
1. Introduction
The physical slope of ocean surface waves, defined as the ratio of a wave's height to its length (H/L) or product 
of its amplitude and wavenumber (ak), is widely found to play a governing role in the exchange of momentum 
at the air-sea interface. Slope is essential in the parameterization of deep-water breaking processes (Drazen 
et al., 2008; Duncan, 1981; Melville, 1994; Schwendeman & Thomson, 2017; Schwendeman et al., 2014, and 
others) and is theorized to contribute to the air-sea drag coefficient through modulation of the aerodynamic 
roughness (Donelan, 2018; Lan et al., 2022; Takagaki et al., 2012, 2016; Taylor & Yelland, 2001; Troitskaya 
et al., 2012). Efforts to characterize slope as a function of wind speed trace back to Cox and Munk (1954), who 
used optical measurements of the sun's glint to measure the distribution of slopes in wind speeds ranging from 
1 to 14 m s −1. This work was followed by an extensive set of satellite radiometer measurements reported by 
Bréon and Henriot (2006) up to 12 m s −1, the airborne lidar-based measurements of Lenain et al. (2019) from 2 
to 13 m s −1, and most recently, the spaceborne measurements of Guérin et al. (2022) and Li et al. (2022). These 
works universally agree that, in low-to-moderate winds, the mean square of the slope distribution, or mean square 
slope, increases linearly with wind speed. Dynamics above 20 m s −1 remain less thoroughly investigated.

The mean square slope (mss) is a metric that quantifies the average steepness of waves over a range of frequencies 
or wavenumbers. When estimated from the wave energy density spectrum (sea surface elevation variance spec-
trum), it is an integral quantity proportional to the fourth moment of the spectrum. It can be calculated across any 
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portion (or the entirety) of the spectrum, and it is closely related to the shape of the spectrum itself. Typically, the 
actively forced, wind-driven gravity wave spectra in hurricanes have a single peak followed by a broad spectral 
“tail” (Young, 2003). The canonical tail of a wind-driven gravity wave spectrum has two distinct regions: an 
equilibrium range and a saturation range (Banner, 1990; Forristall, 1981; Lenain & Melville, 2017). The equi-
librium range is defined by a balance of wind input, dissipation from breaking, and nonlinear energy fluxes. It 
begins just beyond the peak frequency and is characterized by a distinct 𝐴𝐴 𝐴𝐴−4 spectral slope in frequency, or k −5/2 in 
wavenumber space (Phillips, 1985; Toba, 1973). At frequencies beyond the equilibrium range, a saturation range 
exists, where the wind input is balanced by dissipation from breaking (Banner, 1990; Forristall, 1981; Lenain & 
Melville, 2017; Romero et al., 2012). This region is characterized by a spectral slope of 𝐴𝐴 𝐴𝐴−5 (k −3 in wavenumber 
space). In the remaining discussion, the “saturation” range will be referred to as the “dissipation” range to avoid 
confusion with the use of saturation to describe the wind speed dependence of mss.

Wave slope and spectral shape, particularly the tail, are closely tied to the wind forcing. Through the use of a 
Phillips (1985) analytical expression for spectral energy in the equilibrium range related to mean square slope, 
Thomson et al. (2013) demonstrated the feasibility of estimating wind stress based on wave spectral observations 
alone. In that work, the equilibrium-derived estimates of wind speed compare well with observed wind speeds 
up to 15 m s −1, enabling operational use of the method to derive proxy wind speeds in the Sofar Spotter global 
network (Voermans et al., 2020). However, at higher wind speeds, the dependence of mss remains largely unex-
plored, except in models (Donelan, 2018) and in the laboratory (Takagaki et al., 2012, 2016).

The complex nature of hurricane waves has been studied and reported on for over a century (Cline, 1920) with 
the first in situ observations emerging around 1970 (e.g., Patterson, 1974; Whalen & Ochi, 1978). Waves evolve 
rapidly in hurricanes, especially in fast-moving storms under which the “extended” or “effective” fetch (King 
& Shemdin, 1978) and duration of forcing changes with storm translation speed (Hell et al., 2021; J.-Y. Hsu 
et al., 2019; Hwang, 2016; Hwang & Fan, 2017; Kudryavtsev et al., 2015). Wave directions vary dramatically 
based on location relative to the center of the storm, with large wind-wave misalignment possible in the left quad-
rants (Collins et al., 2018; J.-Y. Hsu, 2021; Hwang & Walsh, 2018; Tamizi & Young, 2020; Walsh et al., 2002; 
Young, 2006). The interaction of waves and currents can also be significant (Bruciaferri et al., 2021; Hegermiller 
et al., 2019; Sun et al., 2022; Yujuan et al., 2018). Waves, both breaking and non-breaking, play a substantial role 
in the exchange of momentum and heat at the air-sea interface (Holthuijsen et al., 2012; S. A. Hsu et al., 2017; 
Kita & Waseda, 2022). This literature has lacked an observed relation between wave slopes and wind speeds in 
hurricanes that can be used to improve the modeling of surface stress and wave growth in this extreme environ-
ment (Janssen & Bidlot, 2023). These physics are essential for the modeling of tropical cyclone intensity and 
coastal inundation.

Here, we use buoy spectral measurements in hurricane winds to study the evolution of wave slope and spectral 
shape as a function of modeled wind speed. Section 2 describes the determination of mss from the buoys and 
describes the coupled model used for surface wind speeds. Section 3 presents the results, and Section 4 discusses 
the implications and relation to other studies. Section 5 concludes.

2. Methods
2.1. Mean Square Slope Definition

An estimate of the wave mean square slope can be computed from a frequency spectrum as (e.g., Ticona Rollano 
et al., 2019),

mss = ∫
𝑓𝑓max

𝑓𝑓min

(2𝜋𝜋𝑓𝑓 )
4
𝐸𝐸(𝑓𝑓 )

𝑔𝑔2
𝑑𝑑𝑓𝑓 (1)

Here f represents the wave frequency, E(f) is the energy density, and g is the acceleration of gravity. This expres-
sion is directly proportional to slope squared (ak) 2 using the linear dispersion relationship in the deep water limit, 
(2πf) 2 = gk, and with E(f) ∝ a 2. The definite integral represents an estimate of the mean square slope over a 
frequency extent defined by its minimum and maximum frequencies, fmin and fmax. Here, the limits are taken as the 
lowest and highest reported frequencies of the spectrum resolvable by the finite-sized wave buoy, fmin = 0.0293 Hz 
to fmax = 0.5 Hz in n = 38 discrete bands, where the upper limit is set by the hydrodynamic response of the 
hull. We emphasize that this mean square slope metric characterizes the shape and slope contributions of the 
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energetic scales of the spectrum, but cannot account for waves shorter than approximately 6.3 m in wavelength 
(see Section 4.1).

2.2. Spotter Wave Buoy

Wave measurements were collected by free-drifting Spotter buoys (Sofar Ocean) which use GPS-derived motions 
to report hourly records of surface wave statistics in the form of scalar energy spectra and directional moments 
(Raghukumar et  al., 2019). Raw data are collected at a 2.5 Hz sampling rate and processed into 256-sample 
FFTs to produce spectral estimates spanning 0.0293–0.5  Hz in 38 bins. A constant frequency resolution of 
df = 2.5/256 Hz is used up to 0.33 Hz, beyond which the resolution is coarsened to 3 df to reduce the size of the 
processed data which are transmitted hourly over the Iridium network. The sphere-like hull is 42 cm in diameter 
with a mass of 7.5 kg including ballast.

Spotter data is collected through a combination of targeted deployments and opportunistic measurements from 
Sofar's spotter network—a large, persistent-array of free-drifting Spotter buoys (Houghton et  al.,  2021). The 
density of the deployed arrays and Sofar's network help to overcome the sparsity of moored buoy arrays when 
targeting hurricanes. The smaller hull size also has a good response to shorter waves, which can be underesti-
mated by some larger buoys in the National Data Buoy Center network (Jensen et al., 2021).

2.3. COAMPS-TC Model

Surface wind field estimates are derived from real-time operational forecasts made by the U.S. Naval Research 
Laboratory's (NRL) Coupled Ocean-Atmosphere Mesoscale Prediction System for Tropical Cyclones 
(COAMPS-TC) (Doyle et al., 2012, 2014). COAMPS-TC is a regional model which uses an outer fixed grid mesh 
(36-km horizontal resolution) and two nested storm-following grid meshes (12- and 4-km resolution) with 40 
vertical levels ranging in altitude from 10 m above the surface to approximately 30 km. When producing real-time 
operational forecasts, the version of COAMPS-TC used in this study utilizes the NOAA Global Forecast System 
(GFS) analysis and forecasts for the initial and boundary conditions. For storms that have intensities greater or 
equal to 55 knots (28.3 m s −1), the horizontal wind structure at the initial time of the model is generated from a 
modified Rankine wind vortex model combined with both physical and synthetic observations ingested from the 
National Hurricane Center. For time periods when the storm intensity is less than 55 knots at the initialization 
time, the initial TC vortex is downscaled from the NOAA GFS analysis.

Hourly 10-m winds from the inner-most 4-km grid are derived by aggregating successive forecasts leaving out 
the first 4 hr of each forecast to minimize the effect of model state adjustments that occur early in each forecast. 
The 10-m winds are instantaneous values (representative of a 1–10 min average) and gustiness is not resolved. 
Wind output is interpolated onto Spotter wave observations to produce wind-wave datasets in Hurricanes Fiona 
and Ian (2022).

2.4. Targeted Deployment Measurements in Hurricane Ian (2022)

Hurricane Ian was a Category 4 hurricane that caused widespread damage to both Cuba and the Southeastern 
United States during late September 2022. Ahead of Ian's first U.S. landfall on the Southwest coast of Florida, 
the continental shelf was seeded with an array of drifting buoys in a targeted deployment by an NP-3C aircraft 
(Figure 1) operated by Naval squadron VXS-1. Observations from six Spotter buoys in the array are co-located 
with wind fields from COAMPS-TC to create a data set of 432 hourly wave measurements and modeled wind 
speeds from 27 to 30 September 2022. Wave observations span 2–11.8 m significant wave height and 5–13 s peak 
period, and mostly lie between the 30 and 100 m depth contours, approximately 90–275 km offshore (see Figure 
S3 in Supporting Information S1). The maximum COAMPS-TC wind speed at the time and location of a Spotter 
observation is 52.5 m s −1 (117 mph).

2.5. Sofar Spotter Network Measurements in Hurricane Fiona (2022)

Hurricane Fiona was a destructive hurricane that formed in mid-September 2022 and made landfall in Puerto Rico 
and the Dominican Republic before traveling Northward across the Atlantic, peaking in intensity as a Category 
4, then striking Eastern Canada as an extratropical cyclone. Fiona's track through the open Atlantic intersected 
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with several buoys in Sofar's Spotter network. The 2772 hourly observations from 33 Spotters (Figure 1) contain 
measurements up to 17.5 m significant wave height and 20.5 s peak period, with a maximum interpolated model 
wind speed of 54.4 m s −1 (122 mph).

3. Results
3.1. Mean Square Slope Versus Wind Speed

At low-to-moderate wind speeds (<15 m s −1), observed mean square slopes have a linear dependence on 10-m 
surface-level wind speed (Figure 2). This result is qualitatively consistent with the measurements of Cox and 
Munk (1954) at wind speeds of 2–14 m s −1.

At higher wind speeds (>15 m s −1), the increases in observed mss are much smaller. This trend persists through 
the extent of available buoy data, up to the maximum wind speed of 54.4  m  s −1 (122 mph) as modeled by 

Figure 2. Spotter mean square slope from wave measurements in Hurricanes Ian and Fiona as a function of COAMPS-TC 
10-m wind speed. Bin centers represent the mean and standard deviation of mean square slope in each bin.

Figure 1. Buoy locations and storm track for (left) Hurricane Ian and (right) Hurricane Fiona. Storm tracks are colored by intensity, as categorized by the 
Saffir-Simpson scale, and the surrounding wind swaths are shaded by wind speed threshold. The insets highlight several buoy-storm interactions using 10-m wind 
speeds from COAMPS-TC.
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COAMPS-TC. Bin centers represent the mean and standard deviation of 
mss in each bin. Lateral uncertainty in the wind speed is estimated using 
COAMPS-TC 6-hr forecast error relative to the National Hurricane Center 
best track re-analysis. A 7 m s −1 error is placed on high wind speeds, near 
the radius of maximum winds, which derives from the standard deviation of 
the distribution of COAMPS-TC 6-hr intensity errors evaluated for hundreds 
of major hurricane forecasts. A 1.2 m s −1 error is used at lower wind speeds, 
located in the outer part of the storm, and is estimated from an error distri-
bution created by shifting the COAMPS-TC forecast on top of the best track 
position and comparing the updated wind speed at the buoy's position to the 
originally-forecasted wind speed.

Ticona Rollano et al. (2019) observed wave slope saturation with wind speed 
starting at 11 m s −1 and noted the behavior to be qualitatively similar to the 
saturation of measured turbulent dissipation in the ocean surface layer. In 
wind-wave flume experiments, Troitskaya et al. (2012) found wave slope to 
have a tendency toward saturation which was coincident with saturation of 
the laboratory air-sea drag coefficient above wind speeds of 25 m s −1. The 
authors attribute the decrease in slope to the “tearing of the wave crests at 
severe wind conditions.” In the University of Miami Wave Model, there is a 
similar transition in mean square slopes at high winds, though the values do 
not fully saturate (Donelan, 2018). A more complete comparison with other 
mss results from the literature is given in the discussion (Section 4.1).

3.2. Spectral Shape Change With Wind Speed

Mean square slope is a measure of both the physical wave slope (a 2k 2) as 
well the wave spectral shape (i.e., as the fourth moment of the spectrum). The 
evolution of the observed wave spectra with wind speed is shown in Figure 3 
as the mean energy density in 10 m s −1 bins. At low-to-moderate wind speeds 
(<15 m s −1), the spectral tail above 0.10 Hz follows the canonical 𝐴𝐴 𝐴𝐴−4 slope 
expected of the equilibrium range (wind input, dissipation from breaking, 
and nonlinear energy fluxes in balance).

From 15 to 25 m s −1, the frequency extent of the equilibrium range is shorter 
and the tail of the spectrum, from 0.2 Hz onward, transitions to the 𝐴𝐴 𝐴𝐴−5 slope 
characteristic of the dissipation range (wind input balanced solely by dissipa-
tion). This change is coincident with the weakening of the wind speed depend-
ence of mss in Figure 2. The equilibrium range (𝐴𝐴 𝐴𝐴−4 ) continues to narrow with 
increasing wind speed, until the spectral tail is almost entirely dominated by 
the dissipation range (𝐴𝐴 𝐴𝐴−5 ) at the most extreme winds (45–55 m s −1). For any 
given total wave energy (or significant wave height), the change in spectra 
shape to 𝐴𝐴 𝐴𝐴−5 results in a reduction in mss, relative to an 𝐴𝐴 𝐴𝐴−4 shape with the 
same total energy. Though much of this energy is contained in lower frequen-
cies of the spectrum, changes in the high frequency tail have the highest 
influence on the mss integral due to the 𝐴𝐴 𝐴𝐴 4 dependence of Equation 1. Thus, 
wave heights can continue to increase with increasing wind speed, while mss 
saturates. The growth of the peak wavelength as a function of wind speed is 
specific to the evolution of a storm, but approaches 200–300 m near 40 m s −1 
for both hurricanes (Figure S14 in Supporting Information S1).

The spectral slopes are in general agreement with the large number of hurricane wave observations collected by 
Tamizi and Young (2020) which vary from 𝐴𝐴 𝐴𝐴−4 to 𝐴𝐴 𝐴𝐴−5 . Observations of the transition in spectral tail slope from 

𝐴𝐴 𝐴𝐴−4 to 𝐴𝐴 𝐴𝐴−5 by Vincent et al. (2019) and Lenain and Melville (2017) demonstrate the transition frequency (and 
wavenumber) decreases with increasing wind speed (in wind speeds up to 20 m s −1). While neither result extends 
to the extreme, 55 m s −1 wind speeds observed here, the transition frequency appears to decay exponentially with 
an apparent asymptote at 0.30 Hz in the Vincent et al. (2019) data (max winds 20 m s −1).

Figure 3. Upper panel: mean energy density in 10 m s −1 bins. Bin counts 
(1-hr spectra) are labeled inside of the color bar. Middle panel: the mean 
energy spectra compensated by 𝐴𝐴 𝐴𝐴 4 (as energy ⋅ 𝐴𝐴 𝐴𝐴 4 ) and normalized by their 
respective maximum value. In such a scaling, 𝐴𝐴 𝐴𝐴−4 trends collapse to a constant 
line (as indicated by the correspondingly labeled dashed line). Lower panel: 
mean energy spectra compensated by 𝐴𝐴 𝐴𝐴 5 .
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Spectra with a narrow 𝐴𝐴 𝐴𝐴−4 range and dominant 𝐴𝐴 𝐴𝐴−5 tail are present in the SWIFT buoy observations of 
Schwendeman et al. (2014). The authors note the SWIFT spectra derive from young, highly forced waves (which 
is the case here) as defined by the wave age, or the ratio of wave phase speed to the 10-m wind speed. This trend 
is in agreement with the results of Romero and Melville (2010) that demonstrate a narrowing of the equilibrium 
range with decreasing wave age. Spotter spectra, binned by wave age, are shown in the supplement (Figure S1 in 
Supporting Information S1) and are consistent with this wave age dependence.

4. Discussion
4.1. Limitations of Wave Scales Observed by Buoys

It is well known that buoys cannot measure waves shorter than a few meters because the hydrodynamic response 
of their hull is limited to frequencies higher than the natural frequency (typically 0.5–1.0  Hz, see Thomson 
et al. (2015) for details). At low-to-moderate wind speeds and wave conditions, a substantial portion of the total 
mean square slope is supported by shorter waves only measurable by methods such as lidar (Lenain et al., 2019; 
Lenain & Melville, 2017) and polarimetry (Zappa et al., 2008). The buoy mss can be partially corrected by incor-
porating empirical parameters into Equation 1 which effectively extrapolate the spectra to higher frequencies,

adjusted mss = 𝛼𝛼 ∫
𝑓𝑓max

𝑓𝑓min

(2𝜋𝜋𝑓𝑓 )
4
𝐸𝐸(𝑓𝑓 )

𝑔𝑔2
𝑑𝑑𝑓𝑓 + 𝛽𝛽𝛽 (2)

The empirical factors α and β are introduced to account for the mean square slope contributions of the higher 
frequency waves not resolvable by the Spotter buoy (i.e., waves shorter than fmax = 0.5 Hz or 6.3 m in wavelength). 
Fitting α in Equation 2 to Cox and Munk (1954) over the linear regime of Figure 4 (from 2 to 15 m s −1) yields 
α = 5.3 with an offset of β = 0.01.

In Figure 4, adjusted mss (with α = 5.3 and β = 0.01) is compared to the data of Cox and Munk as well as the 
slopes modeled by Donelan (2018) using the University of Miami Wave Model. The Miami wave model includes 
the full spectrum of gravity, capillary-gravity and capillary waves in prescribing mss. In this same figure, a tanh 
function is fit to the data with coefficients a = 0.109 ± 0.0009 and b = 0.057 ± 0.0007 s m −1 and a root mean 
square error of 0.0086. In all datasets, the transition to a regime with weaker mss dependence on wind speed 
is observed near 15 m s −1, corresponding to an approximate slope of 0.08 or tan(16 deg) 2 as identified by Cox 
and Munk (1954). The adjusted mss and Donelan results are in good agreement up to a wind speed of 30 m s −1. 

Figure 4. Adjusted mean square slope, calculated from Equation 2 with α = 5.3 and β = 0.01 using wave measurements 
in Hurricanes Ian and Fiona, as a function of model 10-m wind speed. An a tanh(bU10) fit is shown with a = 0.109 and 
b = 0.057. The classic field measurements of Cox and Munk (1954) are superimposed along with the University of Miami 
Wave Model slope estimates at fetches of 4 and 230 km from Donelan (2018).
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Beyond that, the Donelan model results exceed the Hurricane Ian and Fiona observations by 15%–30%. At high 
winds (>30 m s −1), the model exhibits a sensitivity to fetch (which is beyond the scope of the present study). 
Interestingly, the adjusted buoy mss in Figure 4 appear capped by the upper limit on omnidirectional mean square 
slope proposed by Plant  (1982), mssmax = 0.08 ± 0.04, or using the upper value, mssmax = 0.12. The limit is 
proposed based on requirement that the flux of momentum from wind to waves should not exceed the wind stress 
for wave growth proportional to 𝐴𝐴 (𝑢𝑢∗∕𝑐𝑐)

2 (ratio of friction velocity to wave phase speed, squared), and is employed 
by Elfouhaily et al. (1997) to vet several candidates for parametric spectra.

While useful for a rough comparison of buoy mss to slopes calculated over larger frequency extents, there remains 
large uncertainty in the use of α and β to correct buoy mss to total mss. The coefficient α is biased when the tran-
sition from the equilibrium range to the dissipation range (Figure 3) is well within the frequencies resolvable by 
the buoy, which occurs around wind speeds of 15–20 m s −1, since the contribution to mss of a saturated portion 
of the spectrum is less significant than that of an equilibrium portion of the spectrum (or similarly higher-sloped 
portion). An alternative approach is to extend the observed 𝐴𝐴 𝐴𝐴−5 tail, however this would not capture the evolution 
of the wave spectrum in the gravity-capillary range (wavelengths less than 1 m down to several millimeters) 
which changes shape with increasing wind speed (Laxague et al., 2018; Zappa et al., 2008). A parametric tail, for 
example, Elfouhaily et al. (1997), could be imposed, but many parameterizations are developed on wind speeds 
not exceeding 20 m s −1.

In future work, the NOAA Wide Swath Radar Altimeter (WSRA) and Stepped Frequency Microwave Radiometer 
(SFMR) instruments are good candidates for producing relevant datasets of hurricane winds and waves (Klotz & 
Uhlhorn, 2014; Walsh et al., 2021). The WSRA measures wave topography (which can be used to compute mss) 
and SFMR provides a measure of surface wind speed. Both fly concurrently aboard the NOAA WP-3D aircraft 
during Hurricane Hunter missions.

4.2. Considerations for Free-Drifting Platforms

A free-drifting, buoy-based observation of wave steepness fundamentally relies on time series and thus frequency 
analysis. Doppler shift of the observed wave spectrum can occur when a measurement platform propels in or 
against waves (Collins et al., 2017) or when waves pass through gradients in surface currents (Iyer et al., 2022). At 
high wind speeds, it is unlikely that such waves can exist without the presence of a surface currents. The Spotter 
buoys make observations in a predominantly wave-following, intrinsic reference frame. A Doppler correction 
would be necessary to compare these results with a measurement from a fixed reference frame. Future studies 
should focus on a direct measurement of slope using other technologies.

4.3. Implications for Surface Drag Coefficient

The air-sea drag coefficient, which governs the rate of momentum transfer between the air and ocean surface, 
depends on the surface roughness length under neutral stability (Charnock, 1955). Using a groundbreaking set of 
GPS sonde tropical cyclone field measurements, Powell et al. (2003) observed a saturation and eventual reduc-
tion in both roughness length and drag coefficient at extreme wind speeds. More recent studies have verified this 
result and added functional dependencies (e.g., Holthuijsen et al., 2012). The subsequent adoption of a reduced 
drag coefficient in models has been essential to improving tropical cyclone intensity forecasts (e.g., C. Davis 
et  al.,  2008). The evolution of mean square slope presented here is qualitatively similar, increasing steadily 
through moderate winds before leveling-off at higher wind speeds. Taylor and Yelland (2001) demonstrated the 
ability of a roughness length scaling based on bulk wave slope (Hs/Lp, or the ratio of significant wave height to 
peak wavelength) to predict observed roughness across a wide range of datasets, including the open ocean. This 
bulk steepness is closely related to mss and shares a tendency to saturate at high wind speeds in our data, as shown 
in Figure S12 of Supporting Information S1. Takagaki et al. (2012) report a similar H/L roughness dependence in 
the lab. The roughness length dependence wave slope, combined with the saturation of slopes at high wind speeds 
observed here, might thus contribute to the reduction of the drag coefficient at hurricane force wind speeds.

The observed progression of spectral shape can be directly linked to sea-state dependent drag. Plant  (1982) 
hypothesized a wave growth function proportional to 𝐴𝐴 (𝑢𝑢∗∕𝑐𝑐)

2 where the friction velocity u* is a function of the 
wave energy spectrum within the equilibrium range of the spectral tail (Phillips, 1985). Here, the 𝐴𝐴 𝐴𝐴−4 equilib-
rium range narrows rapidly for winds exceeding 25 m s −1 and is replaced by the 𝐴𝐴 𝐴𝐴−5 dissipative range, leading to 
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enhanced wave breaking. In addition to limiting wave steepness, intense wave breaking promotes the generation 
of spray, which becomes increasingly present within a multi-phase surface foam layer and is hypothesized  to 
modulate the drag coefficient for winds above 30  m  s −1 (Holthuijsen et  al.,  2012; Hwang,  2018; Troitskaya 
et al., 2016, 2019, and others). Recently, Lan et al. (2022) achieved notable tropical cyclone model skill improve-
ment through the use of a roughness parameterization that depends both on sea state and foam, employing the 
Taylor and Yelland (2001) slope scaling at low wave ages (<15.2) and the Drennan et al. (2003) wave age scaling 
at higher wave ages.

Though a mean square slope integrated to frequencies beyond the buoy observations might be necessary for 
a direct relation to the skin friction component of the drag coefficient, the slope of the waves measured by 
buoys remains important to the understanding of form drag and pressure work (Donelan, 2018; Kudryavtsev & 
Makin, 2007, and others). The buoy measurements, though lacking the very highest frequency waves, include 
the vast majority of the total energy in the wave spectrum. More practically, the buoy measurements are the wave 
information most readily available for real-time assimilation into coupled forecast models.

4.4. Secondary Dependencies of mss at High Winds

Although this set of buoy data has been sufficient to determine a parametric relation between mss and wind 
speed, it has not been sufficient to determine secondary dependencies. Building on ideas from the literature, we 
have tested the residual scatter from a tanh fit of the data in Figure 2 for dependence on storm quadrant (position 
relative to the center and heading of the storm), wind-wave alignment, wave age, and storm speed. While none of 
these tests show a statistically significant result, there are some possible signals. When viewing the time series of 
each individual buoy rather than the aggregated data, the mss values are higher for a given wind speed when the 
winds and waves are well-aligned. The alignment dependence would be consistent with formulations for wind-
wave growth that utilize the wind stress vector and the wave celerity vector (Gemmrich et al., 1994). Porchetta 
et al. (2019) found alignment can improve the parameterization of roughness length, observing an increase in 
roughness with large misalignment, though the authors report it has almost no effect in young waves. Depth also 
plays a role in the transformation of waves in shallow water, however spectrograms of relative depth indicate that 
the frequencies of interest to mss, 0.10 Hz and above, remain above the deep water limit (Figure S3 in Supporting 
Information S1). Dependency on storm quadrant may be obscured by COAMPS-TC track position errors, though 
the standard deviation of 6-hr track errors (based on hundred of major hurricane forecasts) is 21 km, likely not 
large enough to place a buoy at the edge of the eyewall on the other side of the eye. Time series figures are 
included in the Supporting Information S1.

5. Conclusions
Ocean surface wave buoy measurements within two hurricanes show a consistent regime change in the relation 
of wave slopes to wind speeds. Up to moderate wind speeds (<15 m s −1), wave slopes increase linearly with wind 
speed, as has been documented in the literature. At higher wind speeds, wave slopes appear to reach an upper 
limit, with no further increase beyond 30 m s −1 winds. The upper limit is similar to a heuristic value of 0.12 
proposed by Plant (1982). This mss limit is directly related to the emergence of an 𝐴𝐴 𝐴𝐴−5 dissipation (saturation) 
range as the dominant shape of the scalar wave energy spectra under high wind speeds. The wave slope changes 
are likely related to changes in the surface drag coefficient, for which a more comprehensive data set is needed 
to evaluate. A larger data set of wave observations in more hurricanes will be valuable for considering secondary 
effects, such as dependencies on storm quadrant, wind-wave alignment, the interaction between swell and wind-
sea, and storm speed.

Data Availability Statement
The wind and wave data used in this work are publicly available at Dryad via https://doi.org/10.5061/dryad.
g4f4qrfvb (J. R. Davis et al., 2023). The storm track and speed data used to test secondary dependencies were 
sourced from IBTrACS (Knapp et al., 2010, 2018). Shapefiles of the storm track and wind swaths used in the 
maps are from the National Hurricane Center GIS Archive available at https://www.nhc.noaa.gov/gis/.
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