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ABSTRACT: High-frequency wind measurements from Saildrone autonomous surface vehicles are used to calculate wind
stress in the tropical east Pacific. Comparison between direct covariance (DC) and bulk wind stress estimates demonstrates
very good agreement. Building on previous work that showed the bulk input data were reliable, our results lend credibility to
the DC estimates. Wind flow distortion by Saildrones is comparable to or smaller than other platforms. Motion correction re-
sults in realistic wind spectra, albeit with signatures of swell-coherent wind fluctuations that may be unrealistically strong.
Fractional differences between DC and bulk wind stress magnitude are largest at wind speeds below 4 m s21. The size of this
effect, however, depends on choice of stress direction assumptions. Past work has shown the importance of using current-
relative (instead of Earth-relative) winds to achieve accurate wind stress magnitude. We show that it is also important for
wind stress direction.

SIGNIFICANCE STATEMENT: We use data from Saildrone uncrewed oceanographic research vehicles to in-
vestigate the horizontal forces applied to the surface of the ocean by the action of the wind. We compare two
methods to calculate the forces: one uses several simplifying assumptions, and the other makes fewer assumptions
but is error prone if the data are incorrectly processed. The two methods agree well, suggesting that Saildrone
vehicles are suitable for both methods and that the data processing methods work. Our results show that it is
important to consider ocean currents, as well as winds, in order to achieve accurate magnitude and direction of the
surface forces.
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1. Introduction

The direct covariance (DC) method is the most direct method
of atmospheric turbulent flux estimation (Edson et al. 1998).
Over the oceans, a relatively limited set of DC data have been
used to develop bulk flux algorithms. These algorithms are used
in numerical models, satellite data, and analysis products to esti-
mate surface fluxes from bulk quantities (e.g., 5–60-min-averaged
sea surface temperature, air temperature, humidity, and wind
speed), which are easier to measure and model than the

turbulent fluxes themselves. Some bulk flux algorithms are peri-
odically updated as more DC data are collected (Fairall et al.
2003; Edson et al. 2013), although DC flux measurements remain
spatiotemporally sparse. In this study we demonstrate the ability
of Saildrone uncrewed surface vehicles (USV) to routinely pro-
vide reliable DC flux measurements and thereby greatly increase
the pool of data available to improve understanding of ocean
surface fluxes and develop bulk flux algorithms.

Saildrones are wind- and solar-powered USV equipped with
suites of meteorological and oceanographic sensors. They are
capable of operating in remote ocean areas for months at a
time, returning some data in real time via satellite communica-
tion and providing the rest of the high-resolution record at
recovery. The routinely collected data allow calculation of sur-
face wind stress and sensible heat and buoyancy fluxes by the
DC method. The DC wind stress is the focus of this work.
Bulk method calculations of wind stress, buoyancy flux, and la-
tent and sensible heat flux are also possible. The data analyzed
here come from two missions in the tropical east Pacific in
2017, with two Saildrones, and 2019, with four Saildrones.
The quality of data from the 2017 mission was established by
Zhang et al. (2019), who compared several quantities with
data from a nearby fixed mooring. Wills et al. (2021) present
data from three tropical Pacific Saildrone missions, for anal-
ysis of meteorological and oceanographic variability around
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thunderstorms in the intertropical convergence zone (ITCZ).
Those studies, however, did not include DC fluxes, which is
the focus of our work here.

The DC method is technically challenging}especially at sea.
Several instrument challenges are common to both land and
ocean settings, including the need to resolve relatively small
fluctuations of multiple geophysical variables simultaneously
and at high time resolution. For ocean settings, additional chal-
lenges arise from the motion of the platform and the possible
distortion of the flow by the platform. Sensors that measure
Saildrone motion are used to correct for platform motion, but
assessing the quality of this correction is difficult. Finally, for
small uncrewed vehicles and buoys, power consumption and
maintenance requirements limit the types of instruments which
can reliably be used. The Saildrones used in this study were
equipped with Gill WindMaster sonic anemometers, but did
not have separate high-frequency humidity sensors, so it was
not possible to calculate DC moisture fluxes. As the instrument
type used here is widely used on observing platforms and has
well-known properties for DC measurements, the primary chal-
lenges in this setting are related to flow distortion and platform
motion.

Flow distortion is most apparent in ship-based DC data,
where the superstructure of large oceangoing research vessels
can deflect the wind flow even in cases where the ship is facing
directly into the wind and instruments are mounted near the
bow (Prytherch et al. 2015). For smaller platforms like buoys,
flow distortion is potentially less extreme than for large ships,
but is still possible (Bigorre et al. 2013). In this context, Sail-
drones are more akin to buoys than ships, due to their small
size and slim profile. However, they do face a challenge that has
not been addressed before in the DC literature: Saildrones gain
propulsion from the wind through means of a rigid “wing”-like
sail which, by design, distorts the mean wind flow in order to ex-
tract energy from it. Like conventional sailboats, Saildrones
heel, meaning that the wing is often oriented away from verti-
cal. This orientation may cause flow distortion due to deflection
of horizontal flow to a nonzero mean vertical flow. With results
presented below, we quantify flow distortion caused by the
Saildrone.

Wave- and wind-induced motion is unavoidable for any float-
ing platform at sea, but is more pronounced for small and light-
weight platforms like Saildrones and buoys than for oceangoing
research ships. Well-established methods (Edson et al. 1998;
section 3b) are used as standard in Saildrone’s onboard soft-
ware to correct for the effects of motion and give wind compo-
nents in an Earth-relative coordinate system. Understanding
how well the correction works is made difficult by conditions
prevalent in our study areas. The deep tropics, especially in the
eastern Pacific, are often swell dominated (Hanley et al. 2010).
The winds are light and the surface wave field is dominated by
long-period waves generated by stronger winds elsewhere. In
these conditions, the wind near the ocean surface can be forced
by the waves, rather than the usual case of waves forced by
wind. Therefore, the wind can include genuine wave-coherent
perturbations (Högström et al. 2015). This means that the crite-
rion used by Bourras et al. (2019) to compare motion correc-
tion methods}that they should remove all wave-coherent

motions from the wind spectrum}is not suitable in our case.
Despite the absence of a clear indicator of accuracy for motion
correction, investigations of the Saildrone motion correction
are presented below.

Estimating the effects of flow distortion and platform motion
are important for understanding the resulting data and derived
quantities. Ultimately, however, in order to establish Saildrones
as viable DC platforms, we need to demonstrate the quality of
the wind stress measurements. Two methods are available to us
here: comparison with other well-established DC platforms,
and comparison with bulk wind stress from Saildrone data. The
comparison against another platform}one that has already
been shown to provide reliable DC measurements}is the
more independent test, but has shortcomings of likely short du-
ration and uncertainty due to spatial separation (for safety rea-
sons, Saildrones usually maintain a separation of a few miles
from other ships or buoys). Comparison with bulk data from
Saildrones themselves has advantages of long duration of com-
parison and spatial coincidence. However, other uncertainties
are introduced by the bulk method itself. Further, the data used
by the bulk method may be prone to systematic flow distortion
and platform motion issues mentioned above, as well as inevita-
ble random uncertainties. In our context, any discrepancy be-
tween DC and bulk wind stress measurements could in
principle indicate one or more of the following: random mea-
surement uncertainty in the DC input data, systematic errors in
the DC input data, or shortcomings in the bulk algorithm or
motion correction. Random measurement uncertainties are
also possible in the input data to the bulk algorithm, but Zhang
et al. (2019) show that such uncertainties are acceptably small.
Because of the multiple, interrelated sources of uncertainty, it
seems inevitable that establishing the quality of DC fluxes may
always involve a degree of subjective judgment. Where possi-
ble, all sources of error in DC fluxes are considered and investi-
gated in this paper.

Finally, we also analyze wind stress in the presence of
strong currents. Studies using estimates of wind stress from in
situ data (Edson et al. 2013) and satellite scatterometers (e.g.,
Chacko et al. 2022; Kelly et al. 2001) have shown that ocean
currents have a significant impact on wind stress magnitude.
DC wind stress estimates permit the investigation of ocean
current impacts on wind stress direction. The Saildrone mis-
sions analyzed here crossed two major bands of strong cur-
rent: the eastward-flowing North Equatorial Countercurrent
at around 88N that typically opposes the trade winds and the
westward-flowing South Equatorial Current centered on the
equator. These current systems provide opportunities to un-
derstand the role of currents in establishing wind stress
magnitude and direction. This analysis also presents another
demonstration of Saildrone’s ability to provide accurate DC
wind stress estimates.

2. Data and methods

What follows is a description of the Saildrone data, and the
methods used to calculate DC and bulk wind stress from the
Saildrone input data.
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a. Saildrone data

We use data from three Saildrone missions to/from and
in the eastern tropical Pacific which were organized as
part of a Tropical Pacific Observing System (TPOS) pilot
project. In the first of these missions, two Saildrones departed
Alameda, California, in September 2017, focused on the equa-
torial region around 1258W, and returned to California in
May 2018. For parts of this mission, the sonic anemometers
ran in intermittent mode to save power, sampling for 1 min
then switching to standby for 4 min, which precludes DC
calculations for these periods. The second mission ran from
October 2018 to February 2019 and is included in some of
our analysis below to help shed light on motion correction
and flow distortion. DC fluxes, however, were not calcu-
lated for this mission because it ran with anemometers mostly
in intermittent mode. In the third mission, four Saildrones
departed Honolulu, Hawaii, in June 2019, headed south to
the equator at around 1408W, and returned to Honolulu in
December 2019.

Saildrones are equipped with a wide range of sensors mea-
suring near-surface atmospheric and oceanic properties (Zhang
et al. 2019). Of primary interest here is the sonic anemometer
(Fig. 1), which measures three-dimensional winds and sonic
temperature. On the Saildrones used here, the anemometers
were mounted on a short extension pole at the top of the wing,
at a height of approximately 5 m. During the 2017 mission,
the anemometers sampled at 10 Hz continuously for about
4 months of the mission, and sampled intermittently for the
rest of the time. During the 2019 mission, the anemometers
sampled at 20 Hz continuously throughout the mission.
Other Saildrone measurements used in the study include
the following:

1) Air temperature and humidity from a Rotronic HC2-S3.
This a slow response instrument that takes ;10 s to respond
to fluctuations in relative humidity and temperature. There-
fore, it is used for the bulk flux calculation, but not for DC
fluxes.

2) Sea surface temperature measured in situ at about 0.6 m
depth. Data from downwelling solar and longwave radio-
meters were also used in the bulk flux algorithm to extrapo-
late the subsurface temperature measurement to a skin
temperature following Fairall et al. (1996a).

3) Near-surface currents from an acoustic Doppler current pro-
filer that returned depth-resolved currents from;6 to 100 m.
Note that the possibility of shear between the surface and 6 m
leads to someuncertainty in the true surface current.

4) Three-dimensional platform accelerations and rotations from
two independent inertial measurement units (VectorNav
VN-300) on the wing and hull. These were used in real time
for motion corrections and, for the 2019 mission, were post-
processed to estimate wave significant height and dominant
period.

b. Wind transformation and related notation

Saildrone’s onboard software performs motion correction
in real time using an algorithm based on Edson et al. (1998).

This algorithm aims to remove the effects of translation veloc-
ity, instantaneous tilt, and angular velocity. The algorithm takes
as input the raw components in anemometer-relative coor-
dinates and outputs the corrected wind components in the
conventional meteorological (east–north–up) coordinates.
Verification of the motion correction method follows in
section 3. But first we pause to clarify notation for the wind
and stress related vector quantities.

1) Uraw: The three-dimensional vector representing airflow
past the anemometer, in a frame of reference fixed with re-
spect to the anemometer or, equally, with respect to the
Saildrone wing. We define basis vectors (̂ianem, ĵanem, k̂anem)
for the anemometer coordinate system. These vectors
point backward, to the right, and up-wing (n.b., not vertical)
from the anemometer, respectively. Then, we can write
Uraw 5 uraw îanem 1 y raw ĵanem 1 wrawk̂anem: These compo-
nents correspond to Saildrone’s raw, uncorrected winds. For
example, with thewing pointing into the wind uraw is positive.

2) U: The three-dimensional vector representing the true
meteorological wind in a terrestrial reference frame (e.g.,
fixed with respect to land or the seabed). We define two
coordinate systems that can be used to describe this refer-
ence frame. One uses basis vectors pointing east, north,
and upward (̂iE, ĵN , k̂), so that U5 uE îE 1 yN ĵN 1 wk̂.
These components correspond to Saildrone’s motion-
corrected winds. The other possible coordinate system is
the streamwise–crosswind coordinate system. This aligns
the first horizontal component with the time-mean wind,
and we define basis vectors (̂ix, ĵy, k̂). Then we can write
U5 ûix 1 y ĵy 1 wk̂: This coordinate system is the one
more commonly used in the DC flux literature. Note that
the time mean of the y component, hyi, is identically
equal to zero in this case.

3) Ucurr: The two-dimensional vector representing the ocean
surface current in a terrestrial reference frame. The current
can be described in either of the terrestrial reference frames

FIG. 1. Photo of a Saildrone underway. Note that this is not one
of the Saildrones used in this study but is of the same type. The in-
set shows a close up of the sonic anemometer and mounting pole
on top of the wing. Image: courtesy Saildrone.
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noted above. Saildrones provide the data in east–north–up
coordinates soUcurr 5 ucurr;E îE 1 y curr;N ĵN(1 0k̂).

4) Urel 5 U 2 Ucurr: The three-dimensional vector represent-
ing the wind experienced by the moving ocean surface (ne-
glecting wave motion). Also known as the current-relative
wind. It is useful to define a coordinate system based on
the current-relative wind analogous to the streamwise/
cross-stream coordinate system for U. We define basis

vectors (̂ix,rel, ĵy,rel, k̂) and components Urel 5 urel îx,rel 1

y rel ĵy,rel 1 wk̂ such that hy reli 5 0. It is also useful to be
able to write the Earth-relative wind U using these basis
vectors: U5 urot îx,rel 1 y rot ĵy,rel 1 wk̂.

These coordinate systems and vectors are shown schemati-
cally in Fig. 2. Two other quantities are used in the investiga-
tion of flow distortion. The motion-corrected wind tilt angle is
arctan w/

����������
u2 1 y2

√( )
. The anemometer’s relative wind direc-

tion is arctan(y raw/uraw).
c. Quality control

The multimonth Saildrone missions produced a large volume
of data. For example, the 20-Hz anemometer data from a single
Saildrone in the 2019 mission contain nearly 300 million time
steps and occupy over 40 GB of storage. The data volume causes
difficulties in verifying the quality. We take the approach of
using automated methods to find several common failure
modes and we also manually flag questionable data where our
investigations reveal them. We accept that this approach may
well miss some episodes of bad data. We first apply the ane-
mometers’ own status indicator, removing all wind compo-
nents and sonic temperature when the status is anything other
than functioning correctly. Spikes are detected using a median
absolute deviation method [Mauder et al. 2013, their Eq. (1),
but with q 5 5.0 and 5-min time windows]. While this is not
thought to be the most reliable (Starkenburg et al. 2016), it is
computationally efficient and robust to missing values. We
also found it to be satisfactory in the subset of cases that we

manually examined. Other problems detected intermittently
in the data include GPS dropouts that can sometimes cause
other records to be unrealistic. In all cases, when any wind
component or sonic temperature was flagged, the others
were also flagged. Whole 10-min averaging periods were ex-
cluded when more than 1% of the data were flagged. After
removing flagged data, gaps of up to 1 s were filled using linear
interpolation.

d. Direct covariance fluxes

After motion correction and quality control, the data are
ready for the DC flux calculation. Within the DC calculation,
however, there are a number of methodological choices to be
made. These include whether the calculations are made in the
time or frequency domain, the choice of averaging period,
and the choice of wind stress coordinate system (Fig. 2).

The DC method uses the covariance between fluctuations
about the mean of vertical wind speed and fluctuations about
the mean of another quantity, to quantify the magnitude and
direction of vertical transport by turbulent atmospheric ed-
dies. The covariance can be most simply calculated using time
series data. The covariance of two quantities is proportional to
the slope of best-fit line in a scatterplot of the two quantities.
The covariance can also be calculated as an integral over the
cospectra of two quantities. This frequency domain calcula-
tion has the benefit of flexibility. Cospectra can be filtered to
minimize spectral leakage and erroneous flux contributions
from frequencies outside the estimated range of turbulent
variations. Multiple consecutive cospectra can be averaged
to reduce noise (though this can also be done in the time
domain). However, the cost of these benefits is the added dif-
ficulty of applying the method to large datasets. The method
is computationally more expensive and it requires more human
intervention. For these reasons, we use the simpler time series
calculation.

The DC method is sensitive to the choice of time period over
which to calculate covariances. Periods are usually chosen from

FIG. 2. Schematic showing wind, current, and wind stress vectors, and three coordinate systems based on them. Wind stress definition is
discussed in section 2d. The decomposition of a generic instantaneous wind perturbation is shown below each of the three coordinate sys-
tems. Note that the stress and various wind vectors are not aligned in this schematic. This example is hypothetical though physically plausi-
ble, particularly under low winds.
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the range 5–60 min. Shorter periods are desirable as they give
higher-resolution output data. However, short periods have dis-
advantages of smaller signal-to-noise and the potential to miss
important longer period fluctuations (i.e., the contribution from
larger eddies). Conversely, longer periods can also be problem-
atic in that they begin to sample larger-scale trends, including
spatial gradients, mesoscale phenomena, and diurnal cycles,
which bias the results. We use 10-min-averaging periods. This is
something of a compromise but near the lower end of the usual
5–60-min range in order to obtain a higher-resolution output.

The final methodological choice we consider is the choice
of wind stress direction assumptions. The choice is important
for validation of Saildrone DC wind stress as it can affect
comparison with other data sources and methods. It is com-
mon in the DC literature to use the coordinate system aligned
with the current-relative wind. Using the coordinate systems
discussed earlier for winds, the wind stress vector t can be
written as t5 tx,rel îx,rel 1 ty,rel ĵy,rel or as t5 tx îx 1 ty ĵy or as
t 5 tE îE 1 tN ĵN. The vector wind stress is, by definition, the
same in any case, but the partitioning into individual compo-
nents differs. Some DC flux studies neglect the crosswind com-
ponent and use the approximation |t| ’ tx or |t| ’ tx,rel. The
justification for this is that it reduces bias from the potentially
noisy crosswind component when calculating the wind stress
magnitude.However, this choice does assume that thewind stress
is exactly in the direction of themean relative wind. This assump-
tion is somewhat problematic, especially in swell-dominated seas
(Grachev et al. 2003). We revisit this topic in our analysis below,
but for now we sidestep the issue by retaining all components.
Regardless of which coordinate system is chosen, theDC calcula-
tion proceeds in a similar way:

tE 52rahu′Ew′i tN 52rahy ′Nw′i, (1)

tx 52rahu′w′i ty 52rahy ′w′i, (2)

tx,rel 52rahu′rotw′i ty,rel 52rahy ′rotw′i: (3)

Here, the prime symbol represents the perturbation term
in the Reynolds decomposition of a quantity. For example,
u 5 hui 1 u′. Angle brackets are used to denote the 10-min
mean of a quantity. Finally, we use drag coefficients derived
from DC wind stress to compare with those derived from the
bulk wind stress. We define

CD,mag 5
|t|

ra(u2rel 1 y2rel)
(4)

and

CD,stream 5
tx,rel

ra(u2rel 1 y2rel)
: (5)

Note that |t|5
�����������
t2E 1 t2N

√
5

����������
t2x 1 t2y

√
5

����������������
t2x,rel 1 t2y,rel

√
. A cor-

ollary of this is that CD,mag $ CD,stream and, in practical terms,
CD,mag . CD,stream because ty,rel is always nonzero.

e. Bulk fluxes

In addition to the DC wind stress calculation already dis-
cussed, we also use the Saildrone data to calculate fluxes using

the bulk method. This allows comparison between the two
methods and also provides latent and sensible heat fluxes
(both of which contribute to the buoyancy flux). It is worth
noting here that we do not use inertial dissipation (ID) fluxes
in this study. This could provide a third method for compari-
son with bulk and DC wind stress}one which is less sensitive
to platform motion than the DC method (Fairall et al. 1990).
Our main reason for not using the ID method is that it is less
direct than the DC method, relying on several assumptions
and empirical functions (Janssen 1999). In particular, the ID
method may be unsuitable when applied within the wave bound-
ary layer in developing seas and swell conditions (Donelan et al.
1997; Edson and Fairall 1998). This is because kinetic energy
exchange between the water surface and atmosphere result in
a departure from the assumed relationship between turbulent
dissipation and wind stress. The ID method is also unable to
provide an independent wind stress direction, limiting its use-
fulness in our study of strong currents and swell. Recent up-
dates to the COARE algorithm have used DC wind stress
exclusively (Edson et al. 2013). Therefore, it seems that DC
fluxes are the most valuable source of data to support research
into ocean surface fluxes.

For the bulk fluxes, we use the COARE version 3.5 algo-
rithm (Fairall et al. 1996b,a, 1997, 2003; Edson et al. 2013)
with wind speed-dependent roughness length, and sea surface
temperature corrections based on diurnal warming and cool-
skin effects. In the low-wind (,5 m s21) conditions common in
the eastern tropical Pacific, it is important to include wind ad-
justments due to gustiness and surface currents. Near-surface
(61 m) currents are obtained from the Saildrones’ acoustic
Doppler current profilers. Gustiness due to boundary layer–
scale large eddies is included through an empirical coefficient
which makes use of an adjustable parameter b, which we set to
1.25 [see Eq. (8) in Fairall et al. 2003]. The COARE algorithm
is used to calculate streamwise, i.e., along-wind, wind stress mag-
nitude. The wind stress direction is assumed to be the same as
Urel. Among other parameters, COARE also outputs Obukhov
length, drag coefficient, and SST diurnal warm layer and cool
skin adjustments.

The data required by the COARE v3.5 algorithm include
current-relative wind speed, air temperature, and humidity,
near-surface seawater temperature, sea surface current velocity,
the depths and heights of all measurements, and, for diurnal
warm layer and cool skin adjustment, shortwave and longwave
radiation. We use the COARE algorithm with 10-min averages
of these inputs, resulting in 10-min-average fluxes that match
the resolution of the DC results. Quality control on the inputs
was completed by manual inspection to remove unrealistic val-
ues and periods with suspiciously large or small variability.

3. Results

a. Flow distortion and platform motion

It is common in DC calculations to filter out data when the
wind is blowing from unfavorable directions relative to the
ship or buoy structure. For example, one approach, for ships
with the anemometer mounted near the bow, is to retain only
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data from periods when the relative wind direction (see defini-
tion at the end of section 2b) is within 908 of directly forward.
While Saildrones have a relatively slim and clean profile com-
pared to a research ship, it is still important to check for any sim-
ilar effects. We analyze this by looking at the relationship
between relative wind direction and wind tilt angle (Fig. 3). The
vast majority of data points have a relative wind direction within
6208. This happens because the anemometer rotates with the
Saildrone wing, which is designed to operate within a narrow
range of relative wind directions for sailing efficiency. The wind
tilt angle does not have an obvious dependence on relative wind
angle. This suggests that Saildrones, by virtue of their rotating
wing and anemometer, do not need filtering based on wind di-
rections in the way that ships do. There are minor differences
between Saildrones in terms of their mean wind tilt, which may
reflect differences in anemometer calibration or orientation.
Even so, most points have tilts of less than 58 in absolute value,
which is at or below the tilt angle measured on ships. Many of
the points with higher tilt angles, greater than 108 for example,
occur with low wind speeds when the tilt angle calculation is
quite unreliable. Note that Fig. 3 does not imply that there is no
flow distortion, only that flow distortion is similar across the
range of observed relative wind directions.

We noted in the introduction that Saildrones have a unique
potential form of flow distortion caused by the wing. Such flow
distortion could affect both the mean wind (e.g., by deflecting
the flow away from horizontal) and the turbulent deviations. We

focus on the mean wind flow distortion, and look for a signature
that depends on the heel angle of the Saildrone. Figure 4 shows
the vertical wind speed in relation to platform heel or roll angle
(rotation around a horizontal axis joining bow to stern). Note
that the smaller range of roll angles in the 2019 mission, com-
pared to 2017 and 2018, is thought to be caused by a slightly
heavier keel used on the newer generation of Saildrones, in-
cluding 1066–1069. Contrary to our original hypothesis, the
results in Fig. 4 show that, as a Saildrone heels, the wing de-
flects the wind downward. There are clear differences be-
tween different Saildrones, but the general pattern is that
larger roll angles correspond to more negative vertical veloc-
ities. We conjecture that this pattern of vertical velocities
may be caused by a wing-tip vortex forming over the end of
the wing. Most of the 1-min-average vertical velocities are
between20.5 and 0.5 m s21 which corresponds to flow tilts of
18–28 from horizontal. Saildrones 1005 in 2017 and 1067 in
2019 seem to have a larger gradient of vertical wind speed
than others, possibly pointing to a slight offset from vertical
in the sensor’s installed orientation. Saildrones 1029 and
1030 in 2018 were equipped with larger wings, in an attempt
to achieve better sailing abilities in the light winds of the
tropics. This may explain their slightly different distribution
of vertical wind speeds. For the missions we are using in most
of our analysis, namely, 2017 and 2019, the degree of flow dis-
tortion generally seems to be quite minor compared to the
vertical wind speed spread, and so we do not correct for it.

FIG. 3. Scatterplots of wind tilt angle against relative wind direction. Positive tilt angle represents upward air motion. Each small point
represents a 1-min mean, colored by hull roll angle. There is one panel per Saildrone, grouped in rows by mission year: (top) 2017,
(middle) 2018, and (bottom) 2019. The numbers in each panel show the year and Saildrone ID.
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We next try to verify the accuracy of the motion correction
procedures by looking at spectra of corrected and uncorrected
winds and platform motion (Fig. 5). Across the eight periods
shown, the wraw spectral intensity tends to peak around 0.2–
0.3 Hz. The w flattens out this spectrum into something that
better resembles the expected behavior in the inertial sub-
range. However, the motion correction also seems to intro-
duce new peaks. At around 0.07–0.1 Hz, the corrected vertical
wind and Saildrone vertical velocity both show peaks, while
the raw vertical wind does not. This suggests that the motion
correction is adding in a vertical wind feature that coincides
with the lowest-frequency peak in the platform motion spec-
trum, likely caused by surface waves, especially swell. Interest-
ingly, the low-frequency alignment of w and żSD spectra is
almost entirely absent in the strongest wind cases (Figs. 5b,f),
and arguably strongest in light-wind cases. This agrees with
the results of Soloviev and Kudryavtsev (2010) and Grare et al.
(2018). However, similar behavior in Bourras et al. (2019, their
Fig. 3) was deemed to be unrealistic and the authors chose to
suppress “any vertical wind fluctuation that would be spec-
trally coherent with the vertical platform motion.” We feel
that this condition is overly strict, especially in tropical regions
where swell-dominated light-wind conditions commonly occur,
causing wave-coherent wind fluctuations (Prytherch et al.

2015; Sullivan and McWilliams 2010). In summary, the motion
correction seems to be sufficient to correct the wind spectra in
the inertial subrange, but has a relatively light touch, compared
to approaches that remove all wave-coherent wind oscillations
(e.g., Bourras et al. 2019) for lower-frequency oscillations. We
suggest this is appropriate for swell conditions.

Figure 5 has two other features of note. First, all events
have a peak in the platform motion spectra at 5 Hz, likely
caused by a vibration in the Saildrone wing or the anemome-
ter mounting to the wing. This is thought not to be significant
for flux calculations as such a high frequency contributes little
to the covariances (e.g., Edson et al. 1998, Fig. 9). Second, all
spectra have their peak in wraw at a surprisingly consistent
frequency}around 0.25 Hz. As noted above, the motion cor-
rection seems to reliably smooth out this peak. Its cause is not
known definitively but may be related to a resonant frequency
in the Saildrone motion}for example, heave corresponding to
a buoyancy frequency or pitch related to moment of inertia.

b. Direct covariance wind stress

The amount of DC data collected in the 2017 and 2019 mis-
sions is considerable (Table 1): over 100000 flux averaging peri-
ods (10 min), which is equivalent to over 700 days or just under
2 years. Most of this is from 2019, when the four Saildrones also

FIG. 4. Scatterplots of vertical wind speed against Saildrone hull roll angle. Positive vertical wind speed represents upward air motion.
Roll represents the rotation angle of the Saildrone hull about the bow-to-stern axis. Each small point represents a 1-min mean, colored by
horizontal wind speed. Large black points and bars represent the median and 5th and 95th percentiles of flow tilt in 58 roll bins. There is
one panel per Saildrone, grouped in rows by mission year: (top) 2017, (middle) 2018, and (bottom) 2019. The numbers in each panel show
the year and Saildrone ID. For 2017 and 2018, the absolute value of roll was measured without direction; in 2019 the direction [heeling to-
ward port (negative) or starboard (positive)] was also measured.
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recorded surface wave data, giving over 500 days of combined
DC and bulk wind stress data alongside wave data.

To assess the quality of our DC wind stress measurements,
we compare them with coincident estimates based on the bulk
method (Table 2). The Saildrone data fields used in the bulk
algorithm were shown to be of high quality by Zhang et al.
(2019), who compared 2017 Saildrone results with data from
a mooring in the eastern tropical Pacific. Thus, the bulk
wind stress results provide a reliable first assessment of the
DC results. DC |t| is on average greater than the bulk magni-
tude by 1.79 3 1023 N m22. The mean wind stress is of order
0.1 N m22 so this represents a ;2% mean difference. Using

DC tx or tx,rel as the basis of comparison results in a mean dif-
ference that is one to two orders of magnitude smaller. This
likely reflects the fact that the COARE algorithm used here
was calibrated with DC tx,rel, and so the algorithm is designed
to only estimate the streamwise component of stress. The
root-mean-square differences (RMSD) and mean absolute
differences, relative to tbulk, are similar for all versions of the
DC wind stress. The mean tbulk across the six Saildrones in-
cluded here is 0.072 N m22. Dividing the RMSD by the mean
of tbulk gives an estimated uncertainty of 31.4% for |t|, and
slightly smaller for tx and tx,rel. This is comparable with results
from Edson et al. (2013).

FIG. 5. Averaged power spectra of vertical wind fluctuations (with and without motion corrections) and Saildrone
vertical velocity fluctuations for eight 6-h periods (one per panel). Motion-corrected vertical wind (w) is shown in
blue; uncorrected vertical wind (wraw) is shown in orange; Saildrone vertical velocity (żSD) is shown in green. All three
quantities are detrended and tapered (using a Tukey window, which leaves the central 80% of each window un-
changed) before calculation of spectra. Each spectrum shows the average of 37 ten-minute spectra (representing just
over 6 h). Periods were selected to have consistent wind speed and direction in order to reduce noise in the spectra.
The date, Saildrone ID, start time, average wind speed, and (where available) wave dominant period and significant
height are shown above each panel. Note the logarithmic scales on each axis.
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An alternative presentation of the comparison between DC
and bulk wind stress is given in Fig. 6, which shows over
5 months of data from a single Saildrone. The two time series
match closely and it is difficult to see any systematic discrep-
ancies. This remarkably good agreement, as quantified by
Table 2, is an indicator that the Saildrone DC wind stress esti-
mates are of high quality. Nonetheless, there are periods with
a noticeable offset. For example, the bulk wind stress seems
to exceed the DC for several days in late November (notice
especially 26 and 29 November), while the DC exceeds the
bulk on 10 August. Similar time series for other Saildrones
are given in the online supplementary material.

Figure 7a shows data from all Saildrones in the form of
CD,mag as a function of wind speed. The format is similar to
Fig. 6 from Edson et al. (2013), and the results are quite similar:
a functional form with a minimum at approximately 4 m s21 and
relatively wide spread of points below 5 m s21. However, our
binned results reveal an important difference: below 4 m s21,
our DC results are markedly higher than the bulk wind stress re-
sults based on the COARE 3.5 algorithm presented in Edson
et al. (2013). Figure 7b repeats this analysis with CD,stream. In this
case, we see better agreement between DC and bulk drag coeffi-
cients at low wind speeds (|Urel| , 4 m s21). This result suggests
that it is the low wind speed differences that cause the larger
mean differences for |t| seen in Table 2.

c. Wind stress and current directions

The differences between |t| and tx,rel highlight the possibility,
demonstrated by other studies (Grachev et al. 2003; Ortiz-Suslow
et al. 2018), that the wind stress may not act in the direction ofU
or Urel. We explore this by looking at the off-wind stress angle,
that is, the angle between t andUrel, as a function of wind speed
(Fig. 8). For wind speeds above 4 m s21 the off-wind stress angles
are mostly less than 22.58. For wind speeds less than 4 m s21,
however, a significant fraction of off-wind stress angles are
greater than 458. For wind speeds less than 2 m s21, the off-wind
stress angles are essentially uniformly distributed and there is no
relationship between the wind stress direction and the relative
wind direction.

Grachev et al. (2003) and Geernaert et al. (1993) show that off-
wind stress angle is affected by swell propagating at an angle
to the wind. Saildrones do not provide directional wave infor-
mation, so we are unable to investigate whether the swell di-
rection is responsible for the wind stress direction in our
dataset. A further complication comes from the fact that our
DC wind stress estimates come from a single anemometer at a
fixed height. Wave-coherent wind fluctuations exhibit a strong
vertical gradient whose features depend on wind and wave
conditions (Grare et al. 2018; Soloviev and Kudryavtsev 2010).
The existence of near-surface constant flux layer, assumed by
Monin–Obukhov similarity theory, has even been questioned
(Ortiz-Suslow et al. 2021). Quantifying where a Saildrone’s an-
emometer sits in such time-dependent near-surface vertical
gradients is necessary to fully understand how well the DC
wind stress estimates represent the stress at the ocean surface.
However, this is beyond the scope of this paper. The nondirec-
tional wave information that is provided by Saildrones does
not suggest an obvious relationship between off-wind stress
angles and either significant height or dominant period. How-
ever, we do note that among data points with wind speeds in
the range 6–10 m s21, those with the largest off-wind stress an-
gles tend to have large significant wave heights.

Figure 8 uses Urel for both magnitude in the independent
variable and direction in the dependent variable. We expect
that the direction of t is more closely related to the direction
of Urel than to the direction of U, and indeed this is assumed
to be the case in bulk flux algorithms. Figure 9 shows a case
where the assumption does seem to hold. The case features
light winds in the north equatorial counter current region.
Vectors show an eastward current and southerly wind, which
combine to give a north-northwestward relative wind. The
wind stress vector t is directed to the northwest, which is
closer in direction toUrel than toU. As has been shown previ-
ously for wind stress magnitude, this demonstrates the impor-
tance for wind stress direction of including ocean currents in
stress calculations. However, noting that the Saildrone surface
current measurement is at around 6 m, it is uncertain how
much near-surface current shear may affect this result.

To investigate the effect of wind stress direction assump-
tions on themagnitudes of the DC wind stress, we generalized
the streamwise stress calculation to any arbitrary direction, as
opposed to the usual current-relative wind direction. The
steps in the streamwise stress calculation are 1) rotation of co-
ordinate system, 2) calculation of two orthogonal components
of stress, and then 3) retention of only one component. The

TABLE 1. Count of 10-min periods with valid DC data,
individually and coincident with other data types (bulk wind
stress, waves) from individual Saildrones and in total. DC data
are classed as complete when they have 99% nonmissing data
points. Wave data were not provided from the 2017 mission.

Year
Drone
ID DC

DC 1

bulk
… 1

currents
… 1

waves

2017 1005 14 927 14 581 14 029 0
1006 15 746 15 287 14 891 0

2019 1066 10 940 10 886 10 886 10 879
1067 22 643 22 509 22 509 22 495
1068 22 508 22 495 22 483 22 474
1069 17 606 17 604 17 598 17 587

Total 104 370 103 362 102 396 73 435
Total (days) 724.8 717.8 711.1 510.0

TABLE 2. Error statistics for DC wind stress relative to bulk
wind stress. These statistics average over all Saildrones in both
missions. RMSD 5 root-mean-square difference. MAD 5 mean
absolute difference. The number of observations is the same for
all categories: 102 396 ten-minute periods.

Wind stress type Mean difference RMSD (N m22) MAD

|t| 2 tbulk 1.79 3 1023 2.26 3 1022 1.36 3 1022

tx 2 tbulk 5.45 3 1025 2.20 3 1022 1.36 3 1022

tx,rel 2 tbulk 7.74 3 1025 2.20 3 1022 1.36 3 1022
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outcome of the generalization is shown by the dashed black
lines in Fig. 9, which form two circular lobes. Mathematical ma-
nipulation of the covariance definitions under a rotation of axes
demonstrates that the streamwise component of stress (ta) de-
fined at any angle a to t is given by ta 5 |t| cosa. (Of course,
the value of a is usually unknown and effectively aligns with
the wind or relative wind.) What this means is that the differ-
ences in magnitude between |t| and tx,rel are uniquely deter-
mined by the angle between t and Urel. For example, using the
streamwise wind stress component in the direction of the wind
(tx) in Fig. 9 would give a magnitude slightly over half of |t|.

In the case shown in Fig. 9, t aligns more closely with Urel

than U. This also means that tx,rel is closer than tx to |t|. We
next ask whether this holds more generally. Figure 10 shows
the ratios of magnitudes of the different wind stress magnitudes
for all cases where the current speed is at least half of the wind
speed. We see that tx,rel is on average 69% of |t|, while tx is
on average 63% of |t|. The distribution of differences has a
definite positive skew and shows that, on average for the
cases analyzed here, using tx,rel gives a wind stress around
10% larger than tx. The spread is considerable, however, so
the difference often exceeds 25%, but also can be negative.
By the reasoning discussed earlier, this analysis also implies
that there is a better general angular alignment between t

and Urel than between t and U.

4. Discussion

Verification of DC measurements at sea is difficult. The best
case is comparison with a nearby alternative platform known
to provide accurate DC fluxes, though even this is made diffi-
cult by issues like spatiotemporal variability, instrument errors
or differences, and methodological differences. Such a com-
parison is not possible for the Saildrone missions presented
here, so we have turned to the next best thing: comparison
with bulk fluxes from Saildrones themselves. The Saildrone
data we use in the bulk algorithm have already been compared
with a well-established buoy measurement system (in Zhang
et al. 2019), which lends confidence that the bulk measure-
ments are reliable. In our analysis here, the excellent agree-
ment between bulk and DC wind stress estimates leads us to
suggest that the DC stress estimates should be considered ac-
curate to within community accepted standards (Cronin et al.
2019). From an operational perspective, given the relative sim-
plicity of the DC calculation, we expect that the DC wind
stress could be calculated and broadcast in real time.

One of the main results we have shown is the potentially
large differences in DC stress estimates, at low wind speeds,
between different direction assumptions. We have shown that
calculating the DC wind stress as the streamwise component,
tx,rel, in the direction of Urel, can give significantly smaller

FIG. 6. Time series of wind stress magnitude from Saildrone 1068 in the 2019 mission. Bulk
wind stress is red and DC wind stress |t| is black. Each row represents 1 month of data. Bulk
wind stress from 17 Dec onward is from tests at the end of the mission close to Hawaii; DC wind
stress was not calculated for this period.
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wind stress than using the magnitude of the vector wind stress
|t|. This is because Urel and t can point in different directions,
and the magnitude differences are related by simple trigo-
nometry to the directional differences. The differences raise
two important questions: First, from an observational per-
spective, which is the more reliable DC stress direction? And
second, are any changes warranted to the design of bulk flux
algorithms?

On the first question, numerous studies (e.g., Grachev et al.
2003; Geernaert et al. 1993) have shown that, in cases of light
winds and swell-dominated surface wave fields, the direction
of t can be significantly different to Urel. The DC wind stress
estimates presented here support this. Wind directions also
tend to be relatively variable in light winds, which can cause

further mismatch between directions of t and Urel. For
example, if wind speed fluctuations correlate with wind di-
rection fluctuations, t may be closer in direction to the wind
direction of the stronger wind subperiods rather than the
mean wind direction of the entire 10-min period. Thus, it is
clearly advantageous to have a DC wind stress direction in-
dependent of the direction of Urel. However, errors and un-
certainties in wind measurements and motion correction
are, in a relative sense, large for light-wind conditions}the
cases when choice of direction convention makes the biggest
difference. It is possible, in these cases, for the sampling un-
certainty to be on the same order of magnitude as the true
mean wind stress. Therefore, adding the two DC stress compo-
nents in quadrature to get |t| results in overestimation of the
true wind stress magnitude. On the other hand, making the ap-
proximation |t| ’ tx,rel results in underestimation of the true
wind stress magnitude by an amount that depends on the
angle between the true wind stress and Urel. Directional
wave information could help assess whether swell effects ex-
plain the misalignment between t and Urel. Unfortunately,
Saildrones do not currently provide directional wave informa-
tion. Global wave analyses may give useful information on the
subject, but that investigation is beyond the scope of this study.

The second question}whether changes are warranted in
bulk flux algorithms}must address the purposes of these algo-
rithms. Whether for use in numerical models or driven by ob-
servations of bulk properties, bulk flux algorithms must often
work on a limited number of variables. For the direction, Urel

(or sometimes, if no current data are available, simply U) is
usually the only vector direction provided so there are no
grounds to specify an alternative direction for the wind stress.
In cases with wind speeds over 4 m s21, the wind stress direc-
tion error in using Urel is likely to be small. For the wind stress
magnitude, the issue becomes then whether to tune the drag
coefficient parameterization based on DC |t| (in which case
the bulk algorithm may overestimate tx,rel) or based on DC
tx,rel (in which case the bulk algorithm may underestimate |t|).
COARE and some other bulk flux algorithms (e.g., Large and
Pond 1981; Zeng et al. 1998) use tx,rel. The decision potentially
has small but important consequences for forcing of horizontal
currents, vertical motion, and mixing in ocean models. Esti-
mates of sensible and latent heat flux may also be affected,
though recent work suggests the resulting change would be mi-
nor (Iyer et al. 2022). Any changes to the stress methodology
would also require reconsideration of the parameterization of
“gustiness” due to boundary layer–scale eddies.

The preceding discussion highlights a number of trade-offs
that must be made when calculating wind stress. Longer aver-
aging periods increase the signal-to-noise ratio, but require a
statistical gustiness estimate to compensate for differences be-
tween instantaneous and time-averaged vector magnitudes
(Cronin et al. 2006). Similarly, neglecting the cross-stream
DC wind stress can increase the signal-to-noise ratio, but at
the expense of a possible systematic underestimate of wind
stress magnitude. The best choices are context dependent; for
example, looking at vertical mixing in a one-dimensional
ocean model may require different trade-offs to global analy-
sis of vector wind stress from satellite data.

FIG. 7. Scatterplot of drag coefficient against current-relative
wind speed: (top) CD,mag [see Eq. (4)]; (bottom) CD,stream, calcu-
lated from tx,rel [see Eq. (5)]. Each blue point represents a 10-min-
average DC value. The red crosses and bars represent the median
and 5th and 95th percentiles of 1 m s21 bins of the DC data. The
black crosses and bars represent the same statistics for the bulk
algorithm calculation of drag coefficient (individual data points not
shown). The DC binned data have been slightly displaced to the
right of the bin centers to aid legibility.
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Our results show that, when available, Urel should be used
in preference to U for the direction of the wind stress, in both
bulk and DC methods. This is most important when the cur-
rent is fast relative to the wind, which is not uncommon in the
tropics or other locations in certain seasons. In one case pre-
sented here from the North Equatorial Countercurrent in the
eastern tropical Pacific Ocean, this results in a change from
tx ’ 0.5 |t| for Earth-relative winds to tx,rel ’ 0.9 |t| for
current-relative winds. Urel is also more closely aligned with
the vector wind stress t. Averaging over a larger number of
strong current cases, the increase in stress and closer align-
ment are not as large, but still significant (p 5 0.027 in a two-
sided, two-sample Kolmogorov–Smirnov test). We argue that
this gives further credibility to the wind stress direction being
a meaningful quantity independent of the wind direction, be-
cause if the DC wind stress direction was truly random and
dominated by measurement error, then the chances of observ-
ing such a systematic result would be small.

In our analysis and discussion of the role of currents in
wind stress direction, we have mostly focused on light-wind

situations. This is for two reasons: first, light-wind cases are
when the greatest misalignment between U and Urel occurs;
and second, light-wind cases are when the greatest misalign-
ment between t and Urel, and therefore when the greatest dif-
ference between |t| and tx,rel, occurs. However, it is important
to note that currents still play a role at high wind speeds
through wind stress curl effects. Because atmospheric winds
vary at relatively large scales, it is the current variation across
ocean eddies that controls the wind stress curl. Thus, spatial var-
iations of current and wind stress direction affect eddy-induced
upwelling (Gaube et al. 2015) and eddy kinetic energy (Renault
et al. 2016).

5. Conclusions

We have calculated direct covariance (DC) wind stress from
six Saildrones on two missions in the eastern tropical Pacific
ocean. The results on average agree very well with COARE
version 3.5 estimates of wind stress using 10-min-mean data
collected from the same Saildrones. The agreement is best

FIG. 8. Difference in direction (denoted f) between wind stress (t) and current-relative wind vector Urel shown as
(left) scatterplot as a function of current-relative wind speed (|Urel|); (right) cumulative distribution functions for 2 m s21

bins of current-relative wind speed. Points in the scatterplot are colored according to significant wave height and sized
according to wave period (larger points corresponding to long-period swell or mature wind seas, and smaller points
corresponding to short-period young wind seas).
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when only the streamwise component of DC wind stress, in
the direction of the mean current-relative wind, is used. This is
because the COARE 3.5 algorithm is based on such data.
Even so, we think the cross-stream wind stress component
contains meaningful signal, and we use it in other parts of this
study.

The quality of the DC wind stress estimates supports sev-
eral possible uses: 1) an alternative to bulk estimates when
not all inputs are available for a bulk algorithm; 2) a comple-
mentary estimate when bulk data are available; 3) a source of
data to better understand how currents, waves, and swell af-
fect wind stress; 4) a possible source of data to improve bulk
algorithms. The last of these uses would be greatly helped,
however, by comparison with data from another proven DC
measurement system.

Comparing drag coefficients calculated from DC wind
stress with those from COARE 3.5 showed greatest differ-
ences for |Urel| , 4 m s21. We quantified the contribution of
wind stress direction assumptions to these low wind speed dif-
ferences by examining the angles between DC wind stress and
mean wind speed. For |Urel| , 2 m s21, the wind direction and
wind stress direction are essentially unrelated, while at higher
wind speeds they align closely (within 22.58 in most cases).
Recognizing that the current can have a significant effect on

wind stress at low wind speeds, we then explored whether
Earth-relative or current-relative winds aligned more closely
with wind stress direction. Looking at the set of cases where the
current speed is at least half of the wind speed, the wind stress
is significantly more closely aligned with the current-relative
wind. This result demonstrates the impact of currents on wind
stress direction, adding to findings in previous studies that cur-
rents are important for wind stress magnitude.

In the course of our research, we realized that the angle be-
tween the wind stress vector t and current-relative wind Urel

is related to the magnitude differences between the vector
wind stress magnitude |t| and the streamwise wind stress com-
ponent tx,rel. A two-dimensional rotation applied to the high-
frequency wind data before the DC calculation is equivalent
to the same rotation applied to the wind stress after the DC
calculation. Effectively, tx,rel is the projection of t onto Urel.
This has important consequences for processing DC data and
interpreting both DC and bulk wind stress estimates. We rec-
ommend that, unless the streamwise wind stress is explicitly
needed (e.g., when tuning bulk flux algorithms), the vector
wind stress should be used. This has a direction independent
of the wind direction and a magnitude based on two perpen-
dicular components (cross stream and streamwise, i.e., per-
pendicular and parallel to current-relative wind). Developers

FIG. 9. Polar plot showing wind, current, and current-relative wind (units: m s21) and wind
stress in relative units for the 10-min period beginning 1350 UTC 2 Nov 2019. The solid black
line shows the direction of DC wind stress t, scaled to length 1. The dashed black lines represent
the magnitude (relative to |t|) of the streamwise component of DC wind stress when the calcula-
tion is performed in axes rotated to any direction. For example, the streamwise component of
wind stress calculated in axes aligned with the wind direction (green line) would be slightly over
half of |t|.
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and users of bulk flux algorithms should also be clear that
bulk wind stress only represents the streamwise component of
the true stress.

This investigation focused on the surface stress. Ongoing
work is investigating the DC buoyancy flux (i.e., from the
sonic temperature flux) compared to bulk values where we ex-
pect larger uncertainties in bulk heat flux estimates. It is
worth noting that infrared hygrometers have been deployed
on buoy-based systems to directly compute the latent heat
flux (Clayson et al. 2019). This allows for removal of the mois-
ture component in the sonic temperature flux to estimate the
sensible heat flux. Given the good agreement between DC
and bulk wind stress estimates in this study, the addition of an
IR hygrometer on Saildrones should provide a means to im-
prove latent and sensible heat flux parameterizations in bulk
formulas.
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