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[1] The accuracy of the SeaWinds scatterometer’s vector winds is assessed through
comparison with research vessel observations. Factors that contribute to uncertainty in
scatterometer winds are isolated and examined as functions of wind speed. For SeaWinds
on QuikSCAT, ambiguity selection is found to be near perfect for surface wind speed
(w) > 8 m s�1; however, ambiguity selection errors cause directional uncertainty to exceed
20� for w < �5 m s�1. These average uncertainties for wind speed and direction are found
to be 0.45 m s�1 and 5� for the QSCAT-1 model function and 0.3 m s�1 and 3� for
the Ku-2000 model function. The QuikSCAT winds are examined as vectors through
two new approaches. The first is a method for determining vector correlations that
considers uncertainty in the comparison data set. The second approach is a wind speed-
dependent model for the uncertainty in the magnitude of vector errors. For the
QSCAT-1 (Ku-2000) model function this approach shows ambiguity selection dominates
uncertainty for 2.5 < w < 5.5 m s�1 (0.6 < w < 5.5 m s�1), uncertainty in wind speed
dominates for w < 2.5 m s�1 and 5.5 < w < 7.5 m s�1 (w < 0.6 m s�1 and 5.5 < w < 18 m
s�1), and uncertainty in wind direction (for correctly selected ambiguities) dominates for
w > 7.5 m s�1 (w > 18 m s�1). This approach also shows that spatial variability in
the wind direction, related to inexact spatial co-location, is likely to dominate rms
differences between scatterometer wind vectors and in situ comparison measurements for
w > 4.5 m s�1. The techniques used herein are applicable to any validation effort with
uncertainty in the comparison data set or with inexact co-location. INDEX TERMS: 3339
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1. Introduction

[2] Ocean vector winds, critical for determining the
dynamical forcing of the ocean, are sensitive indicators of
the surface manifestation of over-ocean atmospheric phe-
nomena. Applications of NASA scatterometer (NSCAT)
observations demonstrated the remarkable uses for plentiful
high quality wind vector observations: gap flow [Bourassa
et al., 1999b; Chelton et al., 2000a, 2000b], pressure fields
[Foster et al., 1999; Zierden et al., 2000], forcing ocean
models [Milliff et al., 1999a; Verschell et al., 1999], and
studies in regions with sparse in situ coverage [Bourassa et
al., 1999b; Milliff et al., 1999b; Chelton et al., 2000a,
2000b]. SeaWinds on QuikSCAT was commissioned to fill
the untimely gap in wide-swath ocean vector wind observa-
tions due to the catastrophic failure of the Advanced Earth
Observing Satellite (ADEOS-1), which carried NSCAT.

Another SeaWinds instrument will be operational aboard
ADEOS-2 in 2003.
[3] The accuracy of vector winds from the SeaWinds

scatterometer on the QuikSCAT satellite is assessed through
comparison with observations from research vessels. Differ-
ences in sampling characteristics are examined to select an
averaging scheme for the ship data that minimizes the
differences between the two sets of observations. Sources
of difference between satellite and in situ observations are
separated into six independent components: rain contami-
nation, ambiguity selection, scatterometer wind direction
errors for correctly selected ambiguities, scatterometer wind
speed errors, errors in the surface comparison observations,
and spatial variability due to inexact co-location. Rain-
related errors are not directly considered in this study
because they are a function of wind speed and rain rate
[Weissman et al., 2000]; hence rain-related errors vary on an
event to event bases, and they cannot be treated as random
errors. Consideration of the last two components is essential
to an accurate estimate of uncertainty in all situations were
there is no absolute standard of truth and when the compar-
ison data sets cannot be exactly co-located. Use of similar
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techniques in the validation of other sensors should result in
much better estimates of uncertainty.
[4] The accuracy of QuikSCAT wind vectors is examined

through two new approaches. The first is a method for
determining vector correlations that explicitly considers
errors and uncertainty in the comparison measurements.
Correlation analysis typically implicitly considers one set
of observations as errorless (truth) and examines variance
relative to this truth (i.e., differences are measured perpen-
dicular to the axis of the comparison data). Such correlation
techniques underestimate the fraction of variance explained
by a linear relation between the two data sets. This problem
can be a serious for instruments with accuracy that is similar
to or better than that of comparison measurements.
[5] The second approach to vector analysis is a wind

speed-dependent model of vector uncertainty. This approach
is valid only for wind speeds greater than a threshold that is
a function of the uncertainties in both wind speed observa-
tions [Freilich, 1997]. Below this threshold (several times
the larger uncertainty), random component errors are a
better model of observational uncertainties. However, we
will show that random component errors are inconsistent
with results for 10 m wind speeds w10 > 7 m s�1. In our
model of vector uncertainty, errors are modeled as a non-
isotropic Gaussian distribution about the head of the wind
vector. The uncertainty in the magnitude of vector errors
(i.e., the spread about the head of the wind vector) is
modeled in terms of uncertainties in ambiguity selection
errors, wind direction uncertainty for correctly selected
ambiguities, and wind speed uncertainty. The relative
importance of these terms is shown and compared to
variability resulting from inexact spatial co-location with
the surface measurements. The results demonstrate the high
quality of SeaWinds vector winds.

2. Data

[6] The remotely sensed winds will be validated through
comparison with in situ wind measurements. The remotely
sensed winds were from the SeaWinds scatterometer on the
QuikSCAT satellite, using the QSCAT-1 and Ku-2000
geohysical model functions (GMFs). The QSCAT-1 scatter-
ometer data were obtained from the NASA Physical Ocean-
ography Distributed Active Archive Center (PO.DAAC) at
the Jet Propulsion Laboratory/California Institute of Tech-
nology, and the Ku-2000 scatterometer data was provided
by Frank Wentz and Deborah Smith at Remote Sensing
Systems. The winds from both model functions were
considered in this study because both are likely to be used
by the community. Knowledge of the relative strengths and

weaknesses will be valuable to almost all users, and should
help the developers of these data sets improve their prod-
ucts. In situ observations were gathered from automated
weather systems on research vessels. The ship observations
are available through the WOCE Data Archive Center
(DAC) for surface meteorology at Florida State University.
The ship observations represent many ocean and atmos-
pheric conditions (Table 1); consequently, taken over the
whole comparison set, there is unlikely to be a bias in these
findings due to location (nor is there indication of such
biases), a specific sea state, or atmospheric stability. There
were 505 ship and SeaWinds co-locations that meet all our
quality control constraints. The observed wind speeds
ranged from 2 to 20 m s�1.

2.1. Scatterometer Winds

[7] Scatterometers are unique among satellite remote
sensors in their ability to determine surface wind speed
and direction. Microwaves are scattered by short water
waves (capillary and ultragravity waves), which respond
quickly to changes in winds. The backscatter cross section
(the fraction of transmitted energy that returns to the satel-
lite) is a function of wind speed and wind direction relative
to the orientation of the scatterometer. Scatterometers oper-
ate by acquiring multiple spatially and temporally co-located
measurements of backscattered power from different view-
ing geometries. The known relationship between cross
section, wind velocity, and viewing geometry is then used
to estimate wind speed and direction [Naderi et al., 1991].
[8] Ku band scatterometers (NSCAT and SeaWinds) are

calibrated to ‘‘equivalent neutral wind speeds’’ [Liu and
Tang, 1996; Verschell et al., 1999; Mears et al., 2001] at a
height of 10 m above the local mean water surface.
Equivalent neutral wind speeds differ from wind speeds
that would be measured by anemometers after adjustment to
a height of 10 m. These differences are a function of
atmospheric stratification and are usually <0.5 m s�1 (here-
after equivalent neutral winds will be referred to as winds).
For this validation, a boundary layer model [Bourassa et al.,
1999a] is used to adjust the research vessel winds to 10 m
equivalent neutral winds.
[9] The relationship between backscatter cross section

and relative wind direction, at fixed wind speed and
incidence angle, is sinusoidal [Naderi et al., 1991; Wentz
and Smith, 1999]. Consequently, the measure of misfit for
the satellite relative wind direction is sinusoidal in wind
direction, which typically results in 1–4 local minima (see
Naderi et al. [1991] for a detailed discussion). Ideally, the
best fit corresponds to the correct direction. Noise in the
observed backscatter cross sections can alter the depend-

Table 1. Vessels Used in SeaWinds on QuikSCAT Validation and the Range of U10EN and Dimensionless Atmospheric

Stability (z/L; Where z = 10 m, and L is the Obhukov Scale Length) for Co-located Observations

Ship Location Time
Range of U10EN,

m s�1
Range of Atmospheric

Stabilities (z/L)

R/V Atlantis Gulf of Alaska July and Aug. 1999 4–10 �0.44 to 0.01
RSV Aurora Australis Southern Ocean July to Sept. 1999 4.5 �0.04
R/V Knorr North and equatorial Atlantic Jan.–June 2000 1–16 �8.1 to �0.01
R/V Melville tropical Pacific July–Nov. 1999 2–11 �9.2 to �4.5
R/V Meteor North Atlantic July 1999 to Aug. 2000 1�16 �3.5 to �4.3
R/V Oceanus North Atlantic July–Dec. 1999 and April 2000 2�13 �2.7 to �0.37
R/V Polarstern North Atlantic July 1999 to June 2000 1�19 �8.3 to 5.3
R/V Ronald Brown tropical Pacific July–Sept. 1999 1–7 �6.5 to �0.09
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ence of misfit on relative wind direction and thereby cause
incorrect directions (also known as aliases) to be chosen.
For previous scatterometers (with fixed beam antennas), the
second best fit is typically in the opposite direction, and the
third and fourth minima are typically in directions roughly
perpendicular to the wind direction. For NSCAT, the results
of a median filter were compared to each of the ambiguous
directions to determine which ambiguity was selected. This
process requires an initial guess at the correct ambiguity:
the ambiguity (of the two most likely ambiguities) with the
direction that was the closest match to the direction from
the National Centers for Environmental Prediction (NCEP)
2.5� analysis [Shaffer et al., 1991]. The use of an analysis
with coarse resolution compared to the scatterometer obser-
vations can result in erroneous ambiguity selection. How-
ever, this approach leads to more accurate ambiguity
selection than the use of the median filter alone [Wentz
and Smith, 1999].
[10] NSCAT had many similarities to SeaWinds in both

design and processing of the backscatter to winds. Compar-
isons of NSCAT winds to in situ observations include data
from buoys [Graber et al., 1997; Caruso et al., 1999; Atlas
et al., 1999; Freilich and Dunbar, 1999], volunteer observ-
ing ships [Atlas et al., 1999], and research vessels [Bour-
assa et al., 1997]. These studies investigated the accuracy of
wind speed, wind direction (usually for correctly selected
ambiguities), and vector winds [Freilich and Dunbar,
1999], as well as the likelihood of correct ambiguity
selection. They determined the RMS difference between
NSCAT and in situ winds, which provides an upper limit on
uncertainty in NSCAT winds: substantial fractions of the
differences are likely due to uncertainty in the comparison
measurements and space-time differences in the co-located
observations. An additional cause of differences is geo-
physical: ship and buoy winds are usually Earth relative,
whereas scatterometer winds are surface (current) relative.
These errors are significant in areas of strong currents
[Cornillon and Park, 2001; Kelley et al., 2001]. NSCAT
RMS differences were �1.2 m s�1 [Freilich and Dunbar,
1999; Freilich and Vanhoff, 2002], 13� for correctly chosen
ambiguities (and w > 4 m s�1); [Bourassa et al., 1997], with
90% accuracy in ambiguity selection [Gonzales and Long,
1999]. Most of the errors in ambiguity selection occurred
for w < 4 m s�1, with a much smaller fraction for 4 < w < 6
m s�1, and a nearly negligible fraction for w > 8 m s�1

[Bourassa et al., 1997; Freilich and Vanhoff, 2002].
[11] The SeaWinds scatterometer uses a new radar design

with two conically rotating pencil beams. These beams have
incidence angles of 46.25� and 54�. The inner beam has a
radius of 707 km, and the outer beam has a radius of 900
km. Individual footprints are binned into 25 � 25 km cells,
with up to 76 cells across the satellite swath (Figure 1). This
geometry is expected to result in relatively accurate obser-
vations between �200 and 700 km from nadir, with the
greatest uncertainties farthest away and closest to nadir.
Typical 25 � 25 km vector wind cells contain the centers of
10–25 25 � 35 km oval radar footprints. All footprints with
centers within the cell are applied to determining the winds,
which results in radar returns being gathered from an area of
�50 � 60 km2. We will show that the scatterometer’s
sampling characteristics are better matched to winds on
substantially smaller spatial scales.

[12] SeaWinds’ new beam geometry results in much more
diverse solution geometries. Solutions from two ambiguity
removal techniques are available in the JPL’s QuikSCAT
dataset. The standard product uses the ambiguity selection
technique applied to NSCAT. The second product, Direction
Interval Retrieval THreshold (DIRTH) [Huddleston and
Stiles, 2000], attempts to better account for the more
complex SeaWinds solution geometry. DIRTH was devel-
oped to reduce the relatively large uncertainty near nadir
and at the edges of the swath. The DIRTH vector field is
smoother than the standard product, thereby reducing the
correlation to point observations (which include small-scale
variability). Consequently, this analysis will be confined to
the standard product.
[13] Rain can have a substantial influence on SeaWinds

observations. Rain influences radar returns through three
processes: backscatter from the rain, attenuation of the
signal passing through the rain [Moore et al., 1999], and
modification of the surface shape by raindrop impacts
[Bliven et al., 1993; Sobieski and Bliven, 1995; Sobieski
et al., 1999]. The influence of these considerations on the
accuracy of winds is a function of scatterometer design.
Rain has a greater influence at large incidence angles (the
beam interacts with more rain) and for Ku band (NSCAT
and SeaWinds) rather than C band (ERS-1/2). Modeling
these problems is a concern of ongoing research; however, a
theoretical basis for modeling the errors now exists [Weiss-
man et al., 2000] and should help develop retrieval algo-
rithms that better account for rain.
[14] Several rain flags are being developed based on

scatterometer observations, coincident radiometer rain rates
(from other satellites) or a combination of these data. Four
such flags are examined herein. The normalized objective
Function (ENOF) flag [Mears et al., 2000] is based on

Figure 1. Example of a SeaWinds observation swath
(QSCAT-1 GMF and MUDH rain flag) for 09:48 to 09:51
UTC on September 20, 2000. Only selected ambiguities are
shown, and there is no smoothing. Vectors identified as rain
contaminated are black. Arrow lengths are proportional to
wind speed. Accuracy is dependent on across-swath position.
We divide the swath into three categories that are symmetric
about nadir (solid line): inner swath (<200 km from nadir;
cells 31–46), middle swath (cells 9–30 and 47–68), and
outer swath (>700 km from nadir; cells 1–8 and 69–76). The
borders of these regions are shown by the shaded lines.
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variability in the normalized radar cross sections within a
wind cell, calculated relative to the value consistent with the
selected wind vector. The multidimensional histogram
(MUDH) flag [Huddleston and Stiles, 2000] is based on a
probability space determined from four of six parameters
that are sensitive to rain. Both the ENOF and MUDH rain
flags are in JPL’s data set. The SeaWinds data set available
from Remote Sensing Systems (RSS) contains four rain
flags, well designed for combination into a single rain flag
that can be tailored to an application. In this case, the
following flags and criteria were used to produce a single
flag for rain: (1) Ku-2000 ‘‘quality of retrieval’’ flag (iclass)
= 0 (no retrieval), or (2) Ku-2000 scatterometer-based flag
(rflag_scat) = 1, or (3) Ku-2000 fit to GMF flag (sos_all) >
1.9, or (4) Ku-2000 radiometer-based (rad_rain) flag > 0.15
and difference in temporal co-location <30 min. These four
flags are combined as suggested by RSS, with the exception
of condition (1), which is more generous than suggested,
and is similar to the flags in JPL’s product. We examine this
single (multisource) rain flag as well as the RSS rain flag
based solely on co-locations with radiometers on other
platforms (SSM/I and TMI). The key shortcoming of a rain
flag based solely on off-board devises is the large fraction of
wind observations that were not co-located with rain obser-
vations. Only 50% of QuikSCAT and ship co-locations were
co-located (3 hours and 50 km) with SSMI observations;
and the co-location in time must be much closer than 3
hours due to the rapid variability in rain rates.

2.2. Research Vessel Winds

[15] Wind direction measurements from research vessels
have proven to be the most consistently accurate source of
in situ wind direction [Bourassa et al., 1997]. True winds
(i.e., speeds relative to the fixed Earth and directions
relative to true north) that are correctly calculated from
ship-relative observations [Smith et al., 1999], do not suffer
from the intermittent quality of buoy winds found by
Freilich and Dunbar [1999] or the large uncertainties in
VOS observations [Pierson, 1990; Kent et al., 1998].
Preliminary comparisons between VOS and NSCAT winds
found that the RMS differences in wind speeds that were
roughly three times as large as the differences with quality-
controlled research vessel winds (V. Zlotnicki and R. Atlas,
personal communications, 1997). Research vessel data have
errors due to insufficient maintenance and erroneous calcu-
lation of true (Earth relative) winds [Smith et al., 1999].
Automated quality control and limited visual inspection
[Smith et al., 1996] identified and flagged serious errors.
The most common problem, incorrect calculation of true
winds from ship-relative winds, was solved by recalculation
of the true winds [Smith et al., 1999]. Another advantage of

ship observations over buoy observations is that the obser-
vation height is above the regime where wave motions
modify the log wind profile [Large et al., 1995], which is
not the case for buoys in heavy seas. In very stable air, ship
(and occasionally buoy) anemometers can be above the
height of the log profile layer; these occurrences are rare and
usually restricted to vessels with very high masts (S. Good-
rick, personal communication, 1998). Research ships record
the temperature and humidity information needed as input
to a boundary layer model [Bourassa et al., 1999a] to adjust
the anemometer measurements to a height of 10 m (the
height to which the scatterometer winds are calibrated)
equivalent neutral winds. Errors in height adjustment are
small compared to other shortcomings of ship observations.
[16] The major shortcoming of ship observations is the

impact of flow distortion on wind directions and speeds
[Yelland et al., 1998; Kent et al., 1998; Taylor et al., 1999].
Flow distortion errors greatly exceed the uncertainty in mean
winds (e.g., averaged over 5 min) sampled in 60 s intervals.
This problem is reduced by eliminating winds from ship-
relative angles for which the winds would have passed
through or near the superstructure, and through quality
control of the observations. The worst cases of flow dis-
tortion are eliminated through our constraints on ship-rela-
tive wind directions (±30� about the aft for bow mounted
sensors, and within ±60� of the port or starboard for side
mounted sensors). Much of the wind observation record
from the R/V Ronald Brown were discarded during our
quality control of the ship data (prior to comparison with the
scatterometer); most cruises during this time period suffered
from severe flow distortion (C. Fairall, personal communi-
cation, 2000). Nevertheless, flow distortion causes biases
that vary from ship to ship, depend on anemometer location,
and vary cruise to cruise due to repositioning of equipment
[Taylor et al., 1999]. These biases are dependent on ship-
relative wind direction, and appear as random noise in the set
of co-located wind vectors; however, observations from a
single leg of a cruise could have directional biases due to
little variability in ship-relative wind direction. The bias in
QuikSCAT speed (relative the ships used in this study; Table
2) ranges from 0.0 to 0.4 m s�1 for the QSCAT-1 GMF (�0.4
to + 0.7 m s�1 for the Ku-2000 GMF), with most speed
biases being within ±0.2 m s�1. One potential application of
high quality scatterometer data is the estimation of biases
due to flow distortion. In less than a year of open-ocean
operations, there would be sufficient observations (an aver-
age of two per day for QuikSCAT) to examine the problem
as a function of wind speed and ship-relative wind direction.
[17] Another minor shortcoming of ship data is that 1-min

sampling intervals are insufficient to remove averaging
errors associated with ship acceleration. These errors are

Table 2. Biases (Scatterometer Minus Ship) in Speed (m s�1; for All Selected Ambiguities) and Direction

(Degrees, in Meteorological Direction Convention; for Correctly Selected Ambiguities) for Selected Research

Vessels

Biases Atlantis Melville Meteor Oceanus Polarstern All Ships

QSCAT-1 speed 0.2 ± 0.2 0.18 ± 0.1 0.06 ± 0.1 0.4 ± 0.3 0.0 ± 0.06 0.06 ± 0.05
Ku-2000 speed 0.7 ± 0.07 �0.4 ± 0.3 �0.18 ± 0.02 �0.12 ± 0.1 �0.14 ± 0.02 �0.01 ± 0.01
QSCAT-1 direct. 5 ± 3 1.8 ± 1 �4.6 ± 1 �3.4 ± 3 �2.3 ± 1 �1.6 ± 0.7
Ku-2000 direction 10 ± 2 . . . �0.7 ± 0.2 �4.4 ± 2 �4.6 ± 0.2 �1.99 ± 0.09

Uncertainties correspond to one standard deviation.
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due to averaging nonlinear equations where the ship’s speed
and/or direction are changing. For research vessels, the
errors in speed during the first few minutes of acceleration
are typically 1–2 m s�1 [Smith et al., 1999]. These errors
are sufficiently large and frequent enough to have caused a
statistically significant increase in RMS differences between
NSCAT and research vessels wind speeds [Smith et al.,
1999]. In 1999, the wind calculation on the Polarstern was
changed to process true winds every 5 s and average them
every minute. The acceleration-related (averaging) errors
are not evident in the winds recorded by this system. Ship
winds associated with excessive ship acceleration are elim-
inated through a criterion developed by Smith et al. [1999]:
the magnitude of the sum of variances in the component
ship’s velocities must be less than 1.0 m2 s�2.

2.3. Co-Locations and Matching Sampling
Characteristics

[18] The uncertainty in the comparison measurements at
the location of the satellite observation is reduced by
restricting this analysis to a set of coincident satellite and
high quality research vessel observations. The differences in
the central (mean) observation times are less than 20 min
(usually <30 s), and the largest differences in location are
<12.5 km (half the scatterometer cell width). The co-located
winds are also quality controlled to remove gross errors in
wind speeds (presumably related to unflagged rain) follow-
ing the criteria of Freilich and Dunbar [1999]. All scatter-
ometer data flagged as rain contaminated are discarded, as
are those with missing rain flags. The estimated uncertain-
ties are dependent on the choices of co-location criteria and
rain flag. There are several SeaWinds-based rain flags in
use, as well as a flag based on instruments (SSM/I and TMI)
aboard other satellites. Each of these rain flags will be

considered in various aspects of this evaluation of SeaWinds
accuracy.
[19] The high temporal resolution of the research vessel

observations provides the opportunity to investigate the
optimal averaging scheme to match a series of point
observations with the scatterometer observations. There
are typically 8–20 radar cross-section observations (foot-
prints) that are combined in each 25 � 25 km scatterometer
wind cell (Figure 2). The distribution of footprints within
the cell is nonuniform, with the average observation density
greatest at the center of the cell and falling by a factor of
four at the corners of the cell. The time over which the radar
cross sections are gathered is also a function of the position
across the satellite track. The averaging period is near
instantaneous at the swath edge and increases to �4 min
near nadir. These differences suggest that the optimal
averaging period for ship data might be a function of
cross-track position, which is confirmed in our results
(Figure 3). It is also apparent (Figure 3) that the choice of
sampling volume for the ship data can influence the
comparison. A preliminary examination showed that aver-
aging over fixed times (examined over a wide range of time
intervals) had little influence on RMS difference or vector
correlations for most wind speed ranges. For high wind
speeds, short averaging times (several minutes) clearly
resulted in smaller RMS differences; for low wind speeds
much longer averaging times (30+ min) were superior. The
change in optimum averaging time with wind speed results
can be anticipated from Taylor’s hypothesis [Taylor, 1938].
Therefore, we examined the influence of the ship’s sampling
‘‘volume’’ (equivalent to a length scale for point observa-
tions) as estimated from the ship relative wind speeds. For
most parts of the swath, there is a local or global minimum

Figure 2. Example of backscatter footprints within a
SeaWinds vector wind cell. Each oval represents one
backscatter observation.

Figure 3. Vector correlation (section 5.2) as a function of
position across the swath and lengthscale for the ship’s
sampling volume. The sampling volume is estimated from
the ship-relative wind speeds. The spatial co-location
criterion is 8 km.
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at a length scale at or near 5 km. This result is not directly
indicative of the resolution of the scatterometer: it indicates
a spatial-temporal scale where the balance between signal
and noise in the research vessel observations result in the
best matches the scatterometer winds. Averaging over this
length scale resulted in slightly smaller (at least 10%) RMS
differences compared to any fixed averaging time. The ship
observations were averaged over a sampling volume of
approximately 5 km for the remainder of this study.

3. Ambiguity Selection Accuracy

[20] The patterns of wind vector cell ambiguous solutions
are more diverse for a SeaWinds instrument than a fixed
beam instrument. For SeaWinds, the solution geometry is
also a function of the distance from nadir (Figure 1). For
parts of the swath covered by both beams but not too close
to nadir (200–700 km from nadir, hereafter referred to as
the middle swath), the patterns of ambiguities are similar to
those found with NSCAT (assuming a similar GMF): there
are usually large angles (>30�) between the ambiguities.
However, for the outer swath (>700 km from nadir) and the
inner swath (<200 km from nadir) pairs of ambiguities are
more likely to be <30� apart. For such situations, difference
between satellite and in situ measurements makes it difficult
to determine which of the similar directions is correct. Pairs
of SeaWinds ambiguities are more likely than NSCAT
ambiguities to converge to a single solution, resulting in
two ambiguous solutions rather than four. We examine only
gross errors in ambiguity selection: all selected ambiguities
within 45� of the surface measurements are considered to be
correctly chosen.
[21] Ambiguity selection errors tend to occur in areas of

low wind speed, areas with large change in wind direction
between adjacent scatterometer cells (fronts and low pres-
sure systems), and near rain. The fraction of correctly
selected ambiguities is also a function of wind speed and
across-swath location. The accuracy of SeaWinds ambiguity
selection skill, averaged across the swath (Figure 4a) is
compared to the skill in the 25 and 50 km resolution
NSCAT products. QuikSCAT ambiguity selection skill is
excellent for w > 4 m s�1 and is a great improvement over
NSCAT for w < 4 m s�1. Ambiguity selection skill is also a
weak function of cross-swath position (Figure 4b): the most
accurate QSCAT-1 ambiguity selection occurs away from
nadir and away from the edges of the swath. This result is
consistent with visual inspection of the SeaWinds swaths,
which have greater cross-swath variability near nadir and
near the swath edges. Ambiguity selection skill for the Ku-
2000 GMF is similar in magnitude to QSCAT-1 skill;
however, it has much less across-swath dependence. The
main difference is in the inner swath, where Ku-2000 skill is
superior to the QSCAT-1 skill.
[22] The limited geographic distribution of wind speeds

sampled from the research vessels is not representative of
the global distribution sampled by QuikSCAT; therefore, the
fraction of correctly selected ambiguities based on ship
observations (91.8% for QSCAT-1 and 93.0% for Ku-
2000) will differ from the global average. A better estimate
of this global percentage is determined by applying the
observed wind speed dependency to the distribution of wind
speed observed by QuikSCAT. This approach results in an

estimate of global accuracy at 92.6% for the QSCAT-1
GMF, and 93.3% for the Ku-2000 GMF.

4. Biases and RMS Differences

[23] Biases relative to individual ships are small (Table
2), indicating that regional biases are small. Trends in wind
speed biases as a function of wind speed are also small
(Figure 5). The apparent scatterometer overestimation for
low wind speeds (w < 3 m s�1) has been explained
[Freilich, 1997; Freilich and Dunbar, 1999] as due to
uncertainty in positive scalar quantities. The small bias
(<1%) at high wind speeds could be due to flow distortion:

Figure 4. Ambiguity selection as a function of wind speed
for (a) four ku-band scatterometer products (from left to
right): the 25 and 50 km NSCAT products, the QSCAT-1
product, and the Ku-2000 product. NSCAT co-locations
were within 25 km, whereas QuikSCAT co-locations are
within 12.5 km. (b) QSCAT-1 ambiguity selection (applying
the ENOF rain flag) is also a function of cross-swath
position (from left to right): outer swath, middle swath, and
inner swath.
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the source of this bias cannot easily be verified [Thiebaux,
1990; Taylor et al., 1999]. Flow distortion biases cannot be
corrected for at this time, as the corrections are ship-
dependent and costly to assess [Yelland et al., 1998; Taylor
et al., 1999]. The magnitudes of the remaining wind speed
biases are in the expected ranges for flow distortion prob-
lems. There is no strong evidence of a substantial systematic
error in the QuikSCAT wind speeds.
[24] Biases in wind directions are slightly more difficult

to assess due to the 0/360 breakpoint. This problem is
solved modifying one set of directions:

qR ! qR þ 360�; when qR � qI < �180� ð1Þ

qR ! qR � 360�; when qR � qI > 180�; ð2Þ

where qR is the remotely sensed direction, and qI is the in
situ direction. The bias for the ensemble of all ships is <2�
(scatterometer minus ship directions; meteorological direc-
tion convention).

Figure 5. Scatterometer wind speed (QSCAT-1 model
function; for correctly selected ambiguities) versus research
vessel wind speed. Cross-swath dependence is weak for a
12.5 km co-location criterion. The line indicates a perfect fit.

Figure 6. (opposite) Scatterometer wind (QSCAT-1 model
function) direction versus research vessel wind direction for
various region of the swath: (a) outer swath, (b) middle
swath, and (c) near-nadir swath. The solid line indicates a
perfect fit, the dashed lines are 90� errors, and the dotted
lines are 180� errors. The symbols indicate wind speed
ranges of (pluses) 0–4 m s�1, (asterisks) 4–6 m s�1,
(diamonds) 6–8 m s�1, (point-up triangles) 8–10 m s�1, and
(point-down triangles) 10–20 m s�1. The statistics apply
only to correctly selected ambiguities: those within 45� of
the ideal line.
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[25] Scatterplots of directions (Figure 6) are also extremely
useful for visualizing random errors and errors in ambiguity
selection. For previous scatterometers, ambiguity selection
errors typically resulted in directional errors near 180� (most
likely) or ±90�, and they were easily identified. With QuikS-
CAT’s scanning geometry, only gross errors (herein differ-
ences >45�) are easily identified.
[26] Root mean square differences between satellite obser-

vations and surface measurements have been a common
method for establishing an upper limit on the uncertainty of
the satellite observations. These differences are shown
(Table 3) for each GMF and rain flag, with all selected
ambiguities, which provides an upper limit on uncertainty for
the bulk of users who do not have the luxury of improving or
testing the ambiguity selection. The second condition
restricts the examination to correctly selected ambiguities
(Table 3), which is more useful for identifying the independ-
ent contributions to the total uncertainty. The importance of
successful ambiguity selection can be seen in Figures 7a and
7b and Table 3. The RMS differences for wind speed have
little sensitivity to the restriction of correctly selected ambi-
guities: the RMS difference increasing �0.1 m s�1 when
gross ambiguity errors are included in the comparison set. In
contrast, direction-related differences are greatly influenced
by the restriction of correctly selected ambiguities: for w < 6
m s�1, RMS differences in wind direction (Figure 7b)
increase by >100% when gross ambiguity selection errors
are considered. Despite ambiguity selection that is quite
effective relative to other scatterometers, errors in ambiguity
selection make a major contribution to the uncertainty in
QuikSCAT vector winds (particularly for w < 6 m s�1).
[27] The choice of rain flag influences the misfit between

ship and satellite winds (Table 3). Comparison of RMS
differences for selected ambiguities shows that the radio-
meter rain flag is more effective than MUDH or ENOF for
identification of rain contaminated observations. It also
eliminates many rain-free observations where no radiometer
observations were coincident with scatterometer observa-
tions. The rightmost columns in Table 3 show the QSCAT-1
and Ku-2000 RMS differences with the same radiometer
rain flag. The Ku-2000 RMS differences are smaller, despite
the larger biases (Table 2). The Ku-2000 improvements in
directional accuracy (seen in the smaller uncertainties) are
apparent in the relatively large improvements to accuracy of
zonal and meridional wind components (Table 3). The Ku-
2000 RMS differences for the product with all rain flags
strongly suggest that rain-contaminated data without coin-
cident radiometer observations are occasionally classified as

rain free. The improved rain flags and directions in the Ku-
2000 product result in a substantial reduction in RMS
differences compared to the QSCAT-1 model function.
[28] For correctly selected ambiguities (defined herein as

within 45� of the comparison data), the uncertainty has
relatively little dependence on wind speed (Figures 7a

Figure 7. (opposite) Uncertainties in SeaWinds (a) wind
speed and (b) direction as functions of ship wind speed for
several QSCAT wind products: QSCAT-1 with MUDH rain
flag (first column); Ku-2000 (second column); and Ku-2000
with radiometer rain flag (third column). The background
shading indicates three difference measures of uncertainty:
rms differences for all selected ambiguities (white), rms
difference for correctly selected ambiguities (light shading),
and PCA derived uncertainty (dark shading). Combinations
of speed and direction errors are shown in (c) the rms
average of vector wind difference magnitudes (juscat �
ushipj) as a function of wind speed.
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and 7b), and that dependency could be a consequence of
minor (<45�) errors in ambiguity selection. The RMS
magnitude of the wind vector differences (Figure 7c) has
a stronger dependence on wind speed: there is a local peak
for 4 > w > 6 m s�1, and for w > 10 m s�1 it increases with
increasing wind speed (rapidly for the QSCAT-1 model
function). This is a particularly useful diagnostic quantity
because it can be used to distinguish between two models
for SeaWinds uncertainty. For low wind speeds (w < 4 m
s�1), uncertainty has been very effectively modeled in terms
of random vector component errors (su, sv) [Freilich, 1997;
Freilich and Vanhoff, 2002]. If the uncertainties in each
component are equal (su = sv), then the equation for the
uncertainty in the magnitude of vector errors (sj�wj, where
�w = wscat � wship), described as a Gaussian distribution
about the ’head’ of the wind vector, with a standard
deviation equal to sj�wj, is

s2j�wj ¼ 2 s2v ; ð3Þ

which is independent of wind speed. Conceptually, this
uncertainty should be the combination of two Gaussian
distributions, one for uncertainty in the ship winds and one
for uncertainty in scatterometer winds. The observed
distributions (Figure 7c) are more consistent with constant
uncertainties in wind speed (sw) and wind direction (sq), for
which the magnitude of vector uncertainty is

s2j�wj ¼
@ j�wjð Þ
@ w

� �2

s2w þ @ j�wjð Þ
@ q

� �2

s2q

¼ s2w;scat þ s2w;ship þ w2 s2q;scat þ s2q;ship
� �

: ð4Þ

This form of sj�wj results in a nonisotropic error function,
with different Gaussian distributions about w and ‘ axes
(i.e., sw 6¼ wsq). For large wind speeds, the second term on
the right hand side will dominate, and the uncertainty in
wind vectors increases in proportion to the wind speed.
Consequently, it is also apparent from (4) that, if vector
component uncertainties are weakly dependent on wind
speed (i.e., sj�wj

2 is approximately constant), then the
directional uncertainty is proportional to w�1 for sufficiently
large w. Such dependence is not found in the directional
RMS differences, which further supports the need for a

model of uncertainty that is appropriate for moderate and
high wind speeds.

5. Improved Estimates of Quikscat Uncertainty

[29] Traditional statistical techniques, such as ordinary
least squares fits and root mean square differences, presume
that all uncertainty is related to one of the two sets of
observations being compared. Incorrect estimates of uncer-
tainty in the comparison measurements result in erroneous
estimates of bias and gain of the observations as a function of
comparison measurements [Kent et al., 1998]: estimates of
uncertainty in QuikSCAT winds should consider the uncer-
tainty in comparison measurements [Stoffelen, 1998; Frei-
lich and Vanhoff, 2002]. If the uncertainty in the comparison
data set is known, then the uncertainty in the scatterometer
can be determined through linear regression [Stoffelen,
1998]. Alternatively, if the uncertainty in the comparison
data set is unknown, there are techniques that determine the
uncertainty in both data sets [Stoffelen, 1998; Freilich and
Vanhoff, 2002]. Uncertainty in the quality-controlled
research vessel observations is small; however, it is
unknown because it varies from ship to ship and cruise to
cruise [Smith et al., 1999]. Techniques that determine the
uncertainty in both data sets require at least thousands of co-
located observations from three sources. At this time, we
have too few co-located observations to apply the techni-
ques of Stoffelen [1998] or Freilich and Vanhoff [2002].
Furthermore, these methods do not distinguish between
observational errors and geophysical differences (e.g., imper-
fect co-location and Earth relative versus surface relative
winds). We will use an alternative approach to show that
much of the uncertainty and RMS differences are due to the
spatial separation between the research vessel and the center
of the satellite footprint. The techniques of Stoffelen [1998]
and Freilich and Vanhoff [2002] could be modified to
consider spatial separation; however, currently they combine
this source of uncertainty with error in the observations.
Additional subtleties in the analysis of scalar winds have
been identified [Freilich, 1997]. These complications involve
low wind speeds and are greatly diminished by determining
best fits using observations with w > 3 sw (where sw is the
largest uncertainty in the two sets of speed observations).

Table 3. RMS Differences in Wind Speed (m s�1), Wind Direction (Degrees), Zonal Wind

Component (m s�1), and the Meridional Wind Component (m s�1) for Each of the GMFs and Various

Rain Flags

QSCAT-1

MUDH Rain Flag ENOF Rain Flag Radiom. Rain Flag

Select
Ambiguity

Correct
Ambiguity

Select
Ambiguity

Correct
Ambiguity

Select
Ambiguity

Correct
Ambiguity

Wind speed 1.2 1.1 1.1 1.1 1.2 1.2
Wind direct. . . . 15 . . . 15 . . . 15
Zonal wind 2.2 1.5 2.3 1.5 2.1 1.6
Meridional wind 2.7 1.6 2.5 1.5 2.2 1.4

Ku-2000
Ku 2000
Flags

Ku 2000
Flags

Radiom.
Rain Flag

Radiom.
Rain Flag

Wind speed 1.0 1.0 1.0 0.9
Wind direct. . . . 14 . . . 14
Zonal wind 1.9 1.4 1.7 1.3
Meridional wind 1.8 1.4 1.7 1.3

Also shown is the importance of ambiguity selection. The criterion for spatial co-location is differences �12.5
km.
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[30] Principal component analysis (PCA) [Preisendorfer
and Mobley, 1988; Pearson, 1901] assumes that there is
equal uncertainty in each set of observations; therefore, it is
ideal for the situation where the accuracy of the comparison
data set is unknown and similar to the accuracy of the
observations. For example, underestimation in the research
vessels’ uncertainty results in overestimation of QuikSCAT
uncertainty. The assumption of similarity is valid if both
uncertainties are small compared to the span of co-located
observations. PCA can be used to estimate the uncertainty
in terms of the standard deviation perpendicular to the axis
of maximum variance.

5.1. Principal Component Analysis

[31] Principal component analysis is analogous to finding
the variance from the best fit line (determined by a linear
orthogonal regression), where the differences used to cal-
culate the variance are perpendicular to this best fit line.
PCA determines the axes of minimum and maximum
variability. For unbiased data spanning a much larger range
than the uncertainty and for similar small uncertainties in
ship and satellite winds, the axis of maximum variability
will be very close to the ideal fit. Large difference in these
axes would contradict the assumption of similar uncertain-
ties for each data set. For the QSCAT-1 and research vessel
comparisons, the angle between axis of maximum varia-

bility and the ideal fit line is only 3� for wind directions and
6� for wind speed.
[32] The steps involved in PCA [Preisendorfer and Mob-

ley, 1988] are outlined below. The observations are com-
bined into a single matrix D.

D ¼ xi � �x; yi � �y½ �; ð5Þ

where x is one set of observations (e.g., in situ winds), y is
the other set (e.g., QuikSCAT winds), and i is an index for
the N co-located pairs of winds. The covariance matrix (C)
can be calculated from D.

C ¼ DTD

N
¼

s2x s2xy
s2xy s2y

" #
ð6Þ

[33] The eigenvalues of C are positive and easily obtain-
able. The larger eigenvalue (l1) corresponds to the variance
parallel to the axis of maximum variance, and the smaller
eigenvalue (l2) corresponds to the variance perpendicular to
this axis. The uncertainty in the scatterometer observations
(corresponding to one standard deviation), for correctly
selected ambiguities, is given by the positive square root
of l2. Owing to our assumptions, this uncertainty is equal to
the uncertainty in the research vessel observations. The

Table 4. Variance Explained (%) Assuming the Uncertainty in the Scatterometer is Equal to the

Uncertainty in the Research Vessels and That There are no Other Sources of Variability

QSCAT-1

MUDH Rain Flag ENOF Rain Flag Radiom. Rain Flag

Select
Ambiguity

Correct
Ambiguity

Select
Ambiguity

Correct
Ambiguity

Select
Ambiguity

Correct
Ambiguity

Wind speed 89 90 90 90 89 89
Wind direct. . . . 97 . . . 97 . . . 97
Zonal wind 87 93 86 93 87 93
Meridional wind 80 93 83 93 85 93

Ku-2000
Ku-2000
Flags

Ku-2000
Flags

Radiom.
Rain Flag

Radiom.
Rain Flag

Wind speed 93 93 89 89
Wind direct. – 97 . . . 97
Zonal wind 92 95 93 96
Meridional wind 90 94 88 93

The criterion for spatial co-location is differences �12.5 km.

Table 5. PCA Derived Uncertainties in SeaWinds Winds Speed (m s�1) and Direction (�) for

Various Model Functions and Rain Flagsa

QSCAT-1

MUDH Rain Flag ENOF Rain Flag Radiom. Rain Flag

Select
Ambiguity

Correct
Ambiguity

Select
Ambiguity

Correct
Ambiguity

Select
Ambiguity

Correct
Ambiguity

Wind speed 0.82 0.77 0.81 0.76 0.81 0.76
Wind direct. . . . 10.8 . . . 10.6 . . . 9.7
Zonal wind 1.14 1.02 1.49 1.06 1.60 1.18
Meridional wind 1.13 1.02 1.63 1.03 1.63 0.96

Ku-2000
Ku2000
Flags

Ku2000
Flags

Radiom.
Rain Flag

Radiom.
Rain Flag

Wind speed 0.65 0.63 0.72 0.70
Wind direct. . . . 9.9 . . . 9.5
Zonal wind 1.87 1.21 1.73 1.15
Meridional wind 2.27 1.33 2.35 1.29

aThe spatial co-location criterion is differences �12.5 km.
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fraction of variance explained (r2) can also easily be
determined:

r2 ¼ l2= l1 þ l2ð Þ: ð7Þ

These fractions (Table 4) demonstrate the effectiveness of
the SeaWinds scatterometer. When averaged over the entire
set of co-located data (for correctly selected ambiguities),
both model functions account for �90% of the observed
variance in speed and 97% in direction.
[34] PCA can easily be used to investigate the depend-

ency of uncertainties on variables such as wind speed or
direction (Figure 7c). This is accomplished by rotating the
coordinate system so that the axes of the new system are the
axes of maximum and minimum variance. The original axes
are rotated by either

q ¼ 0:5 atan
s2xy

s2yy � s2xx

 !
; ð8Þ

or 90� plus this angle (an additional test determines which
of these angle corresponds to the axis of maximum
variability). The wind directions are rotated to the new axes:

x0i ¼ xi cos qð Þ � yi sin qð Þ ð9Þ

y0i ¼ xi sin qð Þ þ yi cos qð Þ ð10Þ

where (x0i, y
0
i) are the points in the new coordinate system. If

j is the index (i) for all values of x within the specified range
(x1 < x < x2), then

sx;x1<x<x2 ¼
X
j

x0j � x0
� �2 !

= n� 1ð Þ
" #0:5

; ð11Þ

where x0 is the mean value for the subset, and n is the
number of points in the subset.
[35] For correctly selected ambiguities, wind vectors

observed by SeaWinds on QuikSCAT (Table 5) are found
to have average uncertainties of �0.7 m s�1 for speed and
10� for direction. The PCA-derived uncertainties show
negligible dependence on wind speed. The Ku-2000 GMF
uncertainties in wind speed and direction are slightly
smaller than the corresponding values from QSCAT-1
GMF. However, the Ku-2000 speed and direction errors
are better correlated than the QSCAT-1 errors, resulting in
larger errors in zonal and meridional wind components (and
non-Gaussian error distributions). A larger majority of well
correlated Ku-2000 errors are in the inner swath: the
uncertainties for zonal and meridional winds are much
smaller for the rest of the swath.

5.2. Vector Correlations

[36] Vector correlations can also be used to assess the
relative accuracy of winds [Freilich, 1997]. Most techniques
for calculating linear correlations suffer from limitation that
errors in both sets of observations contribute to a reduction
in the magnitude of the correlation. If the uncertainty in the
comparison data set is negligible (and there is no bias or
gain in these observations), then these correlations can be a

useful standard of comparison. However, in the case of
open-ocean surface winds, the uncertainty in the compar-
ison data set is not negligible. We will demonstrate a
technique that is easily applied and takes advantage of
PCA to better account for uncertainty in the truth.
[37] The wind vectors are written as complex numbers (u

+ iv), with the real component equal to the zonal wind (u),
and the imaginary component equal to the meridional wind
(v). PCA has been applied to vectors in this form [Hardy,
1977; Hardy and Walton, 1978; Legler, 1983; Denbo and
Allen, 1984]. These studies examined covariance rather than
correlation. Vector correlation can be examined by placing
complex wind vectors for in situ and satellite winds in a
matrix similar to D (equation (5)). The covariance matrix is
similar to equation (6):

C ¼ DTD�

N
¼

s2x s2xy
s2xy s2y

" #
; ð12Þ

where the star indicates a complex conjugate, and the
diagonal terms are the sums of the variance in each
component. The diagonal terms represent the sums of u and
v variability in each of the data sets.
[38] Principal component analysis is again used to find

the axes associated with the minimum and maximum
variances. The fraction of variance explained (r2) is again
calculated with equation (7). The magnitude of the correla-
tion jrj (ranging from �1 to 1) can be determined from r2;
however, the sign of r must be determined through visual
inspection. In this case, the r2 values for individual ships are
0.95–0.997 with correctly selected ambiguities and 0.94–
0.993 with all selected ambiguities.

5.3. Influence of Spatial Separation Between
Co-Locations

[39] Several of the RMS differences for individual ships
are substantially lower than the values for other ships. The
early R/V Atlantis observations (not shown) are an extreme
example of low uncertainties: an RMS difference of 0.5 m
s�1. An examination of the spatial differences in co-
location revealed that most of the R/V Atlantis observations
were <5 km from the center of QuikSCAT cells, suggesting
that this distance could have considerable influence on
the estimates of uncertainty. Bilinear interpolation of the
QuikSCAT winds to the location of the ship tested the
possibility that such dependence was due to linear changes
in wind vectors. The impact of such interpolation was small
and often slightly unfavorable. This result implies that there
is considerable natural variability on spatial scales <25 km,
and that if the variability is wavelike then the wavelength
varies throughout the co-located data. The sampling vol-
ume for the research vessel observations (integrated over
space and time) is much smaller than the sampling volume
for the scatterometer; consequently, the ship observations
are more sensitive to this variability than the scatterometer.
However, the weighting within 25 � 5 km scatterometer
cells (and within individual footprints) is substantially
nonuniform. Therefore, the scatterometer is also sensitive
to variability on scales less than the size of the scatter-
ometer’s wind cell.
[40] The spatial weighting within the 25 � 25 km wind

vector cells is dependent on the distribution of the individ-
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ual footprints that are combined to determine a cell’s vector
wind. In the cases of the current routine products, all 25 �
35 km oval footprints that have centers within the cell are
used (with equal weighting) to determine the cell’s vector
wind (Figure 2). The average weighting distribution within
a wind cell can be estimated by assuming a tight (relative to
cell size) and uniform distribution of footprints. The number
of applicable footprints (those used in calculating the vector
wind for the cell) overlapping the center of the cell is more
than twice the number at the center of a cell edge, and
roughly four times the number at the cell corner. Conse-
quently, the winds near the center of the cell are weighted
more heavily than those near the corners and edges. This
geometry allows for sensitivity to variability on scales
smaller than the cell size.
[41] This hypothesis was confirmed in an examination of

sw2 and sq
2 binned as functions of spatial separation between

the in situ observations and the center of the scatterometer
cell (Figure 8). The range of separations is from 0 to 12.5
km to ensure that all observations are within the closest cell,
and to avoid atypically large spatial differences in co-
location at the swath edges and near areas of missing data.
The variance (s2) is examined rather than the standard
deviation (i.e., uncertainty, s) because independent random
uncertainties are additive in terms of s2 rather than s. The
variance in wind speed (sw

2; Figure 8a) for the JPL product
has only a small dependence on spatial difference in co-
location; however, the Ku-2000 product shows a stronger
dependence. The values in the 2.5–5.0 km bins correspond
to sw = �0.6 m s�1 (similar to the NSCAT random
component error) [Freilich, 1997; Freilich and Vanhoff,
2002]. However, the values in the closest bin are much
smaller (corresponding to 0.05–0.3 m s�1). The Ku-2000
products show the clearest trends of reduced uncertainty
with reduced difference in co-location. The sensitivity to
differences in co-location is expected to greatly decrease for
distances less than the half the 5km length scale for the
sampling volume of the research ships (i.e., half the smaller
of the two sampling volumes). A parabolic curve is likely to
best represent the dependence on spatial separation. The
data set is too noisy to determine this curve; therefore, we
make a conservative estimate by linear extrapolation to 2.0
km. For the radiometer rain flag, the corresponding uncer-
tainty in wind speed is estimated at �0.45 m s�1 for
QSCAT-1, and 0.3 m s�1 for Ku-2000.
[42] The impact of spatial differences in co-location on

direction (Figure 8b), is also large. The appropriate shape
for a best fit curve is not clear from these results. A PCA-
based parabolic fit to QSCAT-1 RMS differences indicates
an uncertainty of �4�. A more conservative estimate, based
on the 0 to 2.5 km bin, indicates sq = 5�. The Ku-2000
directional differences are substantially smaller than the
QSCAT-1 differences except in the 5 to 7.5 km bin, where
they peak. The 0 to 2.5 km bin, and the substantially smaller
variances, indicate that the Ku-2000 uncertainty is �3�.
Restricting the Ku-2000 co-locations to the middle (higher
quality) part of the swath (not shown) indicates that the
directional uncertainty for this part of the swath is �2�.
These results demonstrate the exceptional accuracy of Sea-
Winds on QuikSCAT and research vessel vector winds, as
well as the importance of considering differences in spatial
co-locations in any validation effort.

[43] The model for uncertainty including spatial variabil-
ity (ss

2) becomes

s2jwj ¼ s2w þ w2 s2q þ s2s �x;wð Þ; ð13Þ

where ss
2 is a function of the spatial difference in co-location

(�x) and wind speed. This term also implicitly considers
small-scale variability in the sampling volume and differ-
ences between the two sampling volumes. It does not
contribute to observational uncertainty. The variability due
to spatial co-location differences can be parameterized in
terms of contributions due to uncertainties in wind speed
(sws) and direction (sqs), both of which are functions of the
spatial difference in co-location:

s2s �x;wð Þ ¼ s2ws �xð Þ þ w2 s2qs �xð Þ: ð14Þ

Figure 8. PCA-derived (a) sw
2 and (b) sq

2 binned as
functions of spatial separation. Bins are in 2.5 km intervals,
ranging from 0 to 12.5 km.
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The values of sws
2 and sqs

2 can be estimated from Figures 8a
and 8b: for �x = 6 km, sws

2 � 0.15 m2 s�2 and sqs
2 = 40

degrees2; and for �x = 8.8 km (the average difference in co-
location for data sets limited to 12.5 km), sws

2 � 0.20 m2 s�2

and sqs
2 = 75 degrees2. For both examples, the contribution

to directional uncertainty is larger than the corresponding
value for SeaWinds observational uncertainty. For compar-
ison of in situ and scatterometer winds, the number of co-
locations will be very small for �x < 6 km. Consequently,
the contribution to total uncertainty from often will be large
in comparisons to in situ observations: it must be considered
to avoid significant overestimations of observational
uncertainty. The influence of temporal difference in co-
location is not examined herein, but is also expected to be
significant for differences greater than �3 min (half the
maximum time over which scatterometer observations are
taken within a cell).

5.4. Contributions to Total Uncertainty

[44] Knowledge of how various problems contribute to the
total uncertainty is useful in evaluating where improvements
in processing the satellite observations can lead to the
greatest reduction in uncertainty. Independent random uncer-
tainties are additive in a RMS sense (i.e., variances are
additive). The uncertainty related to direction (for correctly
selected ambiguities) is greater than the contribution related
to wind speed for w > 8 m s�1 for the QSCAT-1 GMF, and w
> 18 m s�1 for the Ku-2000 GMF. However, for w < 8 m s�1

errors in ambiguity become significant. Gross errors in
ambiguity selection result in wind vector errors with system-
atic (directions opposite the true wind vector) and random
components. For the purpose of examining contributions to
RMS differences, we approximate this component of uncer-
tainty as an entirely random uncertainty in direction (sq,a).
This is not an entirely valid approximation: ambiguity errors
have a substantial systematic component in a wind vector
relative coordinate system. Furthermore, we ignore ambi-
guity-related uncertainty in direction (sw,a). Future studies
should explore these considerations. Herein, ambiguity
errors are modeled as an additional source of directional
uncertainty, and can be included in equation (14) to model
the total observational uncertainty:

s2jwj ¼ s2w þ s2w;a þ w2 s2q þ s2q;a
� �

þ s2s �x;wð Þ: ð15Þ

[45] We have few points with which to estimate the
dependence of sq,a on w, and they are sufficient for only a
crude model of uncertainty related to ambiguity selection.
Better models for ambiguity-related errors must be devel-
oped from other data sets with a much larger number of
co-locations. These few points suggest QSCAT-1 and Ku-
2000 sq,a = �55� at w = 0, and sq,a = �0 at w = 8, then
QSCAT-1 sq,a rises again for greater wind speeds. We
empirically approximate the wind speed dependence of
sq,a for w < 8 m s�1 as

sq;a ¼ 55 cos 0:21wð Þ; for w < 7:5m s�1: ð16Þ

The cosine function was chosen because of it’s slow initial
decrease, with a very rapid decrease near the upper limit in
wind speed. The function provided to be a much better fit to

the very limited data than linear or quadrate functions.
However, these results, which are based only on variance due
to gross errors in ambiguity, underestimate the uncertainty
related to ambiguity selection. This term peaks near w = 4 m
s�1, falls rapidly, and is negligible for w = 7.5 m s�1.
[46] The various contributions to sjwj

2 in equation (15) can
be examined (for each GMF) as a function of wind speed
(Figure 9) to determine for what conditions reductions in

Figure 9. Cumulative contributions to the variance
(uncertainty squared) in the magnitude of the vector
difference (sj�uj

2 ) as a function of wind speed for the (a)
QSCAT-1 GMF and (b) Ku-2000 GMF. The histograms
show the observed values of (sj�uj

2 ) for correctly selected
ambiguities (dark shading) and all selected ambiguities
(light plus dark shading). The colored regions show the
cumulative variance due to all sources of modeled variance.
The order in which these variances are stacked is wind
speed (sg

2; red), wind direction (w2sq
2; light blue), ambiguity

selection (w2s2qa; green), ship observational uncertainty
(pink), and spatial differences in co-location (sg

2 ). The
yellow shows sg

2 for a difference in co-location of 6 km, and
the total of yellow and blue is for a difference in co-location
of 10 km. The uncertainty (1 standard deviation) is equal to
the square root of the variance. SeaWinds’ observational
uncertainty squared is given by the sum of red, light blue,
and green variances.
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these uncertainties would have the greatest impact. Varia-
bility in j�uj related to spatial co-location (sg) dominates for
most wind speeds. Reduction to 20 km cells can reduce
variability within cells, and it has been shown to be effective
(W.-Y. Tsai, personal communication, 1999); however,
reduction below this limit requires smaller footprints or
more computationally intensive processing. Of the observa-
tional terms (uncertainty in speed (sw), uncertainty related to
direction (wsq), and uncertainty related to ambiguity selec-
tion (wsq)), for the QSCAT-1 model function, uncertainty
related to ambiguity selection dominates for 2.5 < w < 5.5 m
s�1, uncertainty in speed dominates for w < 2.5 m s�1 and
5.5 < w < 7.5 m s�1, and uncertainty in direction dominates
for w > 7.5 m s�1. For the Ku-2000 model function,
uncertainty related to ambiguity selection dominates for
0.6 < w < 5.5 m s�1, uncertainty in speed dominates for
w < 0.6 m s�1 and 5.5 < w < 18 m s�1, and uncertainty
related to direction dominates for w > 18 m s�1.
[47] For wind speeds below �2 m s�1, modified by water

temperature [Pierson et al., 1997], atmospheric stratification
[Bourassa et al., 1999a], and swell [Bourassa et al., 1999a],
there is a wind speed threshold (capillary cutoff) below
which short water waves do not exist. Typically, these
smooth patches are associated with convective cells with
horizontal scales much smaller than the size of the scatter-
ometer footprint. The scatterometer signal is confused due
to inhomogeneous wind direction and surface roughness
characteristics of the surface: the scatterometer direction
should correspond to an average direction within the foot-
print. In the relatively rare cases where the surface is smooth
within the entire footprint, wind directions cannot be found
because the radar signal does not interact with short water
waves. Therefore, wind directions (and ambiguity selection)
below this threshold are random and cannot be improved.
Fortunately, the impacts of such errors in meteorological
and oceanographic applications are likely to be negligible.
For w < 5.5 m s�1 (i.e., approximately half of ocean winds),
improvements in ambiguity selection are likely to have the
greatest impact in reducing errors in scatterometer winds.
[48] It should be emphasized that these results are

across�swath averages. The accuracy in the middle swath
is superior to these results, and the accuracy in the inner swath
(near nadir) and the outer swath (near the edges) is consid-
erably worse. Improving accuracy in these regions could
have a relatively strong impact on the average accuracy.
[49] The model for uncertainty (equation (15)) can be

verified through comparisons of modeled RMS of the
magnitude of differences (j�wjrms) to observed values of
j�wjrms. The modeled value of j�wjrms

2 is equal to the
uncertainty squared in equation (15) plus the uncertainty
squared of the ship’s observations (ship uncertainty is
assumed to be equal to the scatterometer’s uncertainty for
correctly selected ambiguities).

j�wj2rms ¼ s2w;scatþs2w;shipþw2 s2q;scat þ s2qa þ s2q;ship
� �

þ s2g �x;wð Þ

ð17Þ

[50] These RMS differences are shown (Figure 9) for
both the QSCAT-1 and Ku-2000 GMFs. The error model
(dash-dotted line) is a good match to j�wjrms

2 , except for the
QSCAT-1 problems ambiguity selection for w > 8 m s�1

which are not captured (it was not considered in the model).
The peak in ambiguity selection related uncertainty (at w =
4 m s�1) is also underestimated due to our consideration of
only gross ambiguity selection errors. Replacing the var-
iance for low wind speeds in equation (16) with a value of
65� results in much better matches (not shown).
[51] This study has demonstrated that there is substantial

variability in speed and direction on length scales smaller
than the scatterometer cell size (25 km). This variability
contributes to what is perceived as noise in the backscatter,
and hence it causes additional uncertainty in determining
both speed and direction. This study suggests a preliminary
physical basis from which the signal-to-noise ratio can be
optimized in terms of cell size and footprint size.

6. Summary

[52] Accuracy of rain-free vector winds is assessed
through two techniques. One technique is a new PCA-based
method for determining vector correlations. The fraction of
variance explained by assuming a linear relationship
between in situ and satellite wind vectors was between
�90% and 99.7% for correctly selected ambiguities and
only slightly smaller for all selected ambiguities. Wind
vector uncertainty was also defined through the standard
deviation in the magnitude of vector errors (jwscat � wshipj).
An error model (equation (17); Figure 9) based on the above
results accounts for five contributions to uncertainties as
functions of wind speed. It also considers differences in
satellite and in situ winds due to differences in spatial co-
locations, which implicitly considers differences in sampling
volume. The function for observational uncertainty can be
used in conjunction with the variability as a function of
spatial difference in co-location (Figure 8) to provide a
preliminary basis from which the scatterometer’s signal-to-
noise ratio can be optimized in terms of cell size and footprint
size. A reduction in footprint size would reduce the spatial
variability within cells. If this reduction in size does not
result in too great a loss of signal, it would increase the
accuracy of scatterometer wind speed and direction as well as
the fine spatial scales of fronts and small-scale circulations.
[53] Estimates of uncertainty in an instrument must con-

sider the accuracy of the data used as the standard of
comparison. There is no absolute standard for wind speed
and direction measurements over the open ocean. The
uncertainty in our comparison measurements is unknown
and varies from ship to ship and cruise to cruise. Principal
component analysis (PCA) is an excellent tool for error
analysis when the uncertainty is similar in the test data set
and the comparison measurements. This assumption of
similarity is valid if the uncertainties in both data sets are
small compared to the span of the observations, as they are
in this case.
[54] We demonstrate that differences in spatial co-loca-

tion have significant impact on RMS differences (Figure 9),
and that these differences can dominate instrument depend-
ent sources of uncertainty of w > 4.5 m s�1 when spatial co-
location is within 10.0 km. The observational uncertainty in
the instrument can be estimated by plotting uncertainty as a
function of co-location distance and then extrapolating the
observed uncertainties to an exact spatial co-location. This
procedure results in conservative estimates of QSCAT-1
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(Ku-2000) uncertainties, for rain-free conditions, of 5� (3�)
for direction and 0.45 m s�1 (0.3 m s�1) for speed. This
assessment of directional accuracy does not consider errors
in ambiguity selection, which peak near w = 4 m s�1,
dominates instrument and GMF related uncertainty for w <
5.5 m s�1, and has some across-swath dependence. The
QSCAT-1 model function also has ambiguity selection
errors in the inner swath (near nadir) for w > 12 m s�1,
which contribute to very large vector differences.
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