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Similarity theory based on the Dougherty–Ozmidov length scale
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This article describes a local similarity theory for developed turbulence in the stably
stratified boundary layer that is based on the Brunt–Väisälä frequency and the dissipation
rate of turbulent kinetic energy instead of the turbulent fluxes used in the traditional
Monin–Obukhov similarity theory. Based on dimensional analysis (Pi theorem), it is
shown that any properly scaled statistics of the small-scale turbulence are universal
functions of a stability parameter defined as the ratio of a reference height z and the
Dougherty–Ozmidov length scale, which in the limit of z-less stratification is linearly
proportional to the Obukhov length scale. Measurements of atmospheric turbulence made
at five levels on a 20 m tower over the Arctic pack ice during the Surface Heat Budget
of the Arctic Ocean experiment (SHEBA) are used to examine the behaviour of different
similarity functions in the stable boundary layer. In the framework of this approach the
non-dimensional turbulent viscosity is equal to the gradient Richardson number, whereas
the non-dimensional turbulent thermal diffusivity is equal to the flux Richardson number.
These results are a consequence of the approximate local balance between production of
turbulence by shear in the mean flow and viscous dissipation. The turbulence framework
based on the Brunt–Väisälä frequency and the dissipation rate of turbulent kinetic energy
may have practical advantages for estimating turbulence when the fluxes are not directly
available.
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1. Introduction

Sixty years ago, Monin and Obukhov (1954) suggested a similarity
theory that is the commonly accepted approach to describe
turbulence in the near-surface atmosphere. The basis of the
Monin–Obukhov similarity theory (MOST) had been laid earlier
by Obukhov’s (1946) fundamental article (e.g. see historical
survey by Foken, 2006). Among other things Obukhov (1946)
proposed a buoyancy length scale L (‘Obukhov length’) which
plays a central role in the MOST.

Based on dimensional analysis (Pi theorem), the MOST states
that turbulent fluxes of momentum and heat (in the general case
buoyancy) are the primary governing (independent) variables
that, along with the buoyancy parameter β , define how other
(dependent) variables (e.g. vertical gradients, variances, etc.) in
the atmospheric surface layer depend on the height z. Originally
the MOST was based on the assumption that the turbulent fluxes
are constant with height and equal to the surface values in the
layer conventionally called a surface or constant-flux layer, that is,

‘surface scaling’. Subsequently, Nieuwstadt (1984) demonstrated
that in the stable boundary layer (SBL) the assumption of
height-independent fluxes is not necessary and Monin–Obukhov
similarity can be redefined in terms of the local fluxes at height
z (i.e. z-dependent fluxes) rather than on the surface values,
which is known as ‘local scaling’. In fact, Nieuwstadt deprived the
turbulent fluxes of their ‘privileged role’ and paved the way to
construct a local similarity theory in the SBL based on governing
variables other than the fluxes.

The Pi theorem used in the MOST provides only a general
methodology, and the choice of the primary governing variables
is not unique. Presumably, Smeets et al. (2000) first discussed
a similarity theory based on non-MOST governing parameters.
In their article, Smeets et al. modified the MOST by replacing
the friction velocity with the standard deviation of the vertical
wind-speed component σw to study the SBL over a glacier surface
in a predominantly katabatic flow.

Sorbjan (2006) proposed alternative local scaling for the
SBL based on σw, the Brunt–Väisälä frequency N, and β (a
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buoyancy length-scale defined as σw/N) and introduced the
concept of gradient-based scaling. Subsequently, Sorbjan (2008,
2010) suggested three more gradient-based scaling systems. The
gradient-based similarity approach removes turbulent fluxes as
governing parameters and replaces them with vertical gradients
of mean wind speed and potential temperature. As a result, the
gradient Richardson number, Ri, appears as a stability parameter
instead of the Monin–Obukhov stability parameter z/L. Sorbjan
(2006, 2008, 2010) and Sorbjan and Grachev (2010) discussed
different universal functions plotted versus Ri based on field
data. Obukhov length L, the gradient Richardson number Ri, the
Brunt–Väisälä frequency N, and other variables mentioned here
will be defined in sections 3 and 4.

In this article, we further develop Sorbjan’s (2006) ideas and
suggest a similarity theory for the stably stratified boundary
layer based on N and the dissipation rate of turbulent kinetic
energy ε (cf. Sorbjan and Balsley, 2008). A buoyancy length
scale constructed from N and ε was originally suggested by
Dougherty (1961) and Ozmidov (1965) and herein is referred
to as the Dougherty–Ozmidov length scale. It is also known
as the Ozmidov length and is widely used in oceanography to
describe small-scale turbulence. In contrast to the gradient-based
scaling, we consider various similarity functions versus both
the Richardson number and a stability parameter defined as
the ratio of a reference height z and the Dougherty–Ozmidov
length scale, which plays the role of the Obukhov length in
the proposed approach. We use the extensive measurements of
atmospheric turbulence from the Surface Heat Budget of the
Arctic Ocean experiment (SHEBA) described in section 2 to
examine the Dougherty–Ozmidov length scale and to derive
similarity functions.

2. Data and data processing

Turbulence measurements made over the Arctic pack ice
during the SHEBA took place in the Beaufort Gyre from
2 October 1997 to 11 October 1998. Andreas et al. (2006,
2010a, 2010b, 2013), Persson et al. (2002), Persson (2012) and
Grachev et al. (2005, 2007a, 2008, 2013) describe the SHEBA site,
various measurements over the Arctic sea ice, data processing,
accuracy of measurements, instrument calibration, etc. Here we
provide some relevant information about the turbulence and
profile measurements in the near-surface atmosphere during the
SHEBA.

Turbulence statistics (fluxes, variances, spectra, cospectra)
and mean meteorological data were continuously measured
on a 20 m main tower at five levels, hereafter levels 1–5,
nominally z1 ≈ 2.2 m, z2 ≈ 3.2 m, z3 ≈ 5.1 m, z4 ≈ 8.9 m and
z5 ≈ 18.2 m (but 14 m during most of the winter). Each level of the
tower was instrumented with identical Applied Technologies, Inc.
(ATI), three-axis sonic anemometer/thermometers (K-probe)
that sampled at 10 Hz and a Väisälä HMP-235 temperature
and relative humidity (T/RH) probes. An Ophir fast-response
infrared hygrometer was mounted on a 3 m boom at an
intermediate level (about 8 m) just below level 4. Although a
sonic anemometer/thermometer measures the so-called ‘sonic’
temperature, which is close to the virtual temperature, the
moisture correction in sonic temperature is usually small for
Arctic conditions (see estimate in Grachev et al., 2005, p. 205).

The ‘slow’ T/RH probes provided air temperature and relative
humidity measurements at five levels and were used to evaluate
the vertical temperature and humidity gradients. The mean
wind speed and wind direction were derived from the sonic
anemometers in a streamline coordinate system, whereby we
performed two rotations on the sonic measurements that forced
the mean lateral and vertical wind-speed components to zero
(Kaimal and Finnigan, 1994, section 6.6). Vertical gradients
of the mean wind speed, potential temperature and specific
humidity that appear here were obtained by fitting a second-
order polynomial through the 1-h-averaged profiles followed by

evaluating the derivative with respect to z for levels 1–5 (Grachev
et al., 2005, their eq. (8)).

Hourly averaged turbulent fluxes and variances at each level
were derived through the frequency integration of the appropriate
cospectra and spectra, which were normally computed from
seven overlapping 13.65 min data blocks (corresponding to 213

data points) and then averaged over 1 h (see other details in
Persson et al., 2002). One-hour averaging intervals are required
to reduce excessive data scatter in the similarity relationships.
To separate the contributions from mesoscale motions to the
calculated eddy-correlation fluxes, we applied a low-frequency
cut-off at 0.0061 Hz (the sixth spectral value or a period of about
3 min) on the cospectra as a lower limit of integration; the upper
limit of integration is 5 Hz, the Nyquist frequency. The low-
frequency cut-off for turbulent contributions is chosen to lie in
the spectral gap between the small- and large-scale contributions
to the total transport (see spectra and cospectra plots in Grachev
et al. (2005, figure 8), Grachev et al. (2008, figure 3), and Grachev
et al. (2013, figures 1–4)).

Several data-quality indicators based on objective and
subjective methods have been applied to the original flux data
(e.g. Grachev et al., 2007a, p. 319). In particular, to avoid a
possible flux loss caused by inadequate frequency response and
sensor separations, we omitted data with a local wind speed less
than 1 m s−1. In addition, data with a temperature difference
between the air (at median level) and the snow surface less than
0.5 ◦C have also been omitted to avoid the large uncertainty in
determining the sensible heat flux in near-isothermal conditions.

However, despite the data-quality control (QC), there are
almost always outliers that are noticeably inconsistent with the
rest of the dataset, in particular, because they are affected by
other phenomena that are not described by similarity theory. To
remove spurious or near-zero data points, we further checked the
data prior to evaluating similarity functions in order to remove
indeterminate forms such as zero divided by zero. Following
the QC recommendations by Klipp and Mahrt (2004) and Sanz
Rodrigo and Anderson (2013), we set minimum thresholds for
the kinematic momentum flux (0.0002 m2s−2), temperature
flux (0.0002 K m s−1), standard deviation of each wind-speed
component (0.01 m s−1), standard deviation of air temperature
(0.01 K), vertical gradients of mean velocity (0.001 s−1) and mean
temperature (0.001 K m−1), and dissipation rate of turbulent
kinetic energy (0.0003 m2 s−3). Note that the thresholds for the
fluxes and standard deviation are also required in order to avoid
amplitude resolution problems (Vickers and Mahrt, 1997, their
figure 1(b)). As a result, only about 23% of the original SHEBA
dataset for five levels under stable conditions are retained for the
analysis.

Resolution of turbulent fluctuations for ATI sonic anemome-
ters as well as for most other sonic anemometers (e.g. Young
81000, Gill WindMaster) is u′, v′, w′ ∼ 0.01 m s−1 for wind speed
components and θ ′ ∼ 0.01 K for sonic temperature. Thus, mini-
mum thresholds of the momentum and temperature fluxes can be
estimated as<u′w′>∼10−4 m2 s−2 and<w′θ ′>∼10−4 K m s−1,
respectively. Although our QC thresholds for the fluxes and
standard deviation are less rigorous than those used by Klipp
and Mahrt (2004) and Sanz Rodrigo and Anderson (2013), we
also imposed additional restrictions on the gradient and flux
Richardson numbers (see below).

In the current study, the dissipation rate of turbulent kinetic
energy ε was estimated based on a common method for measuring
ε in a turbulent flow that assumes the existence of an inertial
subrange associated with a Richardson–Kolmogorov cascade.
Note that the various estimates of ε are valid only for a locally
isotropic inertial subrange (see Gargett et al., 1984; Albertson
et al., 1997; Biltoft, 2001; Chamecki and Dias, 2004; Piper and
Lundquist, 2004; Lien and D’Asaro, 2006 for discussion). The one-
dimensional wavenumber energy spectrum of the longitudinal
velocity component in the inertial subrange has the form

Fu(k) = αε2/3k−5/3, (1)
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where k is the wavenumber and α is the Kolmogorov constant
(α ≈ 0.5–0.6; e.g. Kaimal and Finnigan, 1994); we adopt a value
α = 0.55 for our study.

Spatial scales and the wavenumber spectrum in Eq. (1) should
be converted, respectively, into frequency scales and frequency
spectrum, which is traditionally what a sonic anemometer
measures. By using Taylor’s frozen turbulence hypothesis,
k = 2π f /U (where f is frequency and U is mean wind speed),
the wavenumber spectrum in the inertial subrange (Eq. (1)) can
be written in terms of frequency as follows:

Su(f ) = α(U/2π)2/3ε2/3f −5/3. (2)

Frequency Su(f ) and wavenumber Fu(k) spectra are related to
each other through fSu(f ) = kFu(k) (Kaimal and Finnigan, 1994).
If the turbulence is locally isotropic, the spectra of lateral and
vertical velocity components are 4/3 of the longitudinal velocity;
that is,

Sv(f ) = Sw(f ) = (4/3)Su(f ). (3)

Based on Eqs (2) and (3), we derived the dissipation rate of
turbulent kinetic energy ε in this study separately from the spectra
for each velocity component (u′, v′, and w′) in the frequency
domain 0.49–0.74 Hz located within the inertial subrange. We
then took the median of these three values as the representative
dissipation rate. With this procedure, we avoided the influence of
possible spectral spikes on the estimation of the dissipation rate
(see figures 1 and 3 in Grachev et al., 2013) and reduced sampling
error. As our estimates of ε are based on Eqs (1)–(3), data without
the Richardson–Kolmogorov cascade should be filtered out. This
study follows Grachev et al. (2013) and imposes restrictions on
the gradient and flux Richardson numbers, Ri and Rf, such that
we excluded data points if both Ri and Rf exceed a critical value
0.2 (see also Eq. (20)). Applying this prerequisite filters out data
points for which the −5/3 power law generally fails (Grachev
et al., 2013, figures 7 and 8).

Note that the 4/3 ratio between Sv(f ) and Su(f ) and between
Sw(f )and Su(f ) within inertial subrange frequencies, Eq. (3), is a
stronger indicator of isotropy than the −5/3 Kolmogorov power
law (Eq. (2)). A −5/3 slope in a velocity spectrum can occur
even without the local isotropy which it yields Eq. (3) (e.g. see
discussion in Biltoft (2001) and Piper and Lundquist (2004) and
references therein). According to our data, plots of Sv/Su and
Sw/Su versus Ri and ζ = z/L show that Eq. (3) is better obeyed
for Sv/Su than for Sw/Su, and it works better for the upper levels
3–5 than for the lower levels 1–2 (not shown). These results
are consistent with the findings by Piper and Lundquist (2004,
their fig. 1). Moreover, as Ri approaches its canonical ‘critical
value’ of 0.20–0.25 (which corresponds to ζ ∼ 1), the predicted
relationships for spectral densities (Eq. (3)) tend to level off
(especially for Sw/Su because negative buoyancy inhibits vertical
transfer). However, we found that the results obtained are not
very sensitive to how the dissipation rate of turbulent kinetic
energy ε is evaluated (based solely on the u component or based
on the all three wind-speed components).

We also tested an alternative method to filter cases when the
−5/3 Kolmogorov power law fails. Instead of the restrictions
on the gradient and flux Richardson numbers, we imposed the
following two prerequisites on the data. First, the data points
where the spectral slope in the inertial subrange deviated more
than 10% of the theoretical −5/3 slope were excluded from the
analysis (cf. Hartogensis and De Bruin, 2005, where ±20% was
used). Second, to restrict the influence of outliers on the bin-
averaging, we imposed a prerequisite proposed and discussed by
Grachev et al. (2008, 2012). Although these prerequisites differ
from the restrictions imposed on the gradient and flux Richardson
numbers by Grachev et al. (2013) and in the current study, these
two approaches are generally equivalent (see Grachev et al., 2013,
figures 7 and 8).

3. The MOST formalism

The MOST assumes that the kinematic turbulent momentum flux
(or magnitude of the wind stress), −<u′w′> = τ , and turbulent
temperature flux, <w′θ ′> = −H, along with the buoyancy
parameter, β = g/θ , are the primary influential variables (also
known as governing, scaling, repeating variables or parameters)
that ‘control’ the vertical variation of mean flow and turbulence
characteristics in the atmospheric surface layer with height z.
Thus, the MOST can be considered as flux-based scaling (e.g.
Sorbjan, 2010) where the scaling parameters are

τ , H, β. (4)

This is the prime similarity hypothesis of Monin and Obukhov
(1954).

The flux-based scaling parameters (Eq. (4)) uniquely define
a system of three scales that represent length, velocity and
temperature:

L = τ 3/2

κβH
, u∗ = √

τ , θ∗ = H√
τ

. (5)

The length scale L in Eq. (5) is known as the Obukhov length
scale (Obukhov, 1946), where, historically, the von Kármán
constant κ ≈ 0.4 is included in the definition of L simply by
convention. Here and above u∗ is the friction velocity, θ is
mean potential temperature, g is the acceleration due to gravity,
u and w are the longitudinal and vertical velocity components,
respectively, prime denotes fluctuations about the mean value and
<> is a time or space averaging operator. The sign convention
for the temperature flux is H > 0 in the SBL.

For simplicity, we consider the case of dry air, otherwise,
in the buoyancy term, β<w′θ ′>, θ should be replaced by the
virtual potential temperature θv. Note, that all variables in
this article are expressed in a streamline coordinate system:
therefore, τ = τx = −<u′w′> represents the longitudinal (or
downstream) component of the wind stress, whereas, the lateral
(or crosswind) stress component τy = −<v′w′> = 0 (v′ is the
lateral velocity components).

Variables that are not listed in Eq. (4) among the scaling
parameters are considered as dependent variables. Consider the
wind shear ∂U/∂z. According to the MOST, the relevant physical
variables for ∂U/∂z in the stationary, homogeneous atmospheric
boundary layer adjacent to a horizontal plane are

∂U/∂z, τ , H, β , z. (6)

These five variables (n = 5) involve three fundamental
dimensions: length, time, and temperature (k = 3). According to
Buckingham’s Pi theorem (e.g. Monin and Yaglom, 1971; Stull,
1988; Sorbjan, 1989; Barenblatt, 1996; Foken, 2006; Kramm and
Herbert, 2009), there are n − k = 2 independent dimensionless
π groups representing the problem in the general form

π = f (π1). (7)

This statement is also known as the first Pi theorem. The
second Pi theorem states that each π group in Eq. (7) is a
function of k = 3 governing or repeating variables plus one of
the remaining variables (the number of repeating variables is
equal to the number of fundamental dimensions). In our case,
the repeating variables are defined by Eq. (4). Note that the Pi
theorem provides only a general approach, and the choice of
dimensionless π groups is not unique.

Using the flux-based governing parameters (Eq. (4)), we can
now specify the π groups in Eq. (7). The first π group is
based on the governing parameters (Eq. (4)) and z that lead to
the Monin–Obukhov stability parameter (Monin and Obukhov,
1954); that is, π1 = ζ , where

ζ ≡ z

L
= − zκg<w′θ ′>

u3∗θ
, (8)
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defined as the ratio of z and the Obukhov length scale, see Eq. (5).
The next dimensionless group involves the governing parameters
(Eq. (4)) and the vertical gradient of mean wind speed that
produces π = L

u∗
∂U
∂z .

Now the functional relationship (Eq. (7)) for the non-
dimensional vertical gradient of mean wind speed may be
expressed as

L

u∗
∂U

∂z
= ϕ′

m(ζ ). (9)

It is convenient to replace Eq. (9) by the alternative form
(Sorbjan, 1989)

κz

u∗
∂U

∂z
= ϕm(ζ ), (10)

where ϕm = κζϕ′
m. The von Kármán constant κ on the left-hand

side of Eq. (10) is conventionally introduced solely as a matter of
convenience such that ϕm(0) = 1 for neutral conditions (ζ ≡ 0).

Similar to Eq. (6), the relevant physical variables for potential
temperature lapse rate, ∂θ/∂z, on the height z are assumed to be

∂θ/∂z, τ , H, β , z. (11)

Just as in the previous case, the five independent variables
(Eq. (11)) have three fundamental dimensions (i.e. n = 5 and
k = 3) that lead to Eq. (7), where π1 = ζ and π = L

θ∗
∂θ
∂z . Similar

to Eq. (9), the non-dimensional vertical gradient of the mean
potential temperature can be expressed as L

θ∗
∂θ
∂z = ϕ′

h(ζ ), which
eventually is equivalent to

κz

θ∗
∂θ

∂z
= ϕh(ζ ), (12)

where ϕh = κζϕ′
h. For neutral conditions, ϕh(0) = Prt0, where

Prt0 ≈ 1 is a constant referred to as the neutral value of the
turbulent Prandtl number, defined shortly.

Generally, the MOST predicts that any properly scaled statistics
of the turbulence at reference height z are universal functions
of the stability parameter (Eq. (8)), ζ = z/L. Specifically, the
standard deviation of wind-speed components σα and air
temperature σt are scaled as

σα

u∗
= ϕα(ζ ),

σt

|θ∗| = ϕt(ζ ), (13)

where α (= u, v and w) denotes the longitudinal, lateral or vertical
velocity component. In addition, the dissipation rate of turbulent
kinetic energy ε in the frameworks of the MOST can be expressed
as

κzε

u3∗
= ϕε(ζ ). (14)

Other widely used stability parameters, along with Eq. (8), are
the gradient Richardson number, Ri, defined by

Ri =
( g

θ

) ∂θ/∂z

(∂U/∂z)2
= ζϕh

ϕ2
m

(15)

and the flux Richardson number, Rf (also known as the mixing
efficiency) defined by

Rf = −
( g

θ

) <w′θ ′>
u2∗(∂U/∂z)

= ζ

ϕm
, (16)

where both Ri and Rf are expressed in a streamline coordinate
system. The ratio of Ri to Rf is the turbulent Prandtl number:

Prt = Km

Kh
= <u′w′>(∂θ/∂z)

<w′θ ′>(∂U/∂z)
= Ri

Rf
= ϕh

ϕm
, (17)

where Km = −<u′w′>
∂U/∂z and Kh = −<w′θ ′>

∂θ/∂z are the turbulent

viscosity and the turbulent thermal diffusivity, respectively.
The exact forms of the universal functions (Eqs (10) and

(12)–(14)) are not predicted by the MOST and must be
determined from measurements. However, the MOST predicts
the asymptotic behaviour of these functions under very stable
(ζ 
 1) and extremely unstable stratification (free convection,
ζ � −1). In the very stable regime, stratification inhibits
vertical motions, and the turbulence no longer communicates
significantly with the surface (e.g. Monin and Yaglom, 1971),
thus z ceases to be a scaling parameter, and this is z-less scaling. In
this case, the MOST predicts that various dimensional quantities
become independent of z (Obukhov, 1946; Monin and Obukhov,
1954). Specifically, the non-dimensional functions ϕ′

m, ϕ′
h, ϕα and

ϕt (see Eqs (9) and (13)) cannot contain z in the definition and,
therefore, asymptotically approach constant values when ζ 
 1
(cf. Nieuwstadt, 1984). For the non-dimensional functions ϕm, ϕh

and ϕε , the z-less concept requires that z cancels in Eqs (10), (12)
and (14), and linear relationships result. Thus, in the z-less limit,

ϕx(ζ ) = βxζ , ϕα(ζ ) = βα , ϕt(ζ ) = βt , (18)

where βx (x = m, h, and ε), βα and βt are numerical coefficients
(not to be confused with the buoyancy parameter).

A simple linear interpolation provides blending between
neutral and the z-less limits (Eq. (18)) for the ϕx(ζ ):

ϕx(ζ ) = αx + βxζ , (19)

where generally αm = αε = 1 and αh = Prt0. The universal
functions ϕα(ζ ) and ϕt(ζ ), Eq. (13), in the MOST framework are
considered to be constant for all ζ > 0.

Although, since the landmark 1968 Kansas field experiment
(Businger et al., 1971), Eq. (19) has fit the available experimental
data well for ζ < 1 and measurements suggest βm ≈ βh ≈ 5
(Högström, 1988; Sorbjan, 1989; Garratt, 1992; Handorf et al.,
1999; Foken, 2008; Wyngaard, 2010), z-less scaling (Eq. (18))
has been questioned for stronger stability, including the limit of
very stable stratification. Several studies reported that the stability
functions ϕm and ϕh increase more slowly with increasing stability
than predicted by the linear Eq. (19). A detailed review of the
different nonlinear similarity functions ϕm and ϕh based on data
collected in a variety of conditions can be found in Sharan and
Kumar (2011).

Several studies attempted to remove the ambiguity between
predicted (z-less) and observed behaviour of the universal
functions. Grachev et al. (2013) argued that the applicability of
the MOST (in the local scaling formulation) in stable conditions
is limited by the inequalities

Ri < Ricr and Rf < Rfcr , (20)

where both critical values Ricr and Rfcr are about 0.20–0.25.
Various plots of the universal functions in the literature often
contain data points that do not satisfy the condition (20), that is,
they do not belong to the MOST.

To evaluate different MOST functions, Grachev et al. (2013)
suggested separating data points into subcritical and supercritical
cases, that is, ‘separating the apples from the oranges’ based
on the prerequisite (Eq. (20)). According to Grachev et al.
(2013, figures 7 and 8), the upper limit of the MOST in
the SBL (Eq. (2)) coincides with the region for which the
−5/3 Kolmogorov power law is applicable. In other words, the
condition (20) also separates Kolmogorov and non-Kolmogorov
turbulence in stratified turbulent shear flows. As mentioned
in section 2, in this study, both inequalities (Eq. (20)) with
Ricr = Rfcr = 0.2 have been imposed on the data to filter
out cases when the Richardson–Kolmogorov cascade is not
observed. This practice of separating the data into subcritical and
supercritical regimes is consistent with laboratory experiments
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Figure 1. The bin-averaged non-dimensional universal functions (a) ϕm, (b) ϕh

and (c) ϕε for five levels of the main SHEBA tower during the 11 months of
measurements plotted versus the Monin–Obukhov stability parameter for local
scaling ζ = z/L. Both prerequisites (Eq. (20)) with Ricr = Rfcr = 0.2 have been
imposed on the data. The dashed lines are based on βm = βε = 5.0, βh = 4.5
and Prt0 = βh/βm = 0.9. Individual 1-h-averaged SHEBA data based on the
median fluxes for the five levels are shown as the background × symbols. The
SHEBA data with a temperature difference between the air (at median level)
and the snow surface less than 0.5 ◦C have been omitted to avoid the large
uncertainty in determining the sensible heat flux. To avoid a possible flux loss
caused by inadequate frequency response and sensor separations, a prerequisite
that U > 1 m s−1 has also been imposed.

(e.g. Rohr et al., 1988), theoretical results (Baumert and Peters,
2004; Katul et al., 2014) and field measurements (e.g. Tjernström,
1993).

Figure 1 shows plots of the non-dimensional universal
functions ϕm, Eq. (10), ϕh, Eq. (12), and ϕε , Eq. (14), versus the
Monin–Obukhov stability parameter for local scaling ζ = z/L,
Eq. (8), when both prerequisites (Eq. (20)) with Ricr = Rfcr = 0.2
have been imposed on the data. The individual 1-h-averaged
data, shown in Figure 1 as the background × symbols, are a
sample of the available data at one level and show the typical
scatter of the data. Implementing the prerequisite (Eq. (20))
reduces the data retained for the analysis from 23% of the original
dataset (see section 2) to 17%. According to the SHEBA data,
numerical coefficients in Eq. (19) are βm = 5.0 (Figure 1(a)),
βh = 4.5 (Figure 1(b)) and βε = 5.0 (Figure 1(c)). The numerical
coefficients βm, βh and βε reported here are in close agreement
with previously published results (see reviews by Yaglom,
1977; Högström, 1988; Sorbjan, 1989; Garratt, 1992; Hartogensis
and De Bruin, 2005; Foken, 2008). For example, Kaimal
and Finnigan (1994) recommend ϕm = ϕh = ϕε = 1 + 5ζ for
0 < ζ < 1.

Grachev et al. (2013, their figure 14) found a numerical
coefficient of βw = 1.3 in Eq. (13) for the SHEBA. The neutral
value of the turbulent Prandtl number in Eq. (19) for x = h
has not been specifically determined; instead, we accepted
Prt0 = Prt = βh/βm = 0.9, which coincides with our previous
estimate Prt = 0.9 derived from a plot of Prt versus Ri in
Sorbjan and Grachev (2010, their figure 2). Further discussion
on the turbulent Prandtl number in the SBL can be found
in Grachev et al. (2007b), Anderson (2009), and references
therein.

The universal functions ϕm and ϕε discussed here are directly
associated with the turbulent kinetic energy (TKE) equation (e.g.

Garratt, 1992; Kaimal and Finnigan, 1994):

∂<e>/∂t = −<u′w′>(∂U/∂z) + β<w′θ ′>
−∂(<w′e> + <w′p′>/ρ)/∂z − ε, (21)

where e = (u
′2 + v

′2 + w
′2)/2 is TKE and p′ is the fluctuation

in atmospheric pressure. Assuming steady state (∂<e>/∂t = 0),
Eq. (21) reduces to

ϕm − ζ − ϕT − ϕε = 0, (22)

where ϕT = (κz/u3∗)∂(<w′e> + <w′p′>/ρ)/∂z is the normal-
ized vertical transport term, and other terms in Eq. (22) are
defined by Eqs (10), (8) and (14). The transport term ϕT may be
generally neglected (e.g. Monin and Yaglom, 1971) and Eq. (22)
can be written as

ϕm(1 − Rf ) − ϕε = 0, (23)

where Rf is defined by Eq. (16). Note that subsequently specifying
ϕε in Eq. (23), or in its modifications, leads to the, so-called,
KEYPS or the O’KEYPS (Businger and Yaglom, 1971) equation
for ϕm (named after Obukhov, Kazansky, Ellison, Yamamoto,
Panofsky and Sellers) (Monin and Yaglom, 1971; Kramm et al.,
1996; Katul et al., 2011).

In the 1968 Kansas data, Wyngaard and Coté (1971) found that,
under stable conditions, shear production and viscous dissipation
are the dominant terms and they are essentially in balance, that
is, −<u′w′>(∂U/∂z) = ε or

ϕm = ϕε. (24)

Equation (24) also means that the turbulent transport and
the buoyancy production terms are either small or are generally
in balance, ϕT = ζ (cf. Eq. (22)). Note that the result ϕε

∼= ϕm

(or βε
∼= βm) has been known for a long time (at least since

the landmark 1968 Kansas field experiment), and our data
presented in Figure 1 agree with Eq. (24). In particular, Tjernström
(1993, Figure 2) found that the balance −<u′w′>(∂U/∂z) ≈ ε
is maintained up to Ri < Ricr = 0.25; however, the balance,
Eq. (24), abruptly fails when Ri exceeds 0.25. In fact, according
to our measurements, an actual difference between βm and βε is
within the accuracy of the experimental data. The result (Eq. (24))
will be used in section 4.2.

Concluding this section, we note also that a more general
formulation of similarity theory may include additional
possible influences on the flux–gradient (or flux–variance, etc.)
relationships than the parameters listed in Eq. (4): for example, the
Coriolis parameter, boundary layer depth, aerodynamic and scalar
roughness lengths, molecular viscosity and thermal conductivity.
Such extra parameters would eventually lead to more π groups in
Eq. (7) (e.g. Barenblatt, 1996; Mahrt et al., 2003). Furthermore,
Klipp and Mahrt (2004, section 8a) formulated a generalized z-
less similarity theory that contains the classical Monin–Obukhov
z-less asymptote (Eq. (18)) as a special case. According to Klipp
and Mahrt (2004), an additional variable dθ/dz should be added
to the list (Eq. (6)) (or, equivalently, ∂U/∂z to the list (Eq. (11)))
but z should be dropped to describe flux–profile relationships
when ζ 
 1. Evidently, in the frameworks of the Klipp–Mahrt
approach, one may suggest that the variables (Eq. (6)) with an
additional parameter ∂θ/∂z will lead to Eq. (7), with an additional
π group on the right-hand side of the equation, π2 = ϕ′

h (n = 6
and k = 3). None of these cases are considered here.

4. The N –ε scaling

The flux-based scaling system (Eq. (4)) is not a unique
combination of the governing parameters for describing stratified
turbulent shear flows (Sorbjan, 2006, 2008, 2010). Here we derive
universal functions based on a scaling system that includes the
buoyancy frequency N (defined shortly) and the dissipation rate
of turbulent kinetic energy ε (‘N –ε scaling’).
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4.1. Dimensional analysis

In oceanography, variables ∂θ/∂z, ε and β or, equivalently,

N, ε, β (25)

are traditionally used as the governing parameters to
describe small-scale turbulence. Here N = √

β(∂θ/∂z) is the
Brunt–Väisälä frequency, or buoyancy frequency. Other vari-
ables (e.g. ∂U/∂z,τ ,H, σα , σt , etc.) are considered as dependent
variables in the framework of N –ε scaling. In the case of humid
air or salt water, the buoyancy term g(∂θ/∂z)/θ appearing in
N should be replaced by g(∂θv/∂z)/θv or −g(∂ρ/∂z)/ρ, as dis-
cussed earlier (ρ is the potential density). The oceanography
community’s use of the parameters (Eq. (25)) is primarily asso-
ciated with the fact that they can be routinely measured in the
ocean.

Similar to Eqs (4) and (5), the governing parameters (Eq. (25))
uniquely define a system of three fundamental turbulent scales
for the length, velocity and temperature in the framework of the
Dougherty–Ozmidov approach:

LNε =
√

ε/N3, UNε =
√

ε/N, θNε = √
εN/β. (26)

Obviously UNε = LNεN and θNε = LNε(∂θ/∂z). Note that the
fundamental time-scale is the inverse Brunt–Väisälä frequency,
N−1. The buoyancy length scale LNε in Eq. (26) was originally
suggested by Dougherty (1961) and independently by Ozmidov
(1965). Ironically, the length scale LNε is widely known as the
Ozmidov length scale (e.g. Dillon, 1982; Hunt et al., 1985; Rohr
et al., 1988; Galperin et al., 1989; Baumert and Peters, 2000,
2004; Smyth and Moum, 2000; Sorbjan and Balsley, 2008; Mater
et al., 2013). Historically the term ‘Ozmidov length scale’ was
introduced by Carl H. Gibson in the oceanographic community
(R. V. Ozmidov, 1985; personal communication). The buoyancy
velocity and temperature (or density) scales (Eq. (26)) in the SBL
were discussed by Gargett et al. (1984), Lee (1996) and Sorbjan
and Balsley (2008).

Dougherty (1961) considered anisotropy of atmospheric
turbulence at heights near 90 km and studied the ratio of
LNε to the Kolmogorov length scale (see also discussion by
Lumley, 1964). Ozmidov (1965, his eq. 5) constructed a buoyancy
length scale from ε, ∂ρ/∂z, g/ρ to estimate vertical diffusivity
in the ocean, and his formulation differs from the canonical
relationship LNε = √

ε/N3 by only a numerical coefficient. The
Dougherty–Ozmidov length scale LNε is considered to define the
size of the largest eddy that is unaffected by buoyancy in stratified
turbulence (e.g. Gibson, 1980).

As mentioned above, variables that are not listed in Eq. (25)
among the scaling parameters, are considered as dependent
variables. Suppose we are interested in ∂U/∂z at height z, the
relevant physical variables in this case are:

∂U/∂z, N, ε, β , z. (27)

The case of the traditional MOST, with n = 5 and k = 3
(five independent variables (27) involving three fundamental
dimensions), leads to Eq. (7), with π1 = z/LNε ≡ ξ and
π = LNε

UNε

∂U
∂z = 1

N
∂U
∂z = Ri−1/2, where the gradient Richardson

number, Ri, is defined by Eq. (15). It is convenient to write a
non-dimensional relationship for dU/dz in the form

Ri = ψR(ξ ). (28)

Thus the gradient Richardson number (Eq. (15)) is a universal
function of a stability parameter ξ = z/LNε defined as the ratio
of a reference height z and the Dougherty–Ozmidov length scale.

Applying the above formalism to the turbulent fluxes τ and
H (i.e. replacing ∂U/∂z in Eq. (27) successively by τ and H)

results in relationships for the non-dimensional momentum flux
τ/U2

Nε ,

τN

ε
= ψm(ξ ) (29)

and for the non-dimensional temperature flux H/(UNεθNε),

βH

ε
= ψh(ξ ). (30)

Dimensional analysis shows that non-dimensional relation-
ships for the standard deviation of wind-speed components
σα/UNε and air temperature σt/θNε can be written as

σα√
ε/N

= ψα(ξ ),
σtβ√
εN

= ψt(ξ ), (31)

where α = u, v and w. The non-dimensional relationships for the
turbulent viscosity and the turbulent thermal diffusivity are:

KmN2

ε
= ψKm(ξ ),

KhN2

ε
= ψKh(ξ ). (32)

Based on Eqs (28)–(30) and the definitions of Km and Kh, one can

show that ψKm = ψmψ
1/2
R ≡ ψmRi1/2 and ψKh = ψh in the case

of the dry air. In the general case, ψKh = ψh

(
1 + m

Bo

)
, where Bo is

the Bowen ratio (the ratio of the turbulent fluxes of sensible and
latent heat) and m = 0.61 cp/Le ≈ 0.075 (cp is the heat capacity of
air at constant pressure, and Le is the latent heat of evaporation
of water).

The asymptotic behaviour of the universal functions
(Eqs (28)–(32)) can be predicted for neutral conditions (ξ → 0)
and in the very stable case (ξ 
 1). In the neutral case, various
quantities become independent of the buoyancy parameter β
(recall that β is included in N), that is, β is no longer a primary
scaling variable. This requires that β cancels in Eqs (28)–(32) in
the limit ξ → 0; therefore,

ψR = aRξ 4/3, ψm = amξ 2/3, ψKm = aKmξ 4/3,

ψKh = aKhξ
4/3, ψα = aαξ 1/3, ψt = atξ. (33)

In the very stable case, various dimensional variables become
independent of z (z-less stratification) and the universal functions
((28)–(32)) asymptotically approach constant values when ξ 
1:

ψR = bR, ψm = bm, ψKm = bKm, ψKh = bKh,

ψα = bα , ψα = bα , ψt = bt . (34)

The numerical coefficients in Eqs (33) and (34) will be specified
in the next section. Similar to Eq. (19), interpolation forms can be
proposed to blend between the neutral (Eq. (33)) and the z-less
(Eq. (34)) asymptotic limits.

4.2. Relationships between the universal functions for the flux-
based (MOST) and N–ε-based scale systems

Although the derivation of the relationships in the section
4.1 is independent and self-consistent, the universal functions
((28)–(32)) for N –ε scaling can be expressed through the
traditional MOST functions defined in section 3 and vice versa.
First, the Dougherty–Ozmidov length scale LNε = √

ε/N3 is a
universal function of the Obukhov length scale L = τ 3/2/(κβH)
(or, equivalently, ξ = z/LNε is a universal function of ζ = z/L).
Substituting ∂θ/∂z from Eq. (12) and ε from Eq. (14) into
ξ = z/LNε yields

ξ = (ζϕh)3/4

κϕ
1/2
ε

, (35)
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where ζ is defined by Eq. (8). In the neutral limit (ζ ,ξ → 0),
Eq. (35), where ϕh and ϕε are specified by Eq. (19), reduces
to ξ = (Prt0ζ )3/4/κ (i.e. β cancels). In the very stable case

(ζ ,ξ 
 1), according to Eqs (19) and (35), ξ = (ζβ
3/4
h )/(κβ

1/2
ε )

(i.e. z cancels). Thus in the z-less regime the Dougherty–Ozmidov
length scale is linearly proportional to the Obukhov length.

Similar to Eq. (35), substituting different variables from the
appropriate MOST functions (section 3) in the relationships
(Eqs (28)–(32)) yields

ψm =
√

ζϕh

ϕε

, ψKm = ζϕh

ϕmϕε

, ψKh = ζ

ϕε

,

ψα = ϕα

(
ζϕh

ϕ2
ε

)1/4

, ψt = ϕt

(
ζ 3

ϕhϕ2
ε

)1/4

. (36)

The universal functions ψR ≡ Ri (Eq. (28)), which in the
MOST terms are Ri = ζϕh/ϕ

2
m (see Eq. (15)) and ψh = ψKh/(1 +

m/Bo), were defined earlier and, for this reason, are not listed
in Eq. (36). Thus according to Eq. (36), the universal functions
(Eqs (28)–(32)) derived from dimensional reasoning also can
be deduced from the traditional MOST functions. This allows
recovering numerical coefficients in Eqs (33) and (34).

Combining Eqs (28), (35) and (36) in the neutral limit yields

aR = κ4/3, am = κ2/3, aKm = κ4/3, aKh = κ4/3

Prt0
,

aα = βακ1/3, at = βtκ

Prt0
. (37)

In a similar manner, in the very stable case

bR = βh

β2
m

= Ricr , bm = β
1/2
h

βε

, bKm = βh

βmβε

,

bKh = 1

βε

, bα = βα

(
βh

β2
ε

)1/4

, bt = βt

(βhβ2
ε )1/4

. (38)

Note that in the z-less limit, the vertical gradients of mean
wind speed and virtual potential temperature are related as
β(∂θv/∂z) = bR(∂U/∂z)2, that is, Ri = Ricr = βh/β

2
m.

Although relationships ((36)) derived in the framework of N –ε
scaling are combinations of the traditional Monin–Obukhov
functions, they lead to a number of important (and elegant)
relationships overlooked previously in the MOST. Based on
Eqs (14) and (15) and the experimental fact that ϕε

∼= ϕm (see
Eq. (24) and the discussion in section 3), the relationships
(Eq. (36)) can be rewritten as follows. The universal function
ψm, Eq. (29), is reduced to

τN/ε = √
Ri. (39)

The equivalent form for the non-dimensional turbulent
viscosity (Eq. (32)) is ψKm = ψmRi1/2 or

KmN2/ε = Ri. (40)

The non-dimensional relationships for the turbulent thermal
diffusivity in Eq. (32) also can be written in a similar simple form.
Substituting ψKh from Eq. (36) into the second Eq. (32) and
combining with Eqs (16) and (24) yields

KhN2/ε = Rf . (41)

Obviously, relationships (Eqs (39)–(41)) are a direct
consequence of Eq. (24).

The non-dimensional relationships for the temperature
flux (Eq. (30)) is ψh = Rf /(1 + m/Bo). Similarly, non-
dimensional relationships for the standard deviation of wind-
speed components ψα and the potential temperature ψt in
Eq. (36) are reduced to

σα√
ε/N

= βαRi1/4,
σtβ√
εN

= βtRf /Ri1/4, (42)

where ϕα = βα and ϕt = βt . The relationship for ψt also can
be expressed as ψt = βt(Rf 3/Prt)

1/4 = βtRi3/4/Prt . Note that
Eqs (39)–(42), in contrast to Eqs (28)–(32), do not contain z
and, thus, also can be used beyond the surface layer.

Equation (35), which relates the Dougherty–Ozmidov and
the Obukhov length scales, may also be simplified. Substituting
ϕε = ϕm in Eq. (31) and combining with Eqs (15) and (16) yields

L/LNε ≡ ξ/ζ = Ri3/4/(κRf ) = Prt/(κRi1/4) = Pr
3/4
t /(κRf 1/4).

(43)

The other two fundamental scales (Eq. (26)) are related to their

Monin–Obukhov counterparts through u∗/UNε = ψ
1/2
m = Ri1/4

and θ∗/θNε = Rf /Ri1/4.
Although most of the relationships (Eqs (39)–(43)) are

extremely simple they are valid for the whole range 0 < Ri < Ricr

and 0 < Rf < Rfcr , where both critical values Ricr and Rfcr are
about 0.20–0.25.

4.3. Analysis of the SHEBA data

Measurements of atmospheric turbulence made during the
SHEBA are used to plot different universal functions derived
earlier in the frameworks of ‘N –ε scaling’. Recall that the data
in all plots were quality controlled as described in section 2, and
the restrictions (Eq. (20)) on the gradient and flux Richardson
numbers have been imposed to filter out outliers and data points
where the Richardson–Kolmogorov cascade is not observed.
Theoretical dashed lines in various plots are based on ϕm = ϕε = 1
+ 5ζ ,ϕh = 0.9 + 4.5ζ and ϕw = βw = 1.3.

Figure 2(a) shows typical values of the Dougherty–Ozmidov

length scale LNε = √
ε/N3 observed in the stable atmospheric

boundary layer. The length scale LNε decreases with increasing
stability from about 100 to 1 m in the Ri range shown in
Figure 2(a). These values are in good agreement with previous
estimates of LNε by Hunt et al. (1985, Sec. 5), Stull (1988, Sec.
12.2.3) and Sorbjan and Balsley (2008, figure 6).

The stability parameter ξ = z/LNε versus the
Monin–Obukhov stability parameter (Eq. (8)), ζ = z/L,
is shown in Figure 2(b), where the dashed line is based on
Eq. (35). Note that the plot in Figure 2(b) by definition is not
affected by self-correlation because ξ shares no variables with
ζ except a reference height z. The greater scatter of points in
Figure 2(b) and several other plots in near-neutral conditions
results from the relatively small sensible heat flux and unreliable
temperature gradient measurements in this case. The relatively
large scatter of the bin-averaged data for level 1 and partially for
level 2 may be because levels 1 and 2 are located too close to the
surface (i.e. within roughness or blending sublayers) and are,
consequently, more affected by surface heterogeneity.

The universal function (Eq. (28)) ψR = Ri versus ξ = z/LNε

is plotted in Figure 3(a) in a log–log representation. A similar
plot of Rf versus ξ is shown in Figure 3(b). Dashed curves in
Figure 3 are based on parametric equations (15), (19) and (35)
for panel (a) and on (16), (19) and (35) for panel (b), where ζ
is a parameter. In the limit ξ → 0, both curves have a 4/3 slope,
that is, Ri, Rf ∝ ξ 4/3 (see also Eqs (33) and (35)).

Plots of the non-dimensional momentum flux (Eq. (29)),
ψm = τN/ε, and the non-dimensional turbulent viscosity
(Eq. (32)), ψKm = KmN2/ε, are shown in Figures 4 and 5
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Figure 2. (a) Behaviour of the Dougherty–Ozmidov length scale LNε = √
ε/N3

(bin medians) observed in the stable atmospheric boundary layer for SHEBA
data plotted against the gradient Richardson number (Eq. (15)). (b) Plot of the
bin-averaged stability parameter ξ = z/LNε versus the Monin–Obukhov stability
parameter (Eq. (8)), ζ = z/L. The dashed line is based on Eqs (35) and (19),
where βm = βε = 5.0, βh = 4.5 and Prt0 = βh/βm = 0.9. Symbols and notations are
the same as in Figure 1.
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Figure 3. Plots of the bin-averaged (a) gradient Richardson number, Ri, and (b)
flux Richardson number, Rf (bin medians), versus the Dougherty–Ozmidov
stability parameter ξ = z/LNε . Dashed curves are based on parametric
equations (15), (19) and (35) for (a) and on (16), (19) and (35) for (b),
where ζ is a parameter (βm = βε = 5.0, βh = 4.5, and Prt0 = βh/βm = 0.9). Symbols
and notations are the same as in Figure 1.

respectively. Panel (a) in Figures 4 and 5 shows plots of the non-
dimensional functions versus ξ , where asymptotic behaviour is
described by Eqs (33) and (37) in the limit ξ → 0 and by Eqs (34)
and (38) in the very stable case. Panel (b) in Figures 4 and 5 shows
plots of ψm and ψKm versus Ri, where the theoretical predictions
are described by the simple equations (39) and (40), respectively.

Figure 6(a) shows the non-dimensional turbulent thermal
diffusivity (Eq. (32)), ψKh = KhN2/ε, versus ξ . Asymptotes of
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Figure 4. Plots of the bin-averaged non-dimensional momentum flux (Eq. (29)),
ψm = τN/ε, versus (a) the Dougherty–Ozmidov stability parameter, ξ = z/LNε ,
and (b) the gradient Richardson number, Ri, see Eq. (39). Symbols and notations
are the same as in Figure 1.
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Figure 5. Same as Figure 4 but for the non-dimensional turbulent viscosity
(Eq. (32)), ψKm = KmN2/ε.

ψKh(ξ ) are described by Eqs (33) and (37) and (34) and (38), and
the dashed line is an interpolation curve. In contrast to the non-
dimensional turbulent viscosity, which is equal to the gradient
Richardson number, ψKm = Ri, Eq. (40), theory predicts that
the non-dimensional turbulent thermal diffusivity is equal to the
flux Richardson number, ψKh = Rf , Eq. (41). This dependence is
shown in Figure 6(b).

Figures 4(b), 5(b) and 6(b) show good agreement between
experimental data and theoretical predictions (Eqs (39)–(41)),
which are extremely simple and contain no additional calibration
constants. As discussed earlier, these results are a consequence
of the approximate local balance between viscous dissipation
and production of turbulence kinetic energy by the mean flow:
−<u′w′>(∂U/∂z) ≈ ε.

Note that, for practical applications, it is important to know
how ψKh depends on Ri rather than on Rf. Figure 7(a) plots
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Figure 6. Plots of the bin-averaged non-dimensional turbulent thermal diffusivity
(Eq. (32)), ψKh = KhN2/ε, versus (a) the Dougherty–Ozmidov stability
parameter, ξ = z/LNε , and (b) the flux Richardson number, Rf, see Eq. (40).
Symbols and notations are the same as in Figure 1.
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Figure 7. Plots of the bin-averaged non-dimensional turbulent thermal diffusivity
(Eq. (32)), ψKh = KhN2/ε, versus the gradient Richardson number, Ri. (a) No
restriction on Ri outliers are applied; (b) the prerequisite (Eq. (44)) has been
imposed on the individual data for all five levels and medians (× symbols) to
restrict the influence of the outliers.

the non-dimensional turbulent thermal diffusivity against Ri.
According to Figure 7(a), the scatter among different observation
levels for ψKh is very high, thus, ψKh has no universal behaviour if
it is plotted versus Ri. This result is somewhat unexpected because
a plot of ψKh versus Rf (Figure 6(b)) looks ‘fine’, and Rf is highly
correlated with Ri: Prt = Ri/Rf ≈ 0.9 for Ri and Rf < 0.2. One
may suggest that this behaviour is associated with the influence of
outliers on the bin-averaging (‘spurious bin-averaging’), as briefly
described in Grachev et al. (2008, pp. 159–160) and discussed in
detail by Grachev et al. (2012).

To limit the influence of outliers on the bin-averaging, we have
imposed a prerequisite on the data in the form

0.5 <Ri/RiSHEBA< 2 , (44)

where RiSHEBA = ζϕhSHEBA/ϕ2
mSHEBA is based on the SHEBA

profile functions, Eqs (10) and (12), computed for each level
separately. Sorbjan (2010) and Sorbjan and Grachev (2010) have
also used the prerequisite (Eq. (44)), particularly for their analysis
of the flux–profile relationships. Note that implementing the
prerequisite (Eq. (44)) in addition to the condition (20) will
further reduce the data retained for the analysis from 23% of the
original SHEBA dataset (see section 2) to about 11%.

Figure 7(b) shows the same plots as in Figure 7(a) but the
prerequisite (Eq. (44)) has been imposed on the individual data for
all five levels and medians (× symbols) to restrict the influence of
the outliers. According to Figure 7(b), applying the condition (44)
to the data dramatically improved the situation, that is, the plot of
ψKh versus Ri is now much more consistent with the theoretical
predictions (dashed line) as compared with Figure 7(a). Sorbjan
(2012) recently also discussed scatter among different observation
levels in plots in which Ri is the independent variable. However,
the scatter in Figure 7(a) cannot be reduced by using Blackadar’s
expression for the mixing length instead of κz, as proposed by
Sorbjan (2012), simply because Figure 7 contains no z.

A relationship similar to Eq. (41) is widely used in
oceanography to calculate the turbulent diffusivity for density
Kρ . The most common method of estimating Kρ was originally
proposed by Osborn (1980) and is based on the stationary TKE
equation, assuming a balance between the production of TKE, the
buoyancy flux and the dissipation of TKE, Eq. (23). According
to Osborn (1980) KρN2/ε = γ , where γ = Rf /(1 − Rf ) is the
mixing efficiency. An upper bound on the mixing efficiency
γ is traditionally taken as γ ≈ 0.2, which corresponds to
Rf = Rfcr ≈ 0.15 (Osborn, 1980; Oakey, 1982). In reality, γ
is likely to vary with stratification. The mixing efficiency γ and
the Osborn method, in general, are further discussed by Peters
et al. (1988), Weinstock (1992), Moum (1996), Smyth et al. (2001)
and Lozovatsky and Fernando (2002, 2013), among others.

Figure 8 shows plots of the normalized standard deviation
of the vertical wind-speed component, ψw = σw

√
N/ε versus

ξ = z/LNε (Figure 8(a)) and versus Ri (Figure 8(b)). Note that
a relationship for the non-dimensional standard deviation of
wind-speed components in a general form σα/(LNεN) = ψα(Ri)
for α = u can be found in Ozmidov (1998, Eq. (10)), although
without a specification for ψα(Ri). According to our study,
ψα(Ri) = βαRi1/4, Eq. (42), and βw = 1.3 for α = w. In fact,
Eq. (42) for σu in implicit form is contained in Lozovatsky
and Ozmidov (1979). According to Lozovatsky and Ozmidov,
σu/(lN) = 0.8Ri−1/2 and ε/(l2N3) = 0.6Ri−3/2, where l is the
turbulence length scale that is associated with the wavenumber of
the energy-containing eddies (spectral peak) in the spectrum of
the longitudinal velocity component and should be determined
experimentally. Combining these two equations from Lozovatsky
and Ozmidov leads to σu

√
N/ε = βuRi1/4 with a numerical

coefficient approximately equal to 1.
Our relationships (Eq. (42)) are also consistent with previous

predictions for various parameters versus Ri (Ri < Ricr) derived
in a different context through completely different theoretical
means by Rohr et al. (1988), Luketina and Imberger (1989),
Weinstock (1992), Schumann and Gerz (1995) and Baumert and
Peters (2000). In particular, Schumann and Gerz (1995, figure 12)
predict eN/ε ∝ Ri1/2 for Ri < Ricr , where e is TKE. This result can
be derived from Eq. (42) for σα . The model by Baumert and Peters
(2000) predicts the ratio between the Thorpe length scale (or
Ellison length scale) and the Dougherty–Ozmidov length scale,
LT/LNε ∝ Ri3/4 (see also Weinstock, 1992), and the ratio of the
Thorpe length scale and the buoyancy length scale, LT/LB ∝ Ri1/2,
where LB = √

e/N and Ri < Ricr = 0.25. Obviously, LB/LNε ∝
Ri1/4 is again consistent with Eq. (42) for σα .

5. Final remarks and discussion

We developed a local similarity theory for the stably stratified
boundary layer that is based on the Brunt–Väisälä frequency

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2014)
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Figure 8. Plots of the bin-averaged non-dimensional standard deviation
of the vertical wind-speed component, ψw = σw

√
N/ε, versus (a) the

Dougherty–Ozmidov stability parameter, ξ = z/LNε , and (b) the gradient
Richardson number, Ri. Symbols and notations are the same as in Figure 1.

N, the dissipation rate of TKE ε and the buoyancy parameter
β . These three variables are the governing (scaling) parameters,
Eq. (25), similar to the turbulent fluxes and β , Eq. (4), used
in the traditional MOST. The scaling parameters (Eq. (25))
uniquely define a system of three fundamental scales for the
length, velocity and temperature (Eq. (26)). A buoyancy length

scale constructed from N and ε,LNε = √
ε/N3, was originally

suggested by Dougherty (1961) and independently by Ozmidov
(1965) and, here, it is referred to as the Dougherty–Ozmidov
length scale (in oceanography, it is known as the Ozmidov length
scale).

Based on dimensional analysis (Pi theorem) and repeating the
Monin–Obukhov formalism described in section 3, but using N
and ε instead of the turbulent fluxes, we show that any statistics
of the small-scale turbulence properly scaled with Eq. (26) are
universal functions of a stability parameter defined as the ratio of
height z and the Dougherty–Ozmidov length scale (section 4.1).
The Dougherty–Ozmidov length scale LNε is uniquely related
to the Obukhov length, Eq. (35), and in the limit of z-less
stratification, they are linearly proportional to each other. The
applicability of the approach as well as the MOST in stable
conditions is limited by the inequalities (Eq. (20)), Ri < Ricr

and Rf < Rfcr , where both critical values Ricr and Rfcr are about
0.20–0.25 (cf. Grachev et al., 2013).

Because the scaling system N,ε and β is traditionally used in
oceanography, our approach can be considered as a description of
the atmospheric turbulence in ‘oceanographic language’, or as a
link between descriptions of atmospheric turbulence and oceanic
vertical mixing. Equations (28)–(32), in which ξ = z/LNε is the
independent variable, can be used to study near-bottom oceanic
turbulence (e.g. Peters and Johns, 2006; Lozovatsky et al., 2008,
2010, and references therein) or the oceanic boundary layer under
pack ice (McPhee, 2008). It can be assumed that N –ε scaling
(section 4) is more suitable for describing the dimensionless
oceanic spectra (e.g. Lien and Sanford, 2004; Walter et al., 2011)
than the traditional MOST.

Our approach leads to a number of important (and simple)
relationships (Eqs (39)–(42)) (in which Ri or Rf are the
independent variable) overlooked previously in the MOST and in
oceanography (e.g. Eq. (39)). Note that Eqs (39)–(41), in contrast

to the traditional MOST relationships, for example, Eqs (10)
and (12), have explicit forms and do not contain calibration
coefficients. Moreover, Eqs (28)–(32) contain no z and, thus,
also can be used far from the surface. This is due to the fact
that the relationships (Eqs (39)–(41)) are a consequence of the
approximate local balance between production of turbulence by
the mean flow and viscous dissipation, Eq. (24).

Although the approach proposed is formally equivalent to the
MOST (see section 4.2), it can be used as its replacement in the
case when the turbulent fluxes (primary governing variables in
the MOST) are not available or cannot be measured directly.
Examples of such situations include the previously mentioned
small-scale oceanic turbulence or measurements of atmospheric
turbulence by a hot-wire anemometer from aircraft, helicopters or
balloons (e.g. Muschinski et al., 2001; Sorbjan and Balsley, 2008).
Thus the practical importance of the current study is associated
with the description of the various small-scale turbulent statistics
(including the fluxes) based on measured values of N and ε.

It is apparent that the MOST functions ϕm, ϕh, ϕα , etc. are also
universal functions of the stability parameter ξ = z/LNε , and, vice
versa, ‘new’ functions ψm, ψh, ψα , etc. are universal functions of
the MOST stability parameter (Eq. (8)), ζ = z/L. This is because
the Dougherty–Ozmidov length scale LNε is uniquely related
to the Obukhov length according to Eq. (35). Such a ‘hybrid’
representation allows plotting functions that by definition are not
affected by self-correlation (cf. Grachev et al., 2013, fig. 16). For
example, a plot of the MOST non-dimensional vertical gradient of
mean wind speed (Eq. (10)), ϕm, versus the Dougherty–Ozmidov
stability parameter ξ = z/LNε is not affected by self-correlation
because ϕm shares no variables with ξ except a reference height
z (the plot is not shown here). At the same time, straightforward
plots of ϕm versus ζ (Figure 1(a)) and ψm versus ξ (Figure 4(a))
are affected by self-correlation.

Local similarity theory based on the scaling system {N,ε,β}
derived here is not the only option for a reformulation of
the MOST. There are many other choices to build up a local
similarity theory in the SBL based on different combinations of
the scaling parameters. Sorbjan (2006, 2008, 2010) formulated
such an approach. The choice of a certain scaling system should
be based on the convenience and on the possibility of measuring
specific parameters. In addition to the scaling systems by Smeets
et al. (2000) and Sorbjan (2006, 2008, 2010) mentioned in
section 1, the following promising scaling systems are worth
mentioning: {σw, σt , β} and {ε,χ ,β}, where χ is the mean
thermal dissipation rate. These scaling systems are associated
with the buoyancy length scales Lwt = σ 2

w/(βσt) and Lεχ =
ε5/4/(β3/2χ 3/4) (Bolgiano–Obukhov length), respectively. Note
that the last scaling is equivalent to {C2

U , C2
T , β}, where

C2
U = 4αε2/3 and C2

T = 4αTχε−1/3 are the structure parameters
(α ≈ 0.5–0.6 is the Kolmogorov constant and αT ≈ 0.8) (e.g.
Kaimal and Finnigan, 1994).
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