Ship observations in the southeast Pacific confront coupled model heat budgets
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Introduction Simulations have too few clouds Surface fluxes imply subsurface cooling

Coupled models in the southeastern tropical Pacific often have +1°C Models have too strong net surface radiation because they have too In Fig. 6 observed and model heat budgets are ranked in order of the
SST errors below the stratocumulus cloud deck. Warmer SST is em- few clouds (0.45 compared to 0.9, Fig. 3). On the whole, simulated solar radiation absorbed at the surface for October along 20°S, 75-
pirically related to lower cloud fraction; models simulating this inter- clouds have approximately the right cloud radiative forcing when 85°W. Because of the lack of clouds, the least solar forcing is 30 W
action have a positive feedback toward higher SST and lower cloud present. Longwave cloud forcing offsets half of the 120 W m solar m higher than the observations, but clouds are not the only model
fraction. To understand model SST errors, model surface heat bud- cloud forcing in observations, and its error offsets about half of solar error. The upper ocean gains a net heat flux of 30 W m= beyond its
gets are compared to three optimized turbulent flux analyses and ship cloud forcing error in models. change in SST, implying that ocean subsurface heat transport cools

the mixed layer and SST (shown by the residual).

observations from 8 research cruises along 20°S, 75-85°W.
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