficient in
165	RASEX is dominated by variation of wave age, frequency bandwidth of the wave
166	spectra, and wind speed. For a given wind speed, the drag coefficient is larger during
167	conditions of short-fetch (2–5 km) offshore flow with younger growing waves than it is
168	for longer-fetch (15–25 km) onshore flow. This is consistent with the concept of
169	enhanced wind stress over younger growing waves compared to older wave fields, which
170	are more in equilibrium with the wind [e.g., Kitaigorodskii, 1970; Snyder et al., 1981;
171	Geernaert et al., 1987; Smith et al., 1992; Donelan et al., 1993]. For the strongest
172	onshore winds, wave breaking enhances the drag coefficient. Using the RASEX data,
173	Vickers and Mahrt [1997] developed simple models of the drag coefficient and roughness
174	length in terms of wind speed, wave age, and bandwidth. An offshore flow model of the
175	drag coefficient in terms of nondimensional fetch is developed for situations when the
176	wave state is not known.
177	Vickers and Mahrt [1999] used RASEX data to study the nondimensional wind

178 shear, φ_m , in the coastal zone. They found that the development of shallow internal

179 boundary-layers and young, growing wave fields, both of which are common in the 180 coastal zone, can lead to substantial departures of the nondimensional shear from the 181 MOST prediction based only on stability. For example, the largest-scale turbulent eddies are suppressed in shallow convective internal boundary-layers, leading to larger φ_m than 182 183 that of the traditional MOST prediction. In shallow stable boundary-layers, elevated 184 generation of turbulence leads to smaller nondimensional shear compared to the 185 traditional prediction. Above young, growing waves in stable stratification, the observed φ_m is less than that above older, more mature waves in otherwise similar conditions. 186 187 Based on the RASEX data for all the onshore and offshore flow periods, Vickers and *Mahrt* [1999] proposed a new general formulation for φ_m in coastal zones as a function 188 189 of the traditional stability parameter and IBL depth for the unstable cases (their Equation 190 [9]), and as a function of the stability parameter and wave state for the stable cases (their 191 Equation (10)).

192 Mahrt et al. [1998] found for the RASEX coastal zone data that the thermal 193 roughness length shows no well-defined relation to the momentum roughness length or 194 roughness Reynolds number, in contrast to previous theories. In fact, the two roughness 195 lengths are governed by different physics. The variation of the momentum roughness 196 length for this data set is dominated by the wave state and, in contrast to thermal 197 roughness, increases at weak winds [see Vickers and Mahrt, 1997]. The thermal 198 roughness length shows significant dependence on the wave state only for small values of 199 wave age where the mixing is apparently enhanced by wave breaking. On the other hand, 200 the thermal roughness length is more related to the occurrence of internal boundary 201 layers. The development of thin IBLs with offshore flow substantially reduces the heat

202 transfer and thermal roughness length but has no obvious influence on momentum 203 roughness length. The RASEX data indicate that the internal boundary-layer effect is 204 more significant for unstable conditions compared to stable conditions. Suppression of 205 large efficient transporting eddies by the low boundary-layer top is one of several 206 plausible explanations for the reduced heat flux. A new formulation of the thermal 207 roughness length based on the internal boundary-layer depth is calibrated to the RASEX 208 data. The relationship between the thermal roughness length and the internal boundary-209 layer depth breaks down in the very stable case where the boundary-layer is characterized 210 by an upside-down structure, with the generation of turbulence occurring mainly 211 detached from the surface.

The RASEX offshore flow drag coefficients reported by *Vickers and Mahrt* [1997] agree reasonably well with those reported by *Donelan* [1982] from data collected near the coast of Lake Ontario, Canada, and reported by *Smith et al.* [1992] for young growing waves. However, both the data of *Rieder* [1997] and the model of *Geernaert et. al.* [1987] suggest significantly larger drag coefficients for a given wave age than those observed in RASEX.

Mahrt et al. [2001] and *Sun et al.* [2001] studied spatial variations of the surface stress over a coastal shoaling zone offshore of Duck, North California, using the LongEZ research aircraft. Data were obtained in 1997 and 1999 during the Shoaling Wave Experiment (SHOWEX). *Sun et al.* [2001] reported that the spatial variation of the friction velocity with offshore distance is much larger with offshore flow than with onshore flow. With onshore flow the friction velocity is strongly correlated with surface waves. However, for the offshore flow cases, the friction velocity decreases rapidly with

225 offshore distance for the first several kilometers. As a result of the influence of the 226 upstream land surface, the neutral drag coefficient is not correlated with the atmospheric 227 bulk Richardson number for the first 5 km off the coast. Mahrt et al. [2001] found that 228 with offshore flow of warm air over cold water, stability restricts momentum transfer to 229 the waves, and the aerodynamic surface roughness decreases to very small values, which 230 in turn decreases turbulent mixing. The structure of the offshore flow in these 231 measurements can be found in Vickers et al. [2001]. 232 There have been few detailed measurements of the stable IBLs over oceans [e.g., 233 Garratt, 1987; Garratt and Ryan, 1989; Friehe et al. 1991; Smedman et al. 1997]. 234 Garratt [1990] reviewed IBLs. Rogers et al. [1995] discussed the general structure of a 235 stable IBL that forms over the sea, downstream of a warm landmass based on aircraft

236 measurements from the Internal Boundary Layer Experiment (IBLEX) conducted over

the Irish Sea in 1990. They found that, despite the large horizontal inhomogeneity in the

238 IBL, local similarity scaling applies throughout the IBL below the local similarity length

scale. The local similarity length scale is the local Obukhov length based on the local

240 fluxes at height z rather than on the surface values as defined by Nieuwstadt (1984).

241 Thus, the height *z* remains an important scaling parameter. The turbulence parameters,

which are nondimensionalized with the local scales, are generally constant with respect to

243 height. However, near the top of the IBL, dependence on z disappears because the surface

does not affect the turbulence. The IBL is characterized by large temperature and

245 moisture gradients and a large wind shear that maintains a Richardson number close to its

critical value. Turbulence appears to be continuous, maintained by the strong wind shear

against the stabilizing effect of the downward-directed heat flux. A long fetch, the

248 designation of an IBL becomes tenuous especially after the turbulent structure of the

original BL has decayed or been consumed by the IBL. For stable IBLs formed below an

250 convection BL generated over land, the mean thermal structure of the old BL changes

slowly while the wind profile may change significantly. The distinction between and IBL

and an new 'equilibrium' BL is unclear and we will use the terms interchangeably.

For the case of warm air advected over cold water, *Garratt* [1990] showed that close to shore the IBL depth *h* can be estimated by

255
$$h = \alpha^{1/2} U(\frac{g\Delta\theta}{\theta})^{-1/2} x^{1/2} = \alpha R i_b^{-1} x, \qquad (6)$$

where $\alpha^{1/2}=0.02$ and Ri_b is a bulk Richardson number defined by the flow properties incident at the coast

258
$$Ri_{b} = \frac{gh(\theta_{v} - \theta_{vs})}{\theta_{v}U^{2}},$$
 (7)

wherein θ_{v} and *U* are the atmospheric mixed-layer properties over land that flow out onto the sea with surface virtual potential temperature θ_{vs} . *Skyllingstad et al.* [2005] did modeling studies for offshore flow onto cold water (5 K cooler than the incident boundary-layer) and found turbulent kinetic energy and surface stress dropping rapidly within a few km of shore. Their results show the boundary-layer cooled less than 1 K at 4 km fetch with a stable surface layer about 20 m thick. See also *Angevine et al.* [2006] for more discussion of IBL depth in NEAQS-04.

266

267 4. Observation Systems

268 4.1. Turbulence and Bulk Meteorology

270	NOAA's Earth System Research Laboratory (ESRL: formerly the Environmental
271	Technology Laboratory, ETL) sea-going flux and meteorology measurement system was
272	fully described in Fairall et al. [1997, 2003]. The following deals with specific aspects
273	of that measurement system that are relevant to computing bulk transfer coefficients. The
274	basic measurements used in this paper are covariance and inertial-dissipation (ID)
275	turbulent flux estimates, combined with measurements of the basic bulk variables as
276	described in section 2. A sonic anemometer (Gill/INUSA RS-2A) is used to obtain the
277	three components of the wind vector (u', v', w') and the sonic temperature (T') . Two
278	high-speed infrared hygrometers (Ophir Corporation IR-2000 and LiCOR LI7500) are
279	used to obtain q' . Velocity fluctuations in fixed-earth coordinates are obtained from the
280	raw anemometer output by applying rotations to account for pitch, roll, and yaw plus
281	corrections for the ship's velocity vector. High-frequency (i.e., surface wave-induced)
282	motions are measured with an integrated package of angular rate sensors and
283	accelerometers (Systron Donner Motionpak) which forms the mounting base of the sonic
284	anemometer. Lower-frequency motions are obtained from a Global Positioning System
285	(GPS), a gyrocompass, and the ship's Doppler speed log. Details of the motion
286	correction are given in Edson et al. [1998]. Sonic temperature is corrected for velocity
287	crosstalk and the humidity contribution, as discussed in Fairall et al. [1997]. ID flux
288	estimates are computed from the variance spectral density of u' , T' , and q' in the
289	inertial-subrange of locally isotropic turbulence, also as described in Fairall et al. [1997].
290	The ID range is usually at frequencies sufficiently above the wave-induced platform
291	motions, so corrections are not needed.
292	The optics of the high-speed hygrometers can be contaminated by salt [Fairall

and Young, 1991; *Fairall et al.*, 1997] and require daily cleaning. Data obtained with
water on the optics (e.g. during rainfall or fog) ar unreliable and, in some conditions,
sunlight also invalidates the measurement. The condition of the optics is monitored in
the data stream and a threshold is set to reject such data. Because of these three sources
of error, usable data for latent heat flux are significantly less than for stress.

298 Mean wind speed and mean vector wind magnitude are obtained from the sonic 299 anemometer after transformation to fixed-earth coordinates. The relative wind vector is 300 first corrected for distortion by the ship using results from computational flow dynamics 301 calculations. A floating thermistor is used to obtain a near-surface value for the ocean 302 temperature (the depth is about 5 cm). The COARE cool-skin algorithm [*Fairall et al.*] 303 1996b] is used to obtain the interface temperature, which is typically 0.3 C cooler than 304 the bulk temperature. Mean air temperature and humidity are obtained with a combined 305 temperature/relative humidity (RH) sensor in an aspirated radiation shield (Vaisala HMP-306 235 with 0.1 C, 2% RH quoted accuracy).

307 Covariance and ID fluxes and mean variables are computed in 10-min chunks 308 from a nominally 1-hr time section and then averaged to 1-hr. A coordinate rotation of 309 the high-speed time series is performed on the mean earth-fixed velocity vector, 310 following *Tanner and Thurtell* [1969] to produce streamwise coordinates for the 1-hr 311 period. The 10-min covariance and ID fluxes were selected for quality criteria and those 312 that pass are averaged in 1-hr blocks.

Covariance flux estimates are subject to random sampling errors associated with atmospheric variability [*Finkelstein and Sims*, 2001] and other random errors caused by imperfect motion corrections or sensor noise and drift. Systematic errors are caused by

316	incorrect sensor calibration, imperfect motion correction, and flow distortion. For well
317	placed sensors on ships, flow distortion is a serious concern only for stress. We have
318	applied no empirical distortion correction to our covariance data but note a possible
319	systematic uncertainty of about 10% for stress. The absolute accuracy of transfer
320	coefficient measurements is subject to uncertainties in the mean measurements, the
321	fluxes, and in the case of neutral transfer coefficients (or roughness length), the MOST
322	stability functions.

324 **4.2. Profiling**

325

326 The profiling systems used on the R/V Ronald H. Brown during NEAQS-04 were 327 described by Wolfe et al. [2006], so only a brief summary is presented here. Three 328 primary sensors, namely, two remote sensors and one in situ sensor, were used to 329 measure wind profiles. Rawinsondes using GPS wind tracking were launched four to six 330 times daily, providing a detailed profile of winds. A radar wind profiler (RWP) 331 permanently deployed on the ship and corrected in real-time for ship motion, provided 332 continuous hourly profiles at 60- and 100-m vertical resolutions. A High Resolution 333 Doppler LIDAR (HRDL) with a 30-m along-beam resolution was operated during the 334 experiment by ESRL. The rawinsonde system used Vaisala RS-92 digital sondes which 335 also measured profiles of temperature and relative humidity. 336 The Doppler lidar is an active remote sensing system with hemispheric scanning

336 The Doppler lidar is an active remote sensing system with hemispheric scanning 337 capability, similar in many respects to the more familiar Doppler weather radar, except it 338 transmits in the near infrared (2.02 µm) instead of radio-frequency waves. The scattering

339 targets for shorter-wavelength lidar are atmospheric dust and/or aerosol particles, which 340 are ubiquitous in the lower troposphere and allow the lidar to obtain signal in cloud- and 341 precipitation-free air. Data from the lidar can include aerosol *backscatter*, which is 342 related in a complex way to aerosol concentration (and other aerosol properties), and 343 *frequency*, from which the Doppler velocity component is calculated. The lidar's 344 scanning strategy during NEAQS-04 included sweeps along both constant azimuth and 345 elevation angles to provide a variety of high-resolution boundary-layer information. 346 Azimuth scanning produces cones of data which, at the lowest elevation angles, can 347 provide surface wind data and elevation scanning, and which, at the highest elevation 348 angles, can produce vertical slices of atmospheric features. The 360° azimuth scans, 349 usually completed in 2 min or less, were processed to produce vertical profiles of the 350 horizontal wind using the velocity-azimuth display (VAD) technique.

351

352 **5. Boundary-layer Profiles**

353

Rawinsondes were launched at 6 hour intervals from the ship's stern. For all 123 sondes, profiles from the surface to 260 m were prepared for analysis of the near-surface meteorology. A plethora of near-surface cases was observed; only a few examples can be shown here. More examples can be found at

358 (ftp://ftp.etl.noaa.gov/et6/archive/NEAQS_2004/RHB/Scientific_analysis/lowheights).

- Wind speed varied from calm to about 15 m/s. Wind directions at 17.5 m and 250 m
- 360 varied from parallel to opposite and in all directions. Sea colder than the air resulting in

near-surface stability was typical, but sea warmer than the air resulting in shallowconvective instability was also observed.

363 Figure 1 shows the position of four sample rawinsonde launches relative to the 364 coastline at UTC shown as year, month, day, hour, minute (yy mm dd hh mm) in the 365 titles. The red and black arrows in Figure 1 show the wind vector at 17.5 m (sonic 366 anemometer) and at 250 m (sonde), respectively. One degree of longitude corresponds to 367 3 m/s. The four cases in Figure 1 are labeled (a) to (d). Figures 2a–d show the 368 corresponding profiles for cases (a) to (d), and show latitude (lat), longitude (lon), UTC 369 (yymmddhhmm), and UTC Julian day (JD). Ten-minute averaged data from the sonic 370 anemometer at 17.5 m height, temperature and humidity at 15.5 m, and sea-surface 371 temperature as well as 15-minute averaged lidar data are included on the profiles when 372 those averages exist within one half hour of the rawinsonde launch. Wind speed (m/s) 373 and direction in degrees are shown for the sonde (blue), lidar (green), and sonic 374 anemometer (red). Differences between lidar and sonde data at the lowest heights is 375 likely because the sonde is launched in the ship's air wake, whereas discrepancies can be 376 caused at greater heights by temporal mismatch. The potential temperature (green) and 377 virtual potential temperature (blue) in Kelvin and water vapor mixing ratio in g/km (blue) 378 are obtained from sonde data; those quantities are shown as obtained from ship 379 instrumentation at 15.5 m (red) and at the surface (red). For calculation of surface values, 380 it is assumed that water vapor is saturated at the sea surface temperature. The lidar velocity variance in $m^2 s^{-2}$ is obtained from the lidar velocity signal in m/s after the mean 381 382 velocity is removed; thus, lidar velocity variance contains atmospheric waves and 383 turbulence and instrumental noise. Calculation of the gradient Richardson number (Ri) in

384 the figures requires the ratio of the potential temperature gradient to the sum of the 385 squares of the gradients of the horizontal wind components; as such, it is sensitive to 386 errors. The bulk Richardson number is referenced to the surface values; that is, it 387 requires the difference of potential temperature aloft to its surface value divided by the 388 square of the wind speed aloft. The bulk Richardson number is shown on two scales. 389 Vertical lines corresponding to gradient Ri = 0.25 and to bulk Ri = 0.1, 0.25, and 0.5 are 390 shown. Richardson number calculated entirely from sonde data is in blue, whereas 391 substitution of lidar velocity data in place of sonde velocity data produces *Ri* as shown in 392 green.

393 Figure 2a and corresponding case (a) in Figure 1 show that wind at 250 m is 394 offshore from Boston, but near-surface flow is toward Maine. In Figure 2a, the sea is 395 colder than the air, and the largest gradients of both water vapor mixing ratio and 396 potential temperatures are between 40 and 75 m. In that height range, the gradient Ri 397 shows a stable layer where lidar velocity variance is enhanced, which suggests that 398 atmospheric waves are present. Conditions for shear-generated turbulence exist above 399 and below the stable layer. Most of the shear aloft is caused by change of wind direction. 400 Figure 2b corresponds to case (b) in Fig. 1. Flow is offshore at 250 m, but 401 onshore at 17.5 m. Light wind causes discrepancy of the sonde's wind direction and 402 speed at low levels relative to the lidar and sonic anemometer data. However, it is clear 403 from agreement of lidar and sonde data that wind speed almost vanishes from 150 m to 404 200 m, and that there is a large wind-direction shift between those heights. The sea is 405 warmer than the air, but the potential temperature gradient reverses at about 40 m. The 406 Richardson numbers indicate convective instability below about 40 m, but stability above

407 50 m. Enhanced lidar variance between 50 and 110 m might indicate atmospheric wave408 activity.

409	Case (c) in Figure 1 shows that wind at the height of 250 m is from the direction
410	of Boston, but nearer-surface flow is toward the coast of Maine. Corresponding Figure
411	2c shows sea temperature substantially colder than the air at 17.5 m, and the potential
412	temperature profiles show strong gradients up to 110 m, above which the potential
413	temperatures are constant. The Richardson numbers indicate shear-generated turbulence,
414	despite the thermal stability, from the surface to about 70 m, above which the flow
415	stabilizes. A small enhancement of lidar velocity variance is seen between 50 and 100 m.
416	Profiles of stability and lidar velocity variance suggest the presence of atmospheric
417	waves, perhaps breaking waves.
418	Figure 2d and case (d) in Figure 1 show a case of strong wind at 250 m which is
419	offshore from Massachusetts. Wind speed at 17.5 m is toward Maine and of smaller
420	speed than aloft. The sea is colder than the air. The Richardson numbers suggest
421	turbulence below 140 m, which is corroborated by the enhanced lidar velocity variance,
422	and suggest stability above 140 m. Wind shear is strongest below 140 m. Between 140
423	to 150 m, there are enhanced gradients in potential temperatures and water vapor mixing
424	ratio.

- **6. Transfer Coefficients**
- **6.1.** Methods

429 The reduction of an ensemble of observations of turbulent fluxes and near-surface 430 bulk meteorological variables to estimates of the mean 10-m neutral transfer coefficient is 431 a problem of some subtlety. The straightforward approach is to convert each observation 432 to C_{x10n}

433
$$C_{x10n} = \frac{\overline{w'x'}}{U_{10n}\Delta X_{10n}G},$$
 (8)

434 then average to obtain

435
$$< C_{x10n} > = < \frac{w'x'}{U_{10n}\Delta X_{10n}G} > .$$
 (9)

436 The 10-m neutral values of the mean profile are computed as

437
$$U_{10n} = \frac{u_*}{\kappa} \ln(\frac{10}{z_o}) = U(z) - \frac{u_*}{\kappa} [\ln(\frac{z}{10}) - \Psi_u(z/L)]$$
(10a)

438
$$\Delta X_{10n} = -\frac{x_*}{\kappa} \ln(\frac{10}{z_{ox}}) = \Delta X(z) + \frac{x_*}{\kappa} [\ln(\frac{z}{10}) - \Psi_q(z/L)], \qquad (10b)$$

439 where x_* can be θ_* or q_* . Note, the sign difference between [10a] and [10b] follows 440 from ΔX being defined as $X_s - X(z)$ in Equation [3]. However, artificial correlation 441 may confuse the results. In this paper, we use the approach of *Fairall et al.* [2003] to 442 compute estimates of the mean transfer coefficients as a function of wind speed. Here the 443 fluxes are averaged in wind speed bins and the mean transfer coefficient is the one that 444 correctly returns the mean or median flux

445
$$< C_{x10n} > = \frac{<\overline{w'x'>}}{<\overline{w'x'>_b}} < C_{x10nb} >,$$
 (11)

446 where the subscript *b* refers to values computed with the bulk algorithm.

447	The data used in the analysis are filtered for acceptable relative wind direction
448	and other data quality criteria described by Fairall et al. [2003]. The results for
449	momentum and sensible heat flux are shown in Figures 3a and 3b. Comparison with the
450	COARE algorithm coefficients shows substantially lower transfer with decreasing wind
451	speed for both sensible heat and momentum. Similar behavior occurs for latent heat flux,
452	but the number of usable observations is lower and less convincing (not shown).
453	
454	6.2. Analysis
455	
456	The substantially reduced transfer coefficients (or, equivalently, fluxes) at low
457	winds are perplexing. It might be a measurement problem, a stability correction issue, an
458	ocean surface wave effect, or an atmospheric internal boundary-layer process. The most
459	obvious reason for a measurement problem is inadequate motion compensation for
460	covariance fluxes. This usually produces a peak in the w - u or w - T cospectra at the
461	dominant wave period. Figures 4a and 4b show sample w - x cospectra for U , T , and q for
462	two periods. It is clear that the cospectra are very clean and free of wave effects (i.e., no
463	anomalous peaks near 0.2 Hz). Also, the cospectra approach zero well below the Nyquist
464	frequency so that fluxes are not underestimated. That is, the high-frequency

465 contributions are well resolved. Of course, wind mean speed may not be the ideal

466 variable to discern the physics of this behavior. In Figure 5 we show a similar analysis in

467 terms of true wind direction. Here we see normal values for the drag coefficient for

468 northerly wind directions and a broad sector of greatly reduced values for winds from

about 120 to 250 deg. The mean values of the bulk variables forcing the fluxes and the

470 stability corrections are also highly correlated with wind direction (Figure 6). Clearly, 471 the most stratified conditions are associated with offshore flow (westerly quadrant) 472 and/or flow from warm to cold water (southerly to southeasterly flow). The correlation 473 of mean wind speed with true wind direction is not as clear-cut, possibly because of the 474 mixing of conditions from different distances from shore. From Fig. 6 we can see that 475 normal values of drag coefficients for northerly flow are associated with stronger surface-476 layer winds and near-neutral stability. This is because of the initially cooler air for 477 northerly flow and the increasing sea surface temperatures as the flow moves southward. 478 This results in a deep convective boundary layer rather than a shallow stable boundary 479 layer.

480 The spatial aspects of the phenomenon we have observed can be illuminated by 481 analysis on a geographic grid. Figure 7a shows a contour plot of the drag coefficient 482 ratio in the coastal region. The depressed regions are principally located close to the 483 coast with some correspondence to the largest air-sea temperature differences (Figure 484 7b), consistent with warm air advection from hot daytime or warm nighttime land 485 boundary-layers. There is some lack of correspondence in the upper Gulf of Maine area 486 near Nova Scotia. The results shown in these figures are corrected for surface-layer stability effects. The bulk Richardson number, $Ri_h(z)$, is a useful index of the surface-487 488 layer stability. Stability effects reduce the surface fluxes about a factor of 2 when Ri_b is 489 on the order of 0.05 (corresponding to z/L = 1.0). While there is some debate about the correct forms of stability correction functions [Cheng and Brutsaert, 2005; Grachev et 490 491 al., 2006; Steeneveld et al., 2006], they are well established in weak to moderately stable 492 conditions (z/L<2 or $Ri_b < 0.08$). Contours of Ri_b (Figure 7c) indicate that strong

493 stability effects are confined much closer to the coast (yellow to reddish contours) than
494 the observable depressions in drag coefficient. Thus, we conclude that reduced neutral
495 drag coefficients observed in NEAQS-04 are not caused by errors in the corrections to
496 neutral values.

497 Wave-age (W_a) effects in coastal regions can occur with offshore flow or with 498 weak flow in the presence of swell. The conventional wisdom is that young waves in 499 offshore flow cause an increase in fluxes (see section 3). Regardless of the wave effects, 500 we can combine standard scaling theory with our measurements of both C_d and C_h to 501 assess the wave aspects. The COARE algorithm is a typical representation where 502 velocity and scalar roughness lengths are separated as follows:

503
$$z_{o} = \alpha(W_{a})u_{*}^{2}/g + 0.11\nu/u_{*} = f(u_{*},W_{a}), \qquad (12a)$$

$$z_{ot} = f(R_r), \tag{12b}$$

where α is a wave property-dependent Charnock parameter and $R_r = z_o u_* / v$ is the roughness Reynolds number. For wind speeds less than 8 ms⁻¹, we find $R_r < 1$. In this region we expect z_{ot} to be constant at 10^{-4} m or $C_{T10n}^{1/2} \approx 0.0347$. Thus, if the observed decrease in neutral transfer coefficients were due to an ocean wave effect, we expect $C_{d10n}^{1/2}$ to be affected but that $C_{T10n}^{1/2}$ is not affected. However, Figure 8 shows both velocity and temperature coefficients to be similarly affected. Based on this analysis, we rule out a substantial surface wave/fetch effect.

512 IBL effects are examined by using Richardson Number threshold estimates of the 513 boundary-layer depth, as described in Sec. 5. In stable boundary-layers we expect a 514 quasilinear profile of the fluxes [*Nieuwstadt*, 1985] with a maximum at the surface and 515 near-zero at *h*.

516
$$\overline{w'x'(z)} \cong \overline{w'x'}_o (1-z/h).$$
(13)

517 If the height of the measurement is much smaller than h, then the measurement is 518 equivalent to the surface flux. For the NEAOS-04 case, the flux instruments are at 18 m 519 above the sea surface. Using diagnoses of the depth of the boundary-layer described in 520 Sec. 5, we have composited values for the ratio of the measured to bulk model 521 momentum transfer coefficient in bins of IBL depth (Figure 9). A clear relationship is shown using each of the three Ri_{h} criteria (0.1, 0.25, or 0.5), but the fit to (13) is better 522 523 and the scatter is less using the $Ri_b = 0.10$ criterion. The significance of this is not clear. 524 Nieuwstadt's [1985] analysis showed that the flux profile for buoyancy was linear, but 525 that the rate of decrease with height of momentum flux was greatest at the surface (i.e., 526 slightly nonlinear). Furthermore, we do not know that the bulk flux calculated from 527 meteorological variables measured at 18 m is a proper surrogate for the true surface flux. 528 One remarkable feature [Garratt, 1992] of the quasi-equilibrium stable boundary-529 layer is that the buoyancy flux approaches an upper limit independent of the temperature 530 profile. A larger air-sea temperature difference favors a higher heat/buoyancy flux, but 531 this is balanced by the turbulence suppression caused by the increased stratification. 532 Thus,

533
$$H_{sv_equilibrium} = -\frac{\rho c_p \theta_v}{g} R_f |f| V_g^2 / \sqrt{3} \cong 0.42 V_g^2, \qquad (14)$$

534 i.e., about -40 Wm⁻² at a geostrophic wind of 10 ms⁻¹. If we use the sonde wind speed at 535 250-m height as an estimate of geostrophic wind, then we obtain high correlation with 536 near-surface fluxes (the correlation of V_g^2 with H_{svc} is $r^2 = 0.70$ and with $H_{svb} r^2 = 0.75$) 537 under stable conditions. However, the slope is about ¹/₄ of that given in (14) or,

538	correspondingly, the geostrophic wind speed estimate we are using is about a factor of 2
539	too large. The reduced heat flux (relative to [14]) may imply that the 250-m wind speed
540	is overshooting the geostrophic wind (the low-level jet), or the suppression effects of the
541	stratification in the IBL are dominating in the near field. Another possibility is that a
542	significant additional heat transfer could be by IR radiative flux (Steeneveld et al., 2006).
543	
544	7. Ozone Deposition
545	
546	Direct measurements of ozone fluxes were not made on the cruise. However, we
547	have computed estimates of ozone deposition velocity, V_{doz} , using the ozone version of
548	the NOAA COARE gas transfer model. The basics of the gas transfer model are
549	described in Fairall et al. [2000] and Hare et al. [2004]. The specifics for the ozone
550	version are described in Fairall et al. [2006] but are summarized here. The flux of ozone
551	to the ocean, F_x , is represented as
552	$F_x = -V_{doz} X_{oz}, \tag{15}$
553	where X_{oz} is the atmospheric ozone concentration at reference height.
554	The deposition velocity in the NOAA COARE parameterization is
555	$V_{doz} = [R_a + (\alpha V_w)^{-1}]^{-1}, $ (16)
556	where R_a is the atmospheric transfer resistance (sm ⁻¹), V_w is the oceanic transfer velocity
557	associated with the destruction of ozone by chemical reaction in the water, and α is the
558	solubility of ozone in seawater. The oceanic transfer velocity is given by

559 $V_{w} = \sqrt{aD_{x}} \frac{K_{1}(\xi_{0})}{K_{0}(\xi_{0})},$ (17)

$$\xi_0 = \frac{2}{ku_*} \sqrt{aD_x}, \qquad (18)$$

where $a \approx 10^3$ s⁻¹ is the chemical reactivity of ozone in the water, D_x the molecular 561 562 diffusivity of ozone in seawater, and K_0 and K_1 are modified Bessel functions. 563 Observed deposition velocities are reported in the literature with values ranging from $V_{doz} \sim 0.1$ to 1.2 mm s⁻¹ for ocean water [Ganzeveld et al., 2005]. We have used 564 Equations (16) and (17) to compute deposition velocities for the NEAQS-04 time series 565 566 and find similar values. Contour plots of the spatial distribution of the computed 567 deposition velocities are shown in Figures 10a and 10b. The first figure uses the bulk algorithm for u_* , while the second uses the direct measurements of u_* . Both maps show 568 569 the same basic features with highest values just northeast of Cape Cod and the lowest 570 values close to the coast.

571

572 **8.** Conclusions

573 The NEAQS/ICARTT field program in the summer of 2004 was a unique ship-574 based study of surface fluxes and stable boundary-layers in the coastal regions. The 575 extensive suite of measurements offer an unprecedented – perhaps even perplexing – 576 view of IBL and surface flux processes in this regime. The analysis presented here, 577 though preliminary, clearly indicates that tried-and-true open-ocean bulk flux 578 relationships become inaccurate close to shore. We found significantly lower fluxes (as 579 determined by direct measurement) than expected; the reduction corresponding to light 580 winds, winds from the south-southeast sector, proximity to shore, and/or very shallow 581 boundary-layer depths. All of these factors are correlated, so it is a complicated problem.

582 It appears that reduced fluxes are not caused by a measurement problem, a MOST583 stability correction problem, or wave-age effects.

584 Our analysis suggests that the depth of the stable boundary-layer is a critical 585 parameter associated with reduced surface fluxes. The low fluxes observed at lighter 586 wind speed and/or westerly winds result from their joint occurrence with shallow 587 boundary layers. One interpretation is that the bulk algorithm is giving approximately the 588 correct surface flux, but our instruments do not realize the full value because of the flux 589 profile (the flux approaches zero at the IBL depth). Thus, the flux reduction is greater for 590 shallow BLs. Mahrt et al. [1998] found a similar reduction for sensible heat but not for 591 stress. However, their measurements were closer to the coast (2–4 km fetch) where 592 wave-age effects may be more significant. One interesting aspect of this problem is 593 diagnosing the depth of the BL without profiles of the turbulent fluxes. We have 594 examined gradient Richardson number, bulk Richardson number, and velocity variance 595 profiles. Analysis of the ratio of the direct flux to the bulk flux suggests that the BL 596 height determined as $R_{ib}(h)=0.10$ gives the most consistent estimates. This is often (but 597 not always) consistent with the 0.25 gradient Richardson number criterion. A peak in the 598 lidar-derived velocity variance, when present, was often much higher, suggesting that 599 gravity waves are dominating that signal. Based on the 0.10 criterion, the typical BL depth was less than 50 m, and only a few percent exceeded 200 m for the locations of the 600 601 sonde launches.

602 Besides BL depth, we examined other basic properties of the flow. In an effort to 603 classify the gross stability of the BL for each sounding, we computed the bulk

Richardson number at 250 m height. Only 10% were less than 0.25, 10% exceeded 5,

605	and the median was 0.5. <i>Garratt</i> [1992] predicted that buoyancy flux would prove to be
606	independent of the thermodynamic lid on the BL and would scale as the square of the
607	geostrophic wind speed. We found the surface buoyancy flux to be highly correlated
608	with the wind speed at 250 m (which we took as a surrogate for the geostrophic wind),
609	but the values were about 1/4 of Garratt's [1992] prediction. This is consistent with the
610	BL depth being a better fit with $R_{ib}(h)=0.10$ instead of a value between 0.25 and 0.50.
611	The wind profiles were strongly sheared with the flow being often westerly at 250 m,
612	while the near-surface flow was southerly. The combination of the strong diurnal cycle
613	over land and the baroclinic flow regime further confuses efforts to understand this
614	system. Zilitinkevic and Esau [2003] examined observations and LES studies and found
615	baroclinicity increased the equilibrium depth of stable boundary layers, but their formula
616	gives much lower boundary layer depths than we observed. We speculate that
617	baroclinicity associated with sloping boundary layers tends to concentrate velocity shear
618	at 90 degrees to the local mean wind direction near the top of the IBL and that this leads
619	to a lower IBL depth either because this configuration generates turbulence less
620	efficiently or it is more efficiently dissipated locally (before it can drive mixing). We did
621	not examine diurnal effects but some discussion can be found in Angevine et al. [2006]
622	One amusing twist on the complexity was our estimates of ozone deposition
623	velocity in the Gulf of Maine region. Values were distributed between 0 and 1 mms ⁻¹
624	with a median of 0.44 mm s ⁻¹ ; this value yields an e-folding time for surface removal of
625	ozone from the boundary-layer of about 1 day. The different indirect versus bulk friction
626	velocity values made little difference in the spatial distribution because the reactivity
627	level we chose made deposition velocity less sensitive to wind forcing. Note that we

estimated deposition velocity and not the actual loss of ozone to the surface (i.e., theproduct of deposition velocity and concentration).

630 NEAQS-04 was principally a pollution experiment and was not designed to 631 uncover unifying principles in coastal IBL physics, but a wealth of data remains 632 unexplored. We anticipate that further investigation of the relationship between the gross 633 stability, distance from shore, and BL depth might shed more light on the problem, 634 although the challenge is to keep the number of variables significantly less than the 635 number of data points. 636 637 Acknowledgements. The authors thank all of the participants in ICARTT/NEAQS 2004 638 who aided in the operation of these instruments and the collection of data. A special 639 thanks goes to the dedicated officers and crew of the NOAA R/V Ronald H. Brown. This 640 work was supported by the NOAA Health of the Atmosphere program, the NOAA 641 Carbon Cycle program, and the NOAA ESRL Physical Sciences Division Director's

Fund.

643 **References**

644

652

661

$\mathbf{U} = \mathbf{U} = $	645	Angevine.	W. M., J. E. Hare	, C. W. Fairall	D. E. Wolfe	, R. J. Hill	W. A. Brewer	, and A.
--	-----	-----------	-------------------	-----------------	-------------	--------------	--------------	----------

- B. White (2006), Structure and formation of the highly stable marine boundarylayer over the Gulf of Maine *J. Geophys. Res.*, to appear (this issue).
- 648 Cheng, Y., and W. Brutsaert (2005), Flux-profile relationships for wind speed and
- 649 temperature in the stable atmospheric boundary-layer, *Bound-Layer Meteorol.*,
- 650 *114*(3), 519–538.
- Donelan, M. A. (1982), The dependence of the aerodynamic drag coefficient on wave
- 653 *Interaction of the Coastal Zone*, pp. 381–387, American Meteorological Society,
 654 Boston, Mass.

parameters, in First International Conference on Meteorology and Air-Sea

- Donelan, M. A., F. W. Dobson, S. D. Smith and R. J. Anderson (1982), On the
- dependence of sea surface roughness on wave development, *J. Phys. Oceanogr.*23, 2143–2149.
- Edson, J. B., and C. W. Fairall (1998), Similarity relationships in the marine atmospheric
 surface layer for terms in the TKE and scalar variance budgets. *J. Atmos. Sci.*, 55,
 2311–2338.
- 662 covariance flux estimates from moving platforms at sea. J. Atmos. Oceanic Tech.,

Edson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare, and C. W. Fairall (1998), Direct

663 *15*, 547–562.

664	Fairall, C. W., and G. S. Young (1991), A field evaluation of shipboard performance of
665	an infrared hygrometer, Proceedings of the 7th AMS Symposium on

666 *Meteorological Observations and Measurements*, pp. 311–315, New Orleans.

- Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young (1996a), Bulk
 parameterization of air-sea fluxes in TOGA COARE, *J. Geophys. Res.*, 101(C2),
 3747–3767.
- 670 Fairall, C. W., E. F. Bradley, J. S. Godfrey, G.A. Wick, J. B. Edson, and G. S. Young

671 (1996b), Cool skin and warm layer effects on the sea surface temperature, *J.*672 *Geophys. Res.*, 101, 1295–1308.

- Fairall, C. W., A. B. White, J. B. Edson, and J. E. Hare (1997), Integrated shipboard
 measurements of the marine boundary-layer, *J. Atmos. Oceanic Technol.*, *14*,
 338–359.
- Fairall, C. W., J. E. Hare, J. B. Edson and W. McGillis (2000), Parameterization and
 measurement of air-sea gas transfer. *Bound.-Layer Meteorol.*, *96*, 63–105.
- 678 Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson (2003), Bulk
- parameterization of air-sea fluxes: Updates and verification for the COARE
 algorithm, J. Clim., 16(4), 571 591.
- 681 Fairall, C. W., J. E. Hare, D. Helmig, and L. Ganzveld, 2006: Water-side turbulence
- 682 enhancement of ozone deposition to the ocean. *Atm. Chem. Phys. Disc*, SRef-ID:
 683 1680-7375/acpd/2006-6-5137, 5137-5162.
- 684 Fehsenfeld, F.C., *et al.* (2006), International Consortium for Atmospheric Research on
- Transport and Transformation (ICARTT): North America to Europe: Overview of
 the 2004 summer field study, *J. Geophys. Res.*, submitted (this issue).

687	Finkelstein, P. L., and P. F. Sims (2001), Sampling error in eddy correlation flux
688	measurements, J. Geophys. Res., 106, 3503-3509.
689	Friehe, C., W. J. Shaw, D. P. Rogers, K. L. Davidson, W. G. Large, S. A. Stage, G. H.
690	Crescenti, S. J. S. Khalsa, G. K. Greenhut, and F. Li (1991), Air-sea fluxes and
691	surface layer turbulence around a sea surface temperature front, J. Geophys. Res.,
692	<i>96C</i> , 8593–8609.
693	Ganzeveld L., D. Helmig, J. Hare and C. Fairall (2005), Ozone deposition to oceans and
694	lakes and its role in the tropospheric ozone budget, Global Biogechem. Cycles. To
695	appear.
696	Garratt, J. R. (1987), The stably stratified internal boundary-layer for steady and diurnally
697	varying offshore flow, Boundary-layer Meteorol. 38(4), 369-394.
698	Garratt, J. R. (1990), The internal boundary-layer - A review, Boundary-layer Meteorol.,
699	50, 171–203.
700	Garratt, J. R. (1992), The Atmospheric Boundary-layer, 316 pp., Cambridge University
701	Press, Cambridge, UK.
702	Garratt, J. R.and B. F. Ryan (1989), The structure of the stably stratified internal
703	boundary-layer in offshore flow over the sea, Boundary-layer Meteorol., 47, 17-
704	40.
705	Geernaert, G. L., S. E. Larsen, and F. Hansen (1987), Measurements of the wind stress,
706	heat flux and turbulence intensity during storm conditions over the North Sea, J .
707	Geophys. Res., 92, 127–139.

708	Godfrey, J. S., and A. C. M. Beljaars (1991), On the turbulent fluxes of buoyancy, heat,
709	and moisture at the air-sea interface at low wind speeds, J. Geophys. Res., 96,
710	22,043–22,048.
711	Grachev, A. A., and C. W. Fairall (2001), Upward Momentum transfer in the marine
712	boundary-layer, J. Phys. Oceanogr., 31(7), 1698-1711.
713	Grachev, A. A., E. L Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson (2006),
714	SHEBA flux-profile relationships in the stable atmospheric surface layer,
715	Boundary-layer Meteorol., submitted.
716	Hare, J. E., C. W. Fairall, W. R. McGillis, B. Ward, and R. Wanninkhof (2004)
717	Evaluation of the NOAA/COARE air-sea gas transfer parameterization using
718	GasEx data, J. Geophys. Res., 109 Art. No. C08S11, doi:10.1029/2003JC001831.
719	Kitaigorodskii, S. A. (1998), The Physics of Air-Sea Interaction, translated from Russian,
720	273 pp., Israel Program for Scientific Translations, Jerusalem, 1970.
721	Mahrt, L., D. Vickers, J. Edson, J. Sun, J. Hojstrup, J. Hare and J. Wilczak, Heat flux in
722	the coastal zone, Boundary-layer Meteorol., 86(3), 421-4461998.
723	Mahrt, L. (1999), The Coastal Zone. In Air-Sea Exchange: Physics, Chemistry and
724	Dynamics, Edited by G. Geernaert, 246–267, Kluwer.
725	Mahrt, L., D. Vickers, J. Sun, T. Crawford, G. Crescenti, and P. Frederickson (2001),
726	Surface stress in offshore flow and quasi-frictional decoupling, J. Geophys. Res.,
727	<i>106</i> (D18), 20,629–20,639.
728	Nieuwstadt, F. T. M. (1984), The Turbulent Structure of the Stable, Nocturnal Boundary
729	Layer, J. Atmos. Sci. 41, 2202 – 2216.

730	Rieder, K. F. (1997), Analysis of sea surface drag parameterizations in open ocean
731	conditions, Boundary-layer Meteorol., 82(3), 355-377.
732	Rogers, D. P., D. W. Johnson, and C. A. Friehe (1995), The stable internal boundary-
733	layer over a coastal sea. Part I: Airborne measurements of the mean and
734	turbulence structure, J. Atmos. Sci., 52(6), 667-683.
735	Rotunno, R. A. (1992), Synopsis of Coastal Meteorology: A Review of the State of the
736	Science, in Environmental Science in the Coastal Zone: Issues for Further
737	Research, (Proceedings of a retreat held at the J. Erik Jonsson Woods Hole Center
738	Woods Hole, Massachusetts June 25–26), 184 pp, National Academy Press
739	Washington, D.C
740	Skyllingstad, E. D., R. M. Samelson, L. Mahrt, and P. Barbour (2005), A numerical
741	modeling study of warm offshore flow over cool water, Mon. Weather Rev., 133,
742	345–361.
743	Smedman, AS., H. Bergstroem, and B. Grisogono (1997), Evolution of stable internal
744	boundary-layers over a cold sea, J. Geophys. Res., 102, 1091–1099.
745	Smith, S. D., R. J. Anderson, W. A. Oost, C. Kraan, N. Maat, J. DeCosmo, K. B.
746	Katsaros, K. L. Davidson, K. Bumke, L. Hasse, and H. M. Chadwick (1992), Sea
747	surface wind stress and drag coefficients: The HEXOS results, Boundary-layer
748	Meteorol., 60, 109–142.
749	Snyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long (1981), Array measurements
750	of atmospheric pressure fluctuations above surface gravity waves, J. Fluid Mech.
751	102, 1–59.

752	Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag (2006), Modeling the
753	evolution of the atmospheric boundary-layer coupled to the land surface for three
754	contrasting nights in CASES-99, J. Atmos. Sci., 63, 920-935.
755	Sullivan, P.P., J.B. Edson, J.C. McWilliams, C-H. Moeng (2004), Large-Eddy
756	Simulations and observations of wave driven boundary layers, 16th Symposium
757	on Boundary Layer and Turbulence, American Meteorology Society, Portland,
758	ME.
759	Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams (2006), Momentum flux
760	structures and statistics in low-wind marine surface layers: Observations and
761	large-eddy simulations, 27th Conference on Hurricanes and Tropical
762	Meteorology, American Meteorology Society, Monterey, CA.
763	Sun, J., D. Vandemark, L. Mahrt, D. Vicker, T. Crawford, C. Vogel (2001), Momentum
764	transfer over the coastal zone, J. Geophys. Res., 106(D12), 12,437-12,448.
765	Tanner, C. B. and G. W. Thurtell (1969), Anemoclinometer measurements of Reynolds
766	stress and heat transport in then atmospheric surface layer, University of
767	Wisconsin Technical Report ECOM-66-G22-F, 82 pp. [Available from U.S.
768	Army Electronic Command, Atmospheric Sciences Laboratory, Ft. Huachuca, AZ
769	85613.]
770	Vickers, D. and L. Mahrt, Fetch limited drag coefficients, Boundary-layer Meteorol.
771	(1997), 85, 53–79.
772	Vickers, D. and L. Mahrt, Observations of nondimensional shear in the coastal zone
773	(1999), Q. J. R. Meteorol. Soc., 125(559A), 2685–2702.

774	Vickers, D., L. Mahrt, J. Sun, and T. Crawford, Structure of offshore flow (2001), Mon.
775	Weather Rev., 129, 1251–1258.
776	Wolfe, D. E., C.W. Fairall, D.C. Welsh, M. Ratterree, A.W. Brewer, J.M. Intrieri, C.J.
777	Senff, B.J. McCarty, S. Tucker, D.C. Law, A.B. White, and D.E. White (2006),
778	Shipboard multi-sensor merged wind profilers from NEAQS-04: Radar wind
779	profiler, high-resolution Doppler lidar, GPS rawinsonde, J. Geophys. Res., to
780	appear (this issue).
781	Zilitinkevich, S. S., and I. N. Esau (2003), The effect of baroclinicity on the equilibrium
782	depth of neutral and stable planetary boundary layers. Q. J. R. Meteorol. Soc.,
783	129, 3339-3356.
784	

785 Figure Captions

787	Figure 1. The positions of 4 rawinsonde launches relative to the coast are indicated by the
788	red symbols, and the time (UTC) as yy mm dd hh mm is in the title. Wind vectors at 17.5
789	m (red) and 250 m (black) at the launch positions are shown; one degree of longitude
790	corresponds to 3 m/s.
791	
792	Figure 2a. Data corresponds to case (a) in Figure 1: Rawinsonde data: blue diamonds;
793	lidar data: green pluses; lidar data interpolated to sonde-data heights: green Xs; ship-
794	board sonic anemometer, thermometer, hygrometer data: red asterisk; Gradient
795	Richardson numbers using lidar velocity in place of sonde velocity: green pluses.
796	Vertical dashed lines indicate Richardson numbers of 0.1, 0.25, and 0.5
797	
798	Figure 2b. Data correspond to case (b) in Figure 1: See Figure 2a caption.
799	
800	Figure 2c. Data correspond to case (c) in Figure 1. See Figure 2a caption.
801	
802	Figure 2d. Data correspond to case (d) in Figure 1. See Figure 2a caption.
803	
804	Figure 3. Turbulent transfer coefficients as a function of 10-m neutral wind speed. The
805	blue diamonds are individual 1-hr averages. The solid red line is the COARE algorithm.
806	The circles (with 1-sigma median limits) are the medians within wind-speed bins as

807	described by Equation (11). Upper panel (a) is the momentum coefficient; lower panel (b)
808	is the sensible heat coefficient.
809	
810	Figure 4a. Turbulent cospectra as a function of frequency $\overline{w'u'}$ (upper panel), $\overline{w'T'}$
811	(middle panel), and $\overline{w'q'}$ (lower panel). The cospectral values are multiplied by
812	frequency so the graph is area-preserving. Four hours of data are shown (day 198 0000 to
813	0300 UTC; wind speed 7.4-8.0 ms ⁻¹) with a line for each hour.
814	
815	Figure 4b. As in Fig. 4a, but for day 214 0100 to 0300 UTC; wind speed $5.4-7.5 \text{ ms}^{-1}$.
816	
817	Figure 5. Turbulent momentum transfer coefficient as a function of true wind direction:
818	The solid red line is the COARE algorithm. The circles are the medians within wind-
819	direction bins as described by Equation (11); vertical bars are 1-sigma median limits.
820	
821	Figure 6. Bulk meteorological variables as a function of true wind direction: the upper
822	panel is the number of 1-hr observations, the lower panel shows the medians within
823	wind-direction bins for wind speed (solid line), air-sea humidity difference (circles), and
824	air-sea potential temperature difference (dashed line).
825	
826	Figure 7a. Contour plot of the ratio of measured 10-m neutral momentum transfer
827	coefficient to values for the open ocean (COARE3.0). Cape Cod is the feature in the
828	lower left corner and Nova Scotia is in the upper right corner.
829	

Figure 7b. As in Figure 7a but for the sea-air temperature difference.

831

Figure 7c. As in Fig. 7a but for
$$\log Ri_h$$
 at the measurement height (17.5 m).

833

- Figure 8. Turbulent 10-m neutral transfer coefficient variables averaged in wind speed
- 835 bins (momentum flux: circle measured, solid line COARE3.0; sensible heat: diamond
- 836 measured, dashed line COARE3.0). The upper panel shows the transfer coefficients
- computed using Equation (11) as in Fig. 3, the lower panel shows the corresponding
- 838 values of $c_{x10n}^{1/2}$ computed using Equation (5).
- 839

Figure 9. The ratio of measured 10-m neutral momentum transfer coefficient to values for

the open ocean (COARE3.0) as a function of boundary-layer depth: circles are the

842 individual 1-hr values, x's are medians, diamonds are means, and the thick dashed line is

using Equation (13). Different panels are for different $R_{ib}(z)$ threshold values to define *H*:

844 (a) $Ri_{b} = 0.10$, (b) $Ri_{b} = 0.25$, and (c) $Ri_{b} = 0.50$.

845

Figure 10. Contour plot of the Ozone deposition velocity using the model of *Fairall et al.*

[2006]: upper panel, u_* from COARE3.0 and lower panel, u_* from direct measurement.

Figure 1. The positions of 4 rawinsonde launches relative to the coast are indicated by the red symbols, and the time (UTC) as yy mm dd hh mm is in the title. Wind vectors at 17.5 m (red) and 250 m (black) at the launch positions are shown; one degree of longitude corresponds to 3 m/s. Cape Cod is the feature in the lower left corner and Nova Scotia is in the upper right corner.

- 861 862
- 863
- 864

Figure 2a. Data corresponds to case (a) in Figure 1: Rawinsonde data: blue diamonds;

866 lidar data: green pluses; lidar data interpolated to sonde-data heights: green Xs; ship-

867 board sonic anemometer, thermometer, hygrometer data: red asterisk; Gradient

868 Richardson numbers using lidar velocity in place of sonde velocity: green pluses.

869 Vertical dashed lines indicate Richardson numbers of 0.1, 0.25, and 0.5

- 870
- 871

893 894

Figure 3. Turbulent transfer coefficients as a function of 10-m neutral wind speed. The 895 blue diamonds are individual 1-hr averages. The solid red line is the COARE algorithm. 896 The circles (with 1-sigma median limits) are the medians within wind-speed bins as 897 described by Equation (11). Upper panel (a) is the momentum coefficient; lower panel (b) 898 is the sensible heat coefficient.

902 Figure 4a. Turbulent cospectra as a function of frequency $\overline{w'u'}$ (upper panel), $\overline{w'T'}$

903 (middle panel), and $\overline{w'q'}$ (lower panel). The cospectral values are multiplied by

904 frequency so the graph is area-preserving. Four hours of data are shown (day 198 0000 to

905 0300 UTC; wind speed 7.4-8.0 ms⁻¹) with a line for each hour.

909

Figure 4b. As in Figure 4a, but for day 214 0100 to 0300 UTC; wind speed 5.4-7.5 ms⁻¹.

919 The solid red line is the COARE algorithm. The circles are the medians within wind-

920 direction bins as described by Equation (11); vertical bars are 1-sigma median limits.

927 Figure 6. Bulk meteorological variables as a function of true wind direction: the upper

928 panel is the number of 1-hr observations, the lower panel shows the medians within

929 wind-direction bins for wind speed (solid line), air-sea humidity difference (circles), and

- 930 air-sea potential temperature difference (dashed line).

- 935
- 937

coefficient to values for the open ocean (COARE3.0).

- 942 943

- 947

- 949 950

- 955 956
- 957
- 958

959 Figure 8. Turbulent 10-m neutral transfer coefficient variables averaged in wind speed

960 bins (momentum flux: circle – measured, solid line – COARE3.0; sensible heat:

961 diamond – measured, dashed line – COARE3.0). The upper panel shows the transfer

962 coefficients computed using Equation (11) as in Figure 3, the lower panel shows the

963 corresponding values of $c_{x10n}^{1/2}$ computed using Equation (5).

970

971

972 Figure 9. The ratio of measured 10-m neutral momentum transfer coefficient to values for

974 individual 1-hr values, x's are medians, diamonds are means, and the thick dashed line is

975 using Equation (13). Different panels are for different $R_{ib}(z)$ threshold values to define *H*:

976 (a) $Ri_b = 0.10$, (b) $Ri_b = 0.25$, and (c) $Ri_b = 0.50$.

979 Figure 10. Contour plot of the Ozone deposition velocity using the model of Fairall et al. [2006]: upper panel, u_* from COARE3.0 and lower panel, u_* from direct measurement.