
1.  Introduction
Upper ocean stratification is the result of processes that form or advect low-density water layers on top of high-
er-density water layers. Stratification is affected by many processes, including upwelling, wind stirring, warming 
from solar radiation, salinification due to evaporation, and surface freshening from precipitation and river run-off 
(Asher et al., 2014; Bellenger & Duvel, 2009; Drushka et al., 2016; Hughes et al., 2020; Kraus & Turner, 1967; 
Soloviev & Lukas, 1997; Thompson et al., 2019). Ocean stratification regulates vertical mixing of heat, nutrients, 
and gases, and affects climatologically important low-frequency ocean processes, such as the formation of North 
Atlantic deep water (Broecker, 1991), carbon uptake (Watson et al., 2020), and the El Niño-southern Oscillation 
(Cronin & McPhadden, 2002).

Abstract  Surface freshening through precipitation can act to stably stratify the upper ocean, forming a 
rain layer (RL). RLs inhibit subsurface vertical mixing, isolating deeper ocean layers from the atmosphere. 
This process has been studied using observations and idealized simulations. The present ocean modeling study 
builds upon this body of work by incorporating spatially resolved and realistic atmospheric forcing. Fine-
scale observations of the upper ocean collected during the Dynamics of the Madden-Julian Oscillation field 
campaign are used to verify the General Ocean Turbulence Model (GOTM). Spatiotemporal characteristics of 
equatorial Indian Ocean RLs are then investigated by forcing a 2D array of GOTM columns with realistic and 
well-resolved output from an existing regional atmospheric simulation. RL influence on the ocean-atmosphere 
system is evaluated through analysis of RL-induced modification to surface fluxes and sea surface temperature 
(SST). This analysis demonstrates that RLs cool the ocean surface on time scales longer than the associated 
precipitation event. A second simulation with identical atmospheric forcing to that in the first, but with rainfall 
set to zero, is performed to investigate the role of rain temperature and salinity stratification in maintaining 
cold SST anomalies within RLs. Approximately one third, or 0.1°C, of the SST reduction within RLs can be 
attributed to rain effects, while the remainder is attributed to changes in atmospheric temperature and humidity. 
The prolonged RL-induced SST anomalies enhance SST gradients that have been shown to favor the initiation 
of atmospheric convection. These findings encourage continued research of RL feedbacks to the atmosphere.

Plain Language Summary  Rain water that falls on the tropical ocean is colder, fresher, and less 
dense than ambient ocean water. Under low-to-moderate winds, the colder, fresher, and less dense rain water 
floats on the ocean surface and does not readily mix with the warmer, saltier, and more dense water below. 
This separates the relatively warmer subsurface ocean from the atmosphere above and changes how energy 
is exchanged between the ocean and atmosphere. We expand upon previous studies of how rainfall affects 
the ocean surface by simulating rainfall over a small region of the equatorial Indian Ocean under a variety of 
atmospheric and oceanic conditions. This allows us to analyze the lifetime and size of the colder, fresher layers 
that form on the ocean surface following rainfall. Additionally, we examine how colder sea surface temperatures 
created by rainfall may influence the atmosphere. Our results indicate that rain-cooled ocean surfaces continue 
to impact the atmosphere after the rain event has ended, and may lead to the development of clouds and 
precipitation in the areas surrounding the colder ocean surface. This finding encourages further research on how 
rain-driven changes to temperature and salinity at the ocean surface impacts the atmosphere.
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On shorter time scales, near-surface stable layers induced by the diurnal cycle of surface solar heating are clas-
sified as diurnal warm layers (DWLs) while those induced by freshwater fluxes from rainfall are classified as 
rain layers (RLs), or freshwater lenses. Stabilization within RLs and DWLs shoals (i.e., makes more shallow) the 
ocean mixed layer and reduces vertical mixing between the near-surface ocean and the ocean mixed layer by alter-
ing upper ocean temperature and salinity profiles. Through their ability to resist vertical mixing, these shallow 
stable layers may then confine subsequent surface inputs of heat, momentum, and freshwater to the upper 1–10 m 
of the ocean. Changes to sea surface temperature (SST) and sea surface salinity (SSS) within these near-surface 
stable layers modify fluxes of heat, moisture, and momentum across the air-sea interface.

The spatially broad and temporally regular nature of DWLs has allowed for extensive study of these phenom-
ena, and their impact upon atmospheric convection is well-documented (Bellenger & Duvel, 2009; Bellenger 
et al., 2010; de Szoeke et al., 2021). Increased SST within DWLs deepens the atmospheric boundary layer and 
helps regulate the diurnal cycle of convection in the tropics, and inclusion of DWL parameterizations in atmos-
pheric models has improved forecasting of the MJO (Woolnough et al., 2007; Zhao & Nasuno, 2020) and ENSO 
(Masson et al., 2012; Terray et al., 2012), indicating that DWLs contribute to climate variability on the intrasea-
sonal and interannual time scales. However, while DWLs are the result of diurnal surface heating that is often 
quasi-uniform over large scales, RLs are the result of intermittent precipitation which can be highly irregular for a 
given location. As such, less is known about the spatiotemporal characteristics of RLs or their cumulative effects 
on the atmosphere.

While multiple studies record changes to upper ocean profiles within DWLs (Bellenger & Duvel, 2009; Fairall, 
Bradley, Godfrey, et al., 1996; Hughes et al., 2020; Soloviev & Lukas, 1997; Stuart-Menteth et al., 2003), knowl-
edge of how RLs adjust upper ocean salinity and temperature profiles, as well as air-sea exchange, has been 
limited by observational constraints. Currently, operational satellites tasked with measuring SSS include the Soil 
Moisture, Active/Passive (SMAP; Vinogradova et al., 2019), with a 40 km footprint and 2–3 days revisit time, and 
the Soil Moisture Ocean Salinity (SMOS; Vinogradova et al., 2019), with a 43 km footprint and 3–5 days revisit 
time, which are too infrequent and spatially coarse to capture the impacts of convective scale to mesoscale surface 
freshening (DeMott & Rutledge,  1998; Richenback & Rutledge,  1998). Moorings provide nearly continuous 
observations at the coarse horizontal resolution, but their coarse vertical resolution of the upper ocean prevents 
investigation of the near-surface impacts of RLs. Similarly, operational Argo floats are usually limited by coarse 
upper ocean vertical resolution, as well as coarse horizontal and temporal sampling (Gould et al., 2004). The most 
useful observations for investigating RLs have been provided by field campaigns, which allow for ship-based, 
collocated ocean-atmosphere observations, with frequent sampling and fine-scale vertical resolution. However, 
field campaigns are held infrequently and for limited duration, thus limiting the direct observation of changes to 
SSS, SST, and surface fluxes within RLs.

Thompson et  al.  (2019) used upper ocean observations collected in the equatorial Indian Ocean as part of 
the Dynamics of the Madden-Julian Oscillation field campaign (DYNAMO; Yoneyama et al., 2013) to study 
near-surface stabilization in DWLs and RLs. They found that while the freshening and cooling of the upper ocean 
have opposing effects on stability, the positive buoyancy produced by freshening is generally about an order of 
magnitude greater than the negative buoyancy produced by cooling. Additionally, they observed that RL-induced 
buoyancy is strong enough to withstand nocturnal ocean convective mixing and wind-driven mixing for wind 
speeds up to 9.8 m s −1 for the heaviest rain rates. Mean RL lifetime observed by Thompson et al. (2019) was 5 hr, 
with some RLs lasting nearly a full day. Thus, the typical RL lifetime is longer than the typical lifetime of rain 
events that initiate RLs (Hagos et al., 2013).

RL persistence on the scale of hours suggests that RL lifetimes are long enough to impact the atmospheric 
boundary layer (DeMott et al., 2015; de Szoeke et al., 2017), but RL feedback to atmospheric convection is not 
straight-forward. Locally, RLs stabilize and cool the upper ocean, potentially hindering the initiation of new 
convection (Ruppert & Johnson, 2016) and reducing the maintenance of existing convection by surface fluxes 
(Riley Dellaripa & Maloney, 2015). However, sharp SST gradients exist between the RL and surrounding ocean, 
generating horizontal pressure gradients that act to initiate boundary layer convergence and stimulate atmos-
pheric convection (Back & Bretherton, 2009a, 2009b; Li & Carbone, 2012; Rydbeck et al., 2019; Skyllingstad 
et al., 2019). The nature of the atmospheric response to RL formation remains an important open question for 
understanding the impact of freshwater ocean surface stratification on atmospheric convection.
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Recently, idealized model experiments have increased understanding of RL characteristics, revealing the 
importance of rain rate, wind speed, and background ocean stratification in regulating RL behavior (Drushka 
et al., 2016; Iyer & Drushka, 2021b; Soloviev et al., 2015). While experiments investigating RLs in an ideal-
ized environment have provided insight into upper ocean response to precipitation, the collective effects of RLs 
under realistic, time-varying atmospheric forcing on SST patterns, surface fluxes, and feedbacks to atmospheric 
convection is less understood. We aim to address this knowledge gap with a modeling study designed to answer 
the following science questions:

1.	 �What is the size, frequency, duration, and intensity of equatorial Indian Ocean RLs on monthly time scales?
2.	 �To what extent do RLs alter surface fluxes and create small-scale networks of SST gradients?

To address these questions, a 1-dimensional water column model is used to simulate freshwater stratification in 
the equatorial Indian Ocean. The design of the model simulations is discussed in Section 2. The model is first 
verified when forced with surface observations collected during DYNAMO and compared to observed ocean 
stability profiles. Results from this analysis are shown in Section 3. After model verification, a 50 × 50 km 2D 
array of 1D columns is forced with surface meteorology at 2 km resolution from an existing simulation of the 
regional atmospheric Weather Research and Forecasting model (WRF; Skamarock et al., 2019). Stratification by 
surface freshening is analyzed to determine spatial and temporal characteristics of RLs that result from the multi-
tude of spatially and temporally inhomogeneous, model-simulated rain and wind events. We present results from 
this analysis in Sections 4 and 5, and further discuss the implications of these results in Section 6. In Section 7, 
we conclude with a brief summary that highlights the primary conclusions of this study.

2.  Methods
In this section, the General Ocean Turbulence Model (GOTM) is introduced (Section 2.1). The specifics of two 
model simulations are discussed, where the first simulation serves the purpose of model verification (Section 2.2), 
while the second is used to generate statistics describing RL characteristics and variability of upper ocean stabil-
ity (Section 2.3).

2.1.  Model Configuration

GOTM is a water-column model that computes solutions for the one-dimensional version of the transport equa-
tions of momentum, salt, and heat (Burchard et al., 1999). The version of GOTM implemented in this study 
closely follows the model setup of Drushka et al. (2016), which has been shown to effectively replicate upper 
ocean temperature and salinity response to rainfall. This version of GOTM utilizes a second-order turbulence 
closure scheme (Canuto et al., 2001) with dynamic dissipation rate equations for the length scales. Fluxes are 
calculated following the Coupled Ocean-Atmosphere Response Experiment bulk flux algorithm (Fairall, Bradley, 
Rogers, Edson, & Young, 1996), which uses skin temperature to compute surface fluxes. Longwave radiation is 
calculated following Clark et al. (1974). GOTM assumes wet bulb temperature for rainfall, which is supported by 
observations (Gosnell et al., 1995). The model is run with a 10 s time step and initialized to a depth of 70 m with 
10 cm vertical resolution. GOTM's sensitivity to upper ocean vertical resolution was tested at vertical resolutions 
of 1, 10, 50, and 100 cm, and negligible improvement was seen in model performance at vertical resolution 
below 10 cm. GOTM receives surface forcing input in the form of horizontal components of the 10 m winds, and 
surface values of air temperature, air pressure, relative humidity, incident shortwave radiation, and rain rate. In 
this study, GOTM is forced first using observations collected during the DYNAMO field campaign (Gottschalck 
et al., 2013; Yoneyama et al., 2013), and then using WRF model output from a 2014 study by Hagos et al. (2014). 
The details of the surface forcing data are outlined in the following sections.

2.2.  Model Verification and DYNAMO Data

The DYNAMO field campaign was conducted in the Indian Ocean from October 2011 through March 2012, 
with the purpose of observing convective initiation processes associated with the MJO. The field campaign was 
an international effort featuring two quadrilateral sounding arrays, multiple radars, simultaneous and continuous 
observations of atmospheric and oceanic profiles conducted from three moorings and two ships (research vessel 
(R/V) Roger Revelle and R/V Mirai), twin sites in the Indian Ocean (Addu Atoll) and Western Pacific (Manus 
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Island) to sample the MJO at its initiation, mature, and dissipating phases, 
and an aircraft operation for sampling atmospheric and oceanic coupled 
boundary layers (Chen et al., 2016; Yoneyama et al., 2013).

Of interest for this study are the high-frequency atmospheric and oceanic 
observations collected from the R/V Revelle (80.5°E, 0°N) during the 5 
October through 30 October and 11 November through 7 December 2011 
DYNAMO observing periods. Each period sampled one full MJO event 
(Gottschalck et al., 2013), and thus featured a broad spectrum of ocean-at-
mospheric variability, from strongly suppressed and light-rain conditions to 
highly disturbed and heavy-rain conditions. The observations from the R/V 
Revelle are unique in that they feature collocated ocean-atmosphere observa-
tions that are high-resolution both temporally (upper ocean profiles observed 
at roughly 7 min intervals), and vertically (1 m resolution for upper ocean 
observations; Moum et al., 2014). The fine vertical resolution of the upper 
ocean observations, which begin at a depth of 2–3 m (Thompson et al., 2019), 
allows for detailed comparisons of GOTM output to observations made from 
the R/V Revelle. Additionally, the frequent nature of the observations allows 
for transient rain events to be effectively captured within both meteorolog-
ical surface data and near-surface ocean temperature and salinity profiles. 
Thompson et al. (2019) analyzed these same observations to study RLs and 
DWLs.

For the first DYNAMO simulation, GOTM is initialized with temperature and salinity profiles from the R/V 
Revelle on 6 October 2011 at 01:30:00 UTC, and is then forced with atmospheric observations at 10 min inter-
vals until 12:00:00 UTC on 30 October (Figure 1). For the second DYNAMO simulation, GOTM is initialized 
with temperature and salinity profiles from the R/V Revelle on 11 November 2011 19:20:00 UTC and is again 
forced with atmospheric observations at 10 min intervals until 8 December 2011 05:30:00 UTC. No relaxation 
to an observed or climatological mean temperature and salinity profile was needed to replicate the observed 
upper ocean conditions. Each simulation captures observed intraseasonal variability attributable to the MJO, with 
conditions varying from fair weather with low cloudiness, light rainfall, calm winds, and high incident shortwave 
radiation during the MJO suppressed phase to deep and widespread cloudiness, heavy precipitation, strong winds, 
and reduced surface solar radiation during the MJO disturbed phase, enabling comparison of GOTM model 
output to observations under diverse conditions.

For each DYNAMO simulation, GOTM stability profiles are calculated using vertical gradients in potential 
density to find the Brünt-Vaisala frequency, N 2:

𝑁𝑁2
=

𝑔𝑔

𝜎𝜎

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� (1)

As salinity and temperature both play important roles in ocean stratification, upper ocean stability as indicated 
by N 2 is governed by vertical gradients of both quantities. To view temperature (T) and salinity (S) contributions 
to N 2 separately, N 2 can be decomposed into its temperature and salinity components, 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 and 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 , defined as:

𝑁𝑁2

𝑇𝑇
= 𝑔𝑔 ⋅ 𝛼𝛼 ⋅

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� (2)

𝑁𝑁2

𝑆𝑆
= 𝑔𝑔 ⋅ 𝛽𝛽 ⋅

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� (3)

where β is the haline contraction coefficient of seawater, and α is the thermal expansion coefficient of seawater:

𝛽𝛽 =
1

𝜎𝜎

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� (4)

𝛼𝛼 =
−1

𝜎𝜎

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� (5)

Figure 1.  Model domain for the two General Ocean Turbulence Model 
simulations: the location of the R/V Revelle during Dynamics of the Madden-
Julian Oscillation field campaign (purple) and domain for the 2D array 
experiment (red box). The inset grid displays the dimensions and layout of the 
2D array.
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This decomposition allows for identification of RLs, which are present when the upper ocean is stably stratified 
with respect to both total N 2 and it's salinity component, 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 , and DWLs, which are present when the upper ocean 

is stably stratified with respect to both total N 2 and it's temperature component, 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 . Following the methods of 

Thompson et al. (2019), the column is considered to be stable if N 2 > 4.5 × 10 −5 s −1 for two consecutive vertical 
layers; otherwise, the column is considered well-mixed. Modeled N 2 values are computed every 0.5 m for the 
upper 20 m of the ocean; thus, minimum thickness for a layer to be considered stable is 1 m. For both observa-
tional and model analysis, the upper ocean is considered well-mixed if no stable layers are identified in the upper 
20 m of the ocean. Observations synthesized by Thompson et al. (2019) were used to validate model output. Since 
observations are collected with a vertical resolution of 1 m, the column is considered stable for two consecutive 
1 m layers and the minimum thickness of observed stable layers is 2 m, compared to a minimum thickness of 1 m 
for modeled stable layers.

2.3.  WRF Data and GOTM 2D Array

For the second portion of this study, a 2D array of GOTM columns is forced with model output from a WRF 
simulation conducted by Hagos et al. (2014). WRF was run at 2 km horizontal resolution over a 3° × 3° lati-
tude-longitude area within the Indian Ocean DYNAMO domain from 1 October 2011 to 30 November 2011. 
This grid spacing is fine enough to resolve individual convective systems while the domain is large enough and 
the simulation long enough to capture lifecycles of convective systems associated with synoptic scale features 
(Chen et al., 1996; Hagos et al., 2014) This makes the WRF data well-suited for this study: the 2 km grid spacing 
resolves atmospheric convective-scale forcing of the upper ocean, while the spatial domain allows for the devel-
opment of organized mesoscale convective systems that contribute to the variability of surface forcing. Surface 
boundary conditions in the WRF simulation are provided by ERA-Interim reanalysis, and applied at 6 hr inter-
vals. Comparison between WRF precipitation output and TRMM satellite observations shows that while WRF is 
able to capture the overall eastward propagation of the two MJO events during October and November 2011, the 
model precipitation tends to be higher than TRMM observations. Hagos et al. (2014) attribute this discrepancy to 
the model resolution, which limits turbulent mixing and evaporation of rain. Further details on the WRF param-
eterizations can be found in Hagos et al. (2014) (Figure 1).

To investigate spatiotemporal variability of RLs, the 2D array of GOTM columns is forced with output from 
the WRF simulation over a 50 × 50 km grid, centered over 75°E, 0°N with 2 km grid spacing. This 50 × 50 km 
domain allows investigation of fine-scale spatial variability of upper ocean temperature and salinity profiles, 
SST, and SSS on scales smaller than those currently resolved by most global models and satellite-estimated SSS 
products. Initial conditions for the temperature and salinity profile at each grid cell are obtained from the Hybrid 
Coordinate Ocean Model (HYCOM) reanalysis data set (Chassignet et  al.,  2007). HYCOM provides vertical 
temperature and salinity at depths of 0.05, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70 m, which are 
then linearly interpolated by GOTM to a 10 cm grid spacing from 0 to 70 m. The more coarse horizontal grid 
spacing in the HYCOM reanalysis (0.08°) is linearly interpolated to the WRF grid. Analysis of the DYNAMO 
simulations shows GOTM sensitivity to small variations in initial temperature and salinity profiles to be small 
compared to variations introduced via surface forcing. The 2D array simulation is run from 00 UTC 1 November 
2011 to 18 UTC 30 November 2011. GOTM is again forced at 10 min intervals with no relaxation to a reference 
temperature or salinity profile.

We use GOTM output from the 2D array simulation to conduct a statistical analysis detailing RL characteristics. 
The 2D domain allows for analysis of RL characteristics under spatially variable wind and rain forcing over a 
typical MJO lifecycle, for a satellite footprint-sized domain. To conduct this analysis, we first use the stable layer 
identification algorithm described in Section 2.2 to detect RLs. We then investigate RL behavior as a function of 
rain rate, wind speed, and background ocean stratification (Section 4.1). In Section 4.2, we make approximations 
of RL size as determined by RL equivalent diameter and in Section 4.3, we analyze reduced mixing in RLs using 
the temperature tendency equation in GOTM. Finally, we examine the potential for RLs to influence the atmos-
pheric boundary layer by repeating the second simulation over the 2D domain without rain forcing (i.e., rain rate, 
R = 0 everywhere, for all time steps) but with all other atmospheric forcing fields identical (Section 5).
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3.  Model Verification: Comparisons to DYNAMO Observations
While previous studies have verified the ability of GOTM to simulate observed upper ocean response to precipita-
tion (Drushka et al., 2016), upper ocean observations from the R/V Revelle allow for a more detailed comparison 
of stable layers analyzed by Thompson et al. (2019) to those simulated by GOTM. Furthermore, the October and 
November DYNAMO legs provide an opportunity to evaluate GOTM performance under different background 
conditions, as an advection event brought high salinity water from the Arabian Sea into the DYNAMO domain 
between the October and November observing periods. The high-salinity water mass contributed to the formation 
of a barrier layer that was present throughout the November observation period.

Initial steps in model verification involve comparison of GOTM temperature and salinity profiles to profiles 
observed during the October and November DYNAMO legs. Time series comparison between GOTM SST and 
observed SST for both simulations confirms that the model effectively replicates the strong diurnal cycle of SST 
during suppressed MJO conditions, as well as the reduced, diurnally uniform SST during active MJO condi-
tions and westerly wind burst (WWB) events (Figure 2). Modeled SST mean absolute error for the October and 
November observing periods is 0.14°C and 0.24°C, respectively.

Composite analysis is used to make qualitative comparisons between N 2 profiles computed using model output 
and observations for the October and November DYNAMO observing periods. For the composite analysis, each 
24 hr, 1-day period in the simulation is binned by daytime mean wind speed in intervals of 2 m s −1, and the mean 
N 2, 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 , and 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 profiles are computed for each wind regime. These composites are then compared to observed 

N 2, 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 , and 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 profiles, that is, those computed by Thompson et al. (2019) from DYNAMO temperature and 

salinity observations. Each wind speed interval tends to include multiple days, thus, the composite N 2 profiles 
are dominated by DWLs and the effects of individual precipitation events are generally not detected. However, 
this enables a more general evaluation of model performance in capturing changes in vertical stratification as a 
function of wind speed. Composite N 2 profiles shown in Figure 3 demonstrate that GOTM mixing reproduces 
stratification characteristics of different wind regimes: a persistent, shallow, and strong diurnal signature is pres-
ent on days with calm winds, a diminished, but deeper, diurnal signature is present on days with moderate winds, 
and virtually no diurnal signal is detectable on the windiest days, when turbulent mixing is too strong for ocean 
stratification to develop. Model performance is consistent across the October and November simulations, thus 
verifying the ability of GOTM to effectively reproduce upper ocean stability profiles under different background 
ocean stratification. Profiles of N 2 variability computed from GOTM also agree well with those observed during 
DYNAMO (not shown).

Figure 2.  Modeled (orange) and observed (blue) sea surface temperature (SST) time series for the October (left) and November (right) Dynamics of the Madden-Julian 
Oscillation field campaign observing periods.
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In order to assess model performance in simulation of individual freshening events, an RL detection algorithm is 
utilized to identify RLs, following criteria outlined in Section 2.2 of this article. It is important to note that salin-
ity observations recorded during DYNAMO begin at a depth of 2–3 m, due to interference from the ship's wake 
in the upper 2 m of the ocean. Thus, it is useful to evaluate freshening events associated with high precipitation 
amounts and >2 m s −1 wind speed, as these freshening events generally affect the 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 profile to a depth greater 

than 2 m. One such case of an RL event with a strong signature below 2 m is found in DYNAMO observations 
from 28 November when an RL was identified from 02 UTC to 05 UTC. Observed and modeled stability profiles 
for the 28 November case can be seen in Figure 4. The 28 November RL developed following sustained precipita-
tion of >10 mm hr −1, and during a period of reduced wind speeds (<10 m s −1) within a longer WWB event, allow-
ing a short-lived RL to form. Figure 4 demonstrates that GOTM is able to reproduce the onset, stabilization, and 
duration of the observed RL. 28 November is of further interest as a daily case study due to the sustained precip-
itation that occurred throughout the day. The high winds present during the day prevented sustained stratification 
of the upper ocean, but Figure 4 reveals multiple brief stratification events in GOTM stability profiles. These 
highly transient RLs coincide with temporary reductions in wind speed seen throughout the day that allowed for 
the upper 1–2 m of the ocean to become stably stratified. While some of these stratification events are evident in 
observations, the lack of salinity observations in the upper 2 m inhibits identification of the thinnest RLs.

4.  RL Statistics From 2D Forcing Experiments
This section applies results from the 2D array simulation to produce statistics defining spatiotemporal charac-
teristics of equatorial Indian Ocean RLs. The array of GOTM columns is forced at 10 min intervals with output 
from a WRF simulation conducted by Hagos et al.  (2014); see Section 2.3. We emphasize that these are not 

Figure 3.  Daily 𝐴𝐴 𝐴𝐴2

𝑇𝑇+𝑆𝑆
 profiles composited by daily wind regime for General Ocean Turbulence Model GOTM, left and observations (right). Red indicates stable, blue 

indicates unstable. Number of days within a given wind regime is given by n.
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ocean-atmosphere coupled simulations. The output from the WRF simulation is simply used to force the 2D 
GOTM array, and any changes to SST are not communicated to the atmosphere.

For the 2D array simulation, the RL identification algorithm iterates grid cell by grid cell searching the upper 
3 m of the ocean for RLs at each time step. Because each GOTM column mixes independently from neighbor-
ing columns, we consider each RL-capped column as a separate, distinct RL when computing RL duration, 

frequency, and intensity statistics (Section 4.1). However, we consider adja-
cent RL-capped columns to be part of a single, larger RL when computing 
RL size statistics (Section 4.2).

4.1.  RL Duration, Frequency, and Intensity

The duration of RLs over the course of the simulation is highly variable, with 
modeled RLs persisting on time scales of minutes to days. The distribution 
of RL lifetime is skewed, as 32% of RLs last less than 30  min, 48% last 
less than 1 hr, and 96% last less than 1 day (Figure 5). Mean RL duration is 
roughly 4.5 hr, which conforms to statistics of RL lifetimes observed during 
DYNAMO (Thompson et al., 2019), while median RL duration is just over 
1 hr. Although RLs occur at all times, there is a slight increase in RL forma-
tion in the early morning and mid-afternoon, which is consistent with the 
mean diurnal cycle of precipitation over tropical oceans during convectively 
active and suppressed conditions, respectively (Sui et al., 1997). Overall, RLs 
are present in 26% of all model time steps, a higher frequency than the 16% 
observed by Thompson et al. (2019) during DYNAMO.

Figure 4. 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 (top), 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 (middle), 𝐴𝐴 𝐴𝐴2

𝑇𝑇+𝑆𝑆
 (bottom), for 28 November 2011 for General Ocean Turbulence Model (GOTM, left) and observations (right). Red indicates 

stable, blue indicates unstable.

Figure 5.  Histogram of rain layer (RL) lifetime frequency, binned by 20 min 
intervals (left y-axis), and cumulative frequency (black line; right y-axis).
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During periods of low to moderate winds, RLs persist for several hours to 
over a day, and occur more frequently (Figure  6). This is reflected by an 
RL presence of 32% for time steps when column wind speed is <5 m s −1, 
in comparison to an RL presence of 14% for time steps when column wind 
speed is >5 m s −1. The 99th percentile wind speed in the presence of RLs is 
11.4 m s −1, slightly greater than the 99th percentile wind speed of 9.8 m s −1 
observed by Thompson et al. However, the 95th percentile wind speed in the 
presence of RLs is 7.97 m s −1, indicating that rain-induced stratification at 
wind speeds above 8 m s −1 is typically short-lived. When no RLs are present, 
the 95th percentile wind speed is 10.1 m s −1. The large discrepancy between 
95th percentile wind speeds in the presence (7.97 m s −1) and absence (10.1 m 
s −1) of RLs implies that RLs occur infrequently at wind speeds above 8 m s −1.

Stability profiles of temperature and salinity in the upper ocean are sensi-
tive to wind speed, with the strongest stabilization of both occurring most 
frequently at wind speeds below 5  m s −1. Histograms of 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 and 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 as a 

function of wind speed for all model time steps and grid cells are shown 
in Figure 7, and reveal a higher frequency of strong stability in the salinity 
profile in comparison to the temperature profile. The higher frequency of 
strong stabilization in the salinity profile is especially evident at higher wind 
speeds, which is consistent with observational analysis of RLs and DWLs 
(Thompson et al., 2019).

Instability can be identified within the temperature profile at wind speeds below 5 m s −1 Figure 7, a result of 
both nocturnal convective mixing and unstable temperature profiles within RLs. Composite analysis of the 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 

response from one hour prior to RL formation to six hours after RL formation as a function of the mean wind 
speed and maximum rain rate in the ±1 hr interval surrounding RL onset is presented in Figure 8, and confirms 
destabilization in column temperature profiles following RL formation. For RLs forming under background wind 
speeds <6 m s −1, unstable temperature gradients confined to the upper 1–2 m persist for many hours following 
RL formation (Figure 8). The persistence of unstable temperature gradients is due to a stronger stabilization of 

𝐴𝐴 𝐴𝐴2

𝑆𝑆
 , which is also reflected in a net positive N 2 throughout the column (not shown).

Because the vertical salinity gradient and 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 within RLs are constrained by surface inputs of freshwater and 

momentum, the magnitude of stabilization in RLs is primarily determined by rain rate and wind speed. Figure 9 
displays the composite evolution of the salinity gradient from one hour prior to RL formation to six hours after 
RL formation. For a given wind speed (i.e., panels in a single row in Figure 9), the magnitude and depth of the 
upper ocean salinity gradient increases with increasing rain rate, reflecting a higher degree of stabilization within 
RLs forming under stronger rain rates. The impact of wind speed on RL formation is also evident in columns of 
fixed rain rate, as the magnitude of the upper ocean salinity gradient within RLs decreases with increasing wind 
speed. At wind speeds above 6 m s −1, typically only the strongest rain rate cases are able to stratify the upper 
ocean for more than an hour, consistent with previous observations and theory (Thompson et al., 2019).

Figure 6.  Histogram of wind speed frequency across all General Ocean 
Turbulence Model (GOTM) grid cells and times when a rain layer (RL) is 
present (blue), no-RL is present (orange), and overall (gray).

Figure 7.  2D histogram of 𝐴𝐴 𝐴𝐴2

𝑆𝑆
 and wind (left) and 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 and wind (left). Histograms display the natural log value of the count within each bin.
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It is noteworthy that RLs forming under weak rain rates (<5 mm hr −1) and weak surface winds (0–2 and 2–4 m 
s −1), feature a persistent, stable vertical salinity gradient confined to the upper 1–2 m of the ocean (Figure 9). 
While the magnitude of stabilization is reduced in weak rain rate cases compared to stronger rain rate cases, the 
stable salinity gradient in these cases is able to persist for many hours following RL formation. The implications 
of long-lasting RLs under low surface wind conditions are revisited in Section 5.

When precipitation falls on a stably stratified upper ocean, vertical mixing of freshwater is further inhibited, 
resulting in RLs that feature a strong vertical salinity gradient and that are even more persistent than RLs that 
form over a well-mixed upper ocean. Figure 10 shows the composite difference in salinity gradient between RLs 
forming over a strongly stratified upper ocean with respect to 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 , defined as mean 𝐴𝐴 𝐴𝐴2

𝑇𝑇
> 1 × 10 −4 s −2 in the 

upper 5 m of the column, compared to the salinity gradient for all other RLs. Within the same rain rate and wind 
speed bins, RLs forming over an upper ocean that is strongly stratified with respect to 𝐴𝐴 𝐴𝐴2

𝑇𝑇
 feature a more intense 

salinity gradient in comparison to all other RLs (Figure 10). As there are few cases of RLs forming over strong 
upper ocean stratification at wind speeds above 6 m s −1, wind speed bins in Figure 10 only extend to 6 m s −1. 
This result conforms to the idealized model experiments of Iyer and Drushka (2021a) that revealed larger salinity 
anomalies and delayed mixing in the upper ocean when rain falls on a stably stratified upper ocean compared to 
rain falling on a well-mixed upper ocean.

Figure 8. 𝐴𝐴 N
2

𝑇𝑇
 within rain layers (RLs) binned column-wise by max rain rate from 30 min prior to 30 min after RL formation, and row-wise by mean wind speed over 

the interval of 1 hr prior to 6 hr after RL formation. Note the unstable T profiles at the ocean surface within the RLs.
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4.2.  RL Spatial Dimensions

The footprint of contiguous cells with RLs ranges from as small as a single 2 × 2 km grid cell to as large as 97% 
of the 50 × 50 km domain. For purposes of estimating RL footprint size, the maximum number of adjacent grid 
points containing an RL for a given time step is computed, and a distribution of RL equivalent diameter is deter-
mined. Figure 11 shows the frequency of RL equivalent diameter, with possible values of RL equivalent diameter 
spanning 2–55.6 km. For time steps in which RLs are present, the mean and median RL equivalent diameter of 
the largest RL present are 25 and 23 km, respectively.

Figure 9.  Salinity gradient 𝐴𝐴

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

 within rain layers (RLs) binned column-wise by max rain rate from 60 min prior to 60 min after RL formation, and row-wise by mean 
wind speed over the interval of 1 hr prior to 1 hr after RL formation. Salinity gradient is computed as the centered difference (PSU m −1) at 1 m intervals, and thus 
begins at a depth of 0.5 m.
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Figure 10.  Difference in salinity gradient between rain layers (RLs) forming over a strongly stratified upper ocean with respect to (𝐴𝐴 N
2

𝑇𝑇
> 1 × 10 −4) and all RLs, from 

one hour prior to six hours after RL formation. Brown shading (negative) represents a stronger salinity gradient in RLs forming over a strongly stratified upper ocean, 
while blue shading (positive) represents a weaker salinity gradient in RLs forming over a strongly stratified upper ocean. Figure is binned column-wise by max rain rate 
from 60 min prior to 60 min after RL formation, and row-wise by mean wind speed over the interval of 1 hr prior to 1 hr after RL formation.

Figure 11.  Histogram of RL equivalent diameter frequency (blue), with domain-averaged wind speed ± 1σ overlaid for the 
corresponding bin (orange). RL equivalent diameter represents equivalent diameter of largest contiguous RL for time steps 
when RLs are present. The x-axis has been extended to include the domain-averaged wind speed ± 1σ for time steps when no 
RLs are present (purple).
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Evaluating domain-averaged wind speed within each RL equivalent diameter bin in Figure 11 shows consistent 
values of mean domain-averaged wind speed across all RL sizes. Within RL equivalent diameter bins, mean 
values of domain-averaged wind speed range from 3.32 m s −1 (RL equivalent diameter 44–48 km) to 4.13 m 
s −1 (RL equivalent diameter 0–4 km), compared to a mean domain-averaged wind speed of 5.65 m s −1 when no 
RLs are present. However, wind speed variability within each bin decreases with increasing equivalent diameter, 
indicating that the largest RL footprints are less likely to occur at higher wind speeds.

4.3.  Reduced Vertical Mixing Within RLs

In order to quantify the degree of mixing within RLs, the temperature tendency term in GOTM is decomposed 
into contributions from solar radiation and contributions from the sum of turbulent and viscous transport. The 
temperature tendency term in GOTM for a given level is defined as:

𝜃̇𝜃 =
𝜕𝜕

𝜕𝜕𝜕𝜕

(

(

𝜈𝜈𝜃𝜃
𝑇𝑇
+ 𝜈𝜈𝜃𝜃

) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+
1

𝐶𝐶𝑝𝑝𝜌𝜌0

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (6)

where 𝐴𝐴 𝜃̇𝜃 is the material derivative of potential temperature, 𝐴𝐴 𝐴𝐴𝜃𝜃
𝑇𝑇
 and ν θ are the turbulent and molecular diffusivities 

of heat, respectively, Cp is the heat capacity of seawater, and ρ0 is a reference density (Burchard et al., 1999). 
Shortwave radiation, I is prescribed and treated as an inner heat source as a function of depth, z. The source due to 
shortwave radiation is computed by GOTM according to a double exponential law following Paulson and Simp-
son (1977), assuming Jerlov type I water. The sum of latent heat, sensible heat, and longwave radiation fluxes are 
computed by GOTM at each time step and is treated as a boundary condition for ∂θ/∂z. Thus, the first term on 
the right hand side of Equation 6 represents temperature tendency from turbulent and viscous transport, and the 
second term represents a source term from shortwave radiation. We compute the profile of temperature tendency 
from transport as the difference between the total temperature tendency profile and the shortwave heating profile.

The vertical profile of temperature tendency due to transport over the course of RL lifetime as a function of 
wind speed at rainfall rate is shown in Figure 12. The negative tendency due to transport in the upper 1–2 m of 
the column immediately preceding and following RL formation is associated with decreased air temperature and 
surface input of cool freshwater surrounding RL onset. Transport cooling persists from +1 to +6 hr following 
RL formation but over limited depth compared to the short RL onset period, despite an unstable temperature 
stratification in the 0.5–1 m (Figure 8). We revisit the reduction in transport mixing following RL onset in the 
following section.

5.  The Potential for RL Feedbacks to the Atmosphere
Analyses shown in the previous section document the effects of RLs on ocean stability profiles. Here, we inves-
tigate the second science question posed in Section  1, namely, how RLs may affect the atmosphere. Ocean 
processes are communicated to the atmosphere through their effects on fluxes of heat, moisture, and momentum 
at the air-sea interface. Since our 1D ocean model configuration assumes zero lateral advection, ocean processes 
in our experiments only regulate fluxes of heat and moisture by modulating the SST.

5.1.  RL Regulation of SST and Surface Fluxes

Figure 13 displays the composite evolution of SST, air temperature at 2 m (Tair), specific humidity at 2 m (qair), 
wind speed at 10 m, latent heat flux (QE), and sensible heat flux (QH) from six hours prior to six hours after RL 
formation. The sign convention for surface fluxes is that a negative flux or flux anomaly cools the ocean. First, 
we composite the aforementioned variables for RLs that form when the wind speed averaged from −1 hr prior 
to +1 hr following RL formation is 4–6 m s −1 (left column of Figure 13). Second, we composite the variables 
for RLs that form when the maximum R from −1 hr prior to +1 hr following RL formation exceeds 20 mm hr −1 
(right column of Figure 13).

While both SST and Tair decrease following RL genesis, the decrease in Tair is nearly an order of magnitude larger 
than the decrease in SST. Consequently, the sensible heat flux becomes more negative following RL formation, 
reflecting a greater flux of sensible heat into the atmosphere from the ocean. Similarly, negative departures in 
the latent heat flux occur immediately preceding and following RL formation, and generally persist for 3–4 hr 
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following RL formation. Consequently, for all RLs, the enhancements (i.e., more negative departures) in QE and 
QH surrounding RL onset are attributed to both the brief increase in wind speed at RL onset, as well as the more 
prolonged reductions in Tair and qair following RL onset.

For RLs forming under a fixed background wind speed and different rain rates (left column of Figure 13), there 
is a systematic relationship between increasing rain rate, R, and larger negative departures of SST, Tair, qair, QE, 
and QH in the ±1 hr span surrounding RL onset. However, for the higher R events (R > 10−20 mm hr −1), QH 
is restored to pre-RL values more rapidly than in low R events, and QE departures become positive beyond 4 hr 
following RL onset. The heat flux response is the result of a decreased wind speed following RL formation in 
high R events, as well as a larger reduction in SST in high rain rate cases than low R cases. A similar response 

Figure 12.  Temperature tendency due to transport from one hour prior to six hours after rain layer (RL) formation. Figure is binned column-wise by max rain rate from 
60 min prior to 60 min after RL formation, and row-wise by mean wind speed over the interval of 1 hr prior to 1 hr after RL formation.
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is seen in RLs forming under a fixed maximum R and different wind speeds (right column of Figure 13), with 
increasing wind speed generally associated with enhanced QE and QH in the ±1 hr span surrounding RL onset. 
The overall relationship between wind speed and fluxes within RLs (right column of Figure 13) is more difficult 
to assess than the relationship between R and fluxes within RLs (left column of Figure 13), as there is large vari-
ability within the wind speed bins in the hours following RL onset.

To quantify the role of rainfall in regulating stratification, surface fluxes, and SST perturbations, a second GOTM 
simulation was conducted over the same domain using identical ocean surface forcing as the first, except all 
precipitation fluxes were set to zero. Hereafter, we refer to the simulations with and without rain forcing as 
“RAIN” and “NO-RAIN”, respectively. Thus, while rain does not fall onto the ocean in the NO-RAIN exper-
iment, other forcing from the WRF output that is used in the RAIN experiment—Tair, wind speed, qair, and 
net downwelling radiation—remains the same. Thus, any differences in stratification, surface fluxes, and SST 
between the two experiments arise purely from the presence of rainfall.

Figure 13.  Mean departure from 6 hr preceding rain layer (RL) onset (hour −6) of (top to bottom): air temperature at 2 m (Tair); SST; sensible heat flux (QH); wind; 
specific humidity at 2 m (qair); saturation specific humidity at SST (𝐴𝐴 q

∗

𝑎𝑎𝑎𝑎𝑎𝑎
 ); and latent heat flux (QE). In the left column, the mean wind speed surrounding RL onset 

is fixed between 4 and 6 m s −1, while rain rate varies; in the right column, the max rain rate preceding RL onset is fixed at >20 mm hr −1, while wind speed varies. 
Darkening color tone reflects increasing rain rate (left) and wind speed (right), for given bin. Fluxes are computed following Fairall, Bradley, Godfrey, et al., 1996 and 
Fairall, Bradley, Rogers, et al., 1996, and a negative ΔQE or ΔQH indicates greater ocean surface cooling.
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Figure  14 shows the difference in ΔSST, ΔQE, and ΔQH from Figure  13 between the RAIN and NO-RAIN 
experiments for all RLs binned by R (left column) and wind speed (right column). Across all R and wind speed 
bins, SSTs reduction for several hours following RL formation is 0.05–0.1 K greater in the RAIN experiment, and 
hence within actual RLs, relative to the NO-RAIN experiment. Comparing the magnitude of SST reduction in 
RAIN (Figure 13) to that in NO-RAIN (Figure 14), the combined effects of cooling and stratification by rainfall 
can be seen to account for approximately 30%–50% of the total SST reduction following RL onset. The influence 
of rain cooling on SST can be isolated to a rough approximated using wet-bulb temperature, SST, rain amount, 
and RL thickness:

Δ𝑇𝑇𝑅𝑅𝑅𝑅 ≈ (𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑆𝑆𝑆𝑆𝑆𝑆 ) ⋅
rain amount

RL thickness
� (7)

Applying typical values of Twetbulb − SST = −5 K (Thompson et al., 2019), rain amount = 10 mm, and RL thick-
ness = 1 m to this equation, rain cooling alone can be estimated to reduce SST by 0.05 K.

The colder SST following RL onset in RAIN is reflected in the positive ΔQE and ΔQH differences in Figure 14, 
indicating weaker ocean-to-atmosphere surface fluxes compared to NO-RAIN. Unlike SST, however, ΔQE and 
ΔQH between the two simulations differ by less than 2% following RL onset. This weak sensitivity of surface 
fluxes to RL-induced SST changes is a consequence of the much larger reductions of Tair and qair than SST and 

𝐴𝐴 𝐴𝐴∗
𝑆𝑆𝑆𝑆𝑆𝑆

 , respectively, following RL onset (Figure 13). The composite time evolution of Tair surrounding RL onset 
follows a pattern typical of atmospheric cold pools (de Szoeke et al., 2017; Figure 13).

The reduced SST following RL onset in RAIN occurs despite the slightly weaker post-RL surface fluxes 
compared to those in NO-RAIN. We surmise that the colder post-RL SST in RAIN is the result of reduced down-
ward transport of surface waters that have been cooled by the net heat transport out of the ocean. In essence, the 
salinity stratified RL in RAIN traps surface cooling within the RL, whereas cooled surface waters in NO-RAIN 
are readily mixed throughout the column.

The idea that RL salinity stratification concentrates surface cooling within the RL is supported by differences in 
total temperature tendency between the RAIN and NO-RAIN experiments, as shown in Figure 15. Because the 
temperature tendency from solar heating (the third term in Equation 6) is identical in RAIN and NO-RAIN, any 

Figure 14.  Difference between simulation with and without precipitation forcing from −6 hr to +6 hr relative to rain layer (RL) onset of sea surface temperature (SST) 
response from −6 hr (top, Kelvin), QE response from −6 hr (middle, Wm −2), and QH response from −6 hr (bottom, Wm −2). We note the change in vertical scale in all 
the plots. Note the persistent reduced SSTs following RL onset in the RAIN simulation in comparison to the NO-RAIN simulation.
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change in temperature tendency between the rain and no-rain simulations is the result of a change in the vertical 
transport term. For all wind speeds and R, cooling by vertical transport mixing is reduced following RL onset in 
RAIN when compared to NO-RAIN (i.e., red patches following RL onset). This occurs despite the near-surface 
unstable temperature stratification that exists within RLs (Figure 8).

5.2.  RL Feedbacks via Spatial SST Gradients

While the difference in heat fluxes between RAIN and NO-RAIN is small, Figures 14 and 15 demonstrate that 
the role of precipitation on SST, and hence SST spatial gradients on the scale of RLs, may be large. Previous 
studies (Back & Bretherton, 2009a; de Szoeke & Maloney, 2020; Lambaerts et al., 2020; Li & Carbone, 2012) 

Figure 15.  Difference in temperature tendency between simulation with and without precipitation forcing from −1 hr to +6 hr relative to rain layer (RL) onset.
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demonstrate that SST gradients force patterns of mass convergence and divergence within the marine boundary 
layer (MBL) that can initiate atmospheric convection. Here, we explore the role of precipitation in the creation 
of SST gradients.

Li and Carbone (2012) showed that for the West Pacific warm pool, assuming hydrostatic balance and given the 
Boussinesq approximation, the time derivative of surface wind convergence is proportional to the Laplacian of 
the SST field as given by the equation:

− (𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦)𝑡𝑡 = 𝑤𝑤𝑧𝑧𝑧𝑧𝑧 =
𝑝𝑝′𝑥𝑥𝑥𝑥 + 𝑝𝑝′𝑦𝑦𝑦𝑦

𝜌̄𝜌𝑏𝑏
= −

𝑔𝑔𝑔𝑔

𝑇̄𝑇𝑏𝑏

(

𝑇𝑇 ′

𝑥𝑥𝑥𝑥 + 𝑇𝑇 ′

𝑦𝑦𝑦𝑦

)

� (8)

where 𝐴𝐴 − (𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦)𝑡𝑡 = 𝑤𝑤𝑧𝑧𝑧𝑧𝑧 is the time derivative of surface wind convergence, p′ is the pressure perturbation 
within a thin layer, ρ is air density, T′ is the temperature perturbation within the MBL, H is the MBL height, and 
the subscript b denotes an environmental mean. SST anomalies influence MBL mass convergence and divergence 
through the right-most term in Equation 7, which is the spatial second derivative, or the Laplacian, of T′. Because 
T′ is partly set by SST (Back & Bretherton, 2009a), SST gradient contributions to low-level mass convergence 
are assessed with the SST Laplacian (∇ 2SST). In their analysis of four years of satellite observations of SST 
and rainfall, Li and Carbone found that approximately 75% of rainfall events over the West Pacific warm pool 
were spatially and temporally coincident with local surface convergence maxima, as estimated from the SST 
Laplacian. Furthermore, the onset of rainfall was more than twice as likely to be observed over −∇ 2SST patches 
(corresponding to convergence) than over +∇ 2SST patches (corresponding to divergence).

To explore the role of RLs in generating SST gradients, we compute the SST Laplacian for the GOTM RAIN 
and NO-RAIN simulations. For our analysis, ∇ 2SST is computed at every grid cell using adjacent cells in the 
model grid. Following Li and Carbone (2012), the SST Laplacian is reported in units of °C per 4 km 2 to convey 
the spatial scale of the gradients. Results are presented only for GOTM columns farther than two grid points from 
the domain boundary to avoid edge effects. Figure 16 displays the temporal evolution of domain-averaged zonal 
and meridional spectral density of SST Laplacian for RAIN and NO-RAIN. In the RAIN experiment, ∇ 2SST 
has a higher frequency of extreme values than ∇ 2SST in the NO-RAIN experiment, particularly during periods 
of increased precipitation and reduced winds (Figure 16). Using the median of the absolute values of ∇ 2SST as 
an estimate for the width parameter, we find a width parameter of 0.037 for the ∇ 2SST distribution in RAIN, 
which is nearly double the width parameter of 0.019 in NO-RAIN. This difference indicates that RLs, through 
their prolonged reduction of SST compared to adjacent RL-free columns, are capable of generating sharp SST 
gradients.

6.  Discussion
In this section, we synthesize results of the RAIN and NO-RAIN simulations, and offer some considerations for 
RL observation and the interpretation of our results. A conceptual aid in the form of a schematic illustration of 
atmospheric forcing and upper ocean response in RAIN and NO-RAIN, as well as the differences between the 
two simulations, can be seen in Figure 17.

For all RLs identified in RAIN, the reduced air temperature and humidity, as well as the increased wind speed 
and ocean-to-atmosphere surface turbulent fluxes following RL onset (Figure 13) are consistent with changes 
induced by convectively generated cold pools (Feng et al., 2015; Yokoi et al., 2014; Zuidema et al., 2017). The 
cold rain falling onto the ocean surface and the enhanced surface fluxes contribute to a sustained decrease in SST 
following RL onset. However, the cold SST signatures are evident even after surface flux perturbations have been 
restored to their pre-RL background states, suggesting a role for salinity stratification in regulating SST in RLs.

The NO-RAIN simulation, which blocks rain from falling onto the ocean surface but otherwise forces the GOTM 
array with identical surface meteorology as in the RAIN simulation, confirms that salinity stratification by rain-
fall reduces the SST of RL-capped columns (Figure 14) by confining ocean water cooling to the near-surface 
layer (Figures 8 and 12). Furthermore, when rain falls onto a stably stratified upper ocean, such as onto a DWL, 
salinity stratification is amplified (Figure 10) and any heat previously accumulated in the temperature-stratified 
layer is effectively “hidden” from the atmosphere (Pei et al., 2018; Wijesekera et al., 1999) until the arrival of 
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sufficiently strong winds capable of destroying the RL and mixing the cold surface waters with the warmer 
subsurface waters (Moum et al., 2014; Thompson et al., 2019).

RLs reduce SST locally, creating a network of SST gradients and boundary layer convergence/divergence patterns 
that can initiate atmospheric convection. Our study demonstrates that RLs, through their intensification and 
prolongation of cold SST anomalies, sharpen regional SST gradients and increase the potential for SST gradi-
ent-driven surface convergence to influence atmospheric convection. Thus, RLs may affect the atmosphere in 
several ways: (a) they prolong locally reduced SST signatures, (b) they shield previously warmed ocean waters 
from the air-sea interface, thereby reducing ocean-to-atmosphere surface fluxes, and (c) they sharpen regional 
SST gradients beyond that which can be achieved solely by surface fluxes (Figure 16). It is important to note that 

Figure 16.  Time series over the one-month simulation of (top to bottom): domain-averaged rain rate, domain-averaged wind speed, domain-averaged zonal spectral 
density of sea surface temperature (SST) Laplacian for RAIN, domain-averaged zonal spectral density of SST Laplacian for NO-RAIN, domain-averaged meridional 
spectral density of SST Laplacian for RAIN, and domain-averaged meridional spectral density of SST Laplacian for NO-RAIN. Note: bottom four rows all use the same 
color bar scale.
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the SST gradients and overall domain size in our simulations are much smaller than those in previous studies that 
connect SST gradients to initiation of atmospheric convection (Li & Carbone, 2012; Skyllingstad et al., 2019). 
We recommend further studies investigating RL feedback to the atmosphere using ocean-atmosphere coupled 
simulations over a larger domain.

Thompson et al. (2019) noted that even rain rates as low as R = 5 mm hr −1 are capable of forming RLs, and our 
results (Section 4.1) are consistent with this finding. At low wind speeds, weak R cases feature a persistent stable 
salinity stratification confined to the upper 1 m of the ocean (Figure 9), suggesting that even weakly forced RLs 
forming under these conditions can last for several hours. Observation of RLs under this forcing regime proves 
tricky, as stratification is confined to the upper 1–2 m of the ocean and requires high-resolution near-surface 
measurements to capture changes to the water column. The persistence of a stable salinity stratification in weak R, 
low wind speed cases stresses the importance of towed profilers for ship-based observations that can sample the 
upper 2–3 m of the ocean outside the ship wake (Drushka et al., 2019) and, thus, capture changes to temperature 
and salinity under these conditions.

It is important to note that the 1-dimensional model framework implemented in this study presents a simplified 
view of ocean dynamics, neglecting the effects of horizontal processes. Lateral advection and propagation of 
salinity and temperature anomalies associated with RLs distribute SST and SSS anomalies over a greater area 
and smooths spatial gradients of these variables (Moulin et al., 2021). As such, the extrema of SST gradients and 
the Laplacian of the SST field in Section 4.4 are likely an overestimate. The absence of lateral advection and the 
small model domain may also underestimate RL sizes (Figure 10). Larger RLs are hypothesized to occur using 
time-space conversion estimates from DYNAMO (Thompson et  al.,  2019) and almost certainly occur based 
on the spatial extent of tropical mesoscale convective systems (Houze, 2004). We also note that some studies 
indicate that GOTM may overestimate SST reduction following precipitation (Pei et al., 2018), although results 

Figure 17.  Schematic illustration of atmospheric forcing and ocean response in RAIN (upper left), NO-RAIN (upper right), 
and the difference between the two simulations (bottom) for the upper few meters of the ocean and the period one hour prior 
and five hours following rain layer (RL) onset. Note in the RAIN-NO-RAIN panel, the only difference in atmospheric forcing 
is rainfall, which results in a cold rain input in the upper ocean around RL formation. After the initial cold rain input, the 
statically stable column in RAIN results in less vertical transport of heat and less subsurface ocean cooling than in NO-RAIN, 
confining the coldest water to the surface. Ocean-to-atmosphere surface flux differences between RAIN and NO-RAIN are 
less than 2% and are omitted from the bottom panel for clarity.
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from our model verification (Section  3) show that GOTM well reproduces observed SST under a variety of 
atmospheric conditions.

A challenge in using atmospheric model output as forcing data to compile RL statistics arises when assessing 
RL behavior many hours after formation. Idealized experiments allow for assessment of RL characteristics from 
single impulse rain rates (Drushka et al., 2016) or an idealized evolution of rain and wind-based on observa-
tions (Iyer & Drushka, 2021a). Forcing GOTM with WRF output provides complex and realistic atmospheric 
forcing conditions which aids understanding of RL duration, frequency, intensity, and size. Furthermore, the 
large number of RL-capped columns sampled over our month-long simulation allows for composite analysis of 
RL characteristics as a function of R and wind speed surrounding RL onset. However, as surface forcing condi-
tions are constantly changing, it is difficult to account for further freshening events, changes to solar radiation 
input, high-frequency wind speed variability, and changes to 2 m specific humidity and temperature, all of which 
influence RL characteristics minutes to hours after RL formation. Because of these complications, we limit our 
composite analysis of RL intensity to six hours after RL formation.

Further studies are needed to understand the mesoscale characteristics of RLs globally and over extended periods 
of time. RL characteristics are determined by rain rate, wind speed, and background ocean stratification, and thus 
should have a unique presentation in different locations since these factors vary regionally and throughout time. 
Additionally, as background ocean stratification impacts RL intensity and duration, upper ocean state must be 
accounted for in RL climatology. Field campaigns that collect collocated, frequently sampled ocean-atmosphere 
observations, with fine vertical resolution in the upper ocean, are essential to improving our understanding of RL 
behavior and impact under different conditions.

7.  Conclusions and Summary
This study demonstrated that a 1D ocean model (GOTM) effectively replicates observed upper ocean tempera-
ture, salinity, and stability profiles in the equatorial Indian Ocean through a comparison with detailed observa-
tions of the combined ocean-atmosphere boundary layers from the DYNAMO field campaign. This result forms 
the basis for a detailed study on RL statistics from a 2D array of GOTM simulations forced by realistic atmos-
pheric fields from the WRF atmospheric model.

The mean and median RL duration were found to be 4.5 and 1 hr, with a long tail to well over a day, mainly 
modulated by wind speed. RLs occur very infrequently for wind speeds over 8 m s −1, consistent with the findings 
of Thompson et  al.  (2019). The RL equivalent diameter is quite uniformly distributed, with larger diameters 
related to slightly weaker winds on average. RLs reduce mixing due to their stable salinity stratification, which is 
modulated by the background stratification. RLs often feature unstable temperature stratification due to the low 
temperature of the initial rain impulse, and further surface cooling by enhanced surface fluxes driven by cold pool 
atmospheric temperature and humidity anomalies.

RL influence on the air-sea interactions was studied with a second 2D ocean simulation in which the rain from the 
atmospheric model was not allowed to fall on the ocean, so no RL formed, but all other atmospheric forcing fields 
were unchanged. Comparison between the RAIN and NO-RAIN simulations revealed that the presence of an RL 
leads to a reduction of SST that persists on time scales longer than the associated rain event. Approximately 1/3 of 
the SST reduction within RLs can be attributed to rain falling on the ocean surface, and thus, the RL itself, while 
2/3 of the SST reduction can be attributed to other atmospheric fields (i.e., wind speed, qair, Tair, and downward 
solar radiation). Analysis of SST response in RAIN and NO-RAIN highlights that RL influence on SST extends 
well beyond the lifetime of the source rain event. Salinity stratification in the RAIN simulation, and within RLs 
themselves, inhibits vertical transport of surface cooling to the deeper ocean, yielding SSTs approximately 0.1°C 
colder than in the NO-RAIN simulation.

To infer the feedback of the RLs to atmospheric convection, we studied the SST Laplacian, which is directly 
related to horizonal divergence in the atmosphere boundary layer. Evaluation of the distribution of SST Laplacian 
for RAIN and NO-RAIN revealed that the presence of RLs enhances the SST gradients considerably, with the 
median of the absolute value of the SST Laplacian increased by a factor 2. This result emphasizes the importance 
of coupled simulations investigating RL feedback to surface fluxes and atmospheric convection.
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Data Availability Statement
Chameleon towed vertical profiler (Moum et al., 2014), and meteorological data collected from the R/V Revelle 
during the DYNAMO field campaign are available at the Earth Observing Laboratory: https://data.eol.ucar.edu/. 
Model data was obtained by running the GOTM (Burchard et al., 1999). The model software is publicly avail-
able at https://gotm.net/. WRF model output was provided by Samson Hagos from a previous WRF experiment 
(Hagos et al., 2013). WRF model software is publicly available at https://www2.mmm.ucar.edu/wrf/.
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