Wave Breaking and Turbulence Model of Spume Droplet Production

Following Andreas, we can represent the rate of TKE converted to potential energy in the surface tension of droplets as

 $d(\Delta F) / dt = \Sigma \int 4 / 3\pi r^2 n_s(r) dr$

where ΔF is some fraction of *P* the total energy input to breaking waves (W/m²)

 Σ the surface tension of the water-air interface (Nt/m)

r the droplet radius

 $n_s(r)$ the number of droplets produces per second per square meter of surface.

P is actually an integral over the wavenumber space of wave energy transfer spectrum. Before looking at *P*, consider the common representation of the dissipation of **turbulent** kinetic energy, ϵ ,

$$\varepsilon = 2\nu \int k^2 E(k) dk$$

where v is the kinematic viscosity and E(k) the energy spectral density.

Energy Cascade

At any given wavenumber energy transfers from larger to smaller scales are characterized by the spectral transfer parameter, T(k). In the inertial subrange, $T(k)=\epsilon$; for wavenumbers exceeding the Kolmogorov wavenumber, k_{η} , T(k) decreases. In the inertial subrange, the energy spectrum is given by

$$E(k) = \alpha \varepsilon^{2/3} k^{-5/3}$$

The transfer of energy in the spectral domain is described by the equation

$$\frac{\partial E}{\partial t} = -\frac{\partial T}{\partial k} - vk^2 E$$

Tennekes and Lumley (1972) give a form of T(k) that is consistent with this budget equation and the -5/3 subrange behavior

$$E(k) = \alpha \varepsilon^{2/3} k^{-5/3} \exp\left[-\frac{3}{2} \alpha (k\eta)^{4/3}\right]$$
$$T(k) = \varepsilon \exp\left[-\frac{9}{4} \alpha (k\eta)^{4/3}\right]$$

where $\eta = (v^3/\epsilon)^{1/4}$ is the Kolmogorov microscale.

Application to Droplets

Since we are interested in droplets of some size, we want T(r) instead of T(k). It is simple to show that in the inertial subrange, E(r) is given by

$$E(r) = \frac{\alpha}{\pi^{2/3}} \varepsilon^{2/3} r^{-1/3}$$

$$T(r) = \varepsilon \exp\left[-\frac{9}{4}\alpha \left(\frac{\pi\eta}{r}\right)^{4/3}\right]$$

Now, we relate energy input per unit area versus unit volume following Newell and Zakharov; the Kolmogorov scale at the airsea interface is given by

$$\eta = \frac{\nu}{P^{1/3}}$$

or $P = \epsilon \eta$. Thus, by analogy we can write $T_p(r)$ as

$$T_p(r) = P \exp\left[-\frac{9}{4}\alpha \left(\frac{\pi\eta}{r}\right)^{4/3}\right]$$

Partitioning of Energy

In the absence of droplet processes, $T_p(r) \approx P$ for large *r*; therefore, $\partial T/\partial r$ is essentially 0. This is the definition of the inertial subrange; i.e., energy isn't lost at the these scales but transferred to smaller scales where it is eventually dissipated.

Suppose we now assume that some *small* fraction of the energy being transferred in r-space is lost to the droplets. This implies

$$\frac{4\pi}{3}\sigma r^2 n_s(r) = -\frac{\partial T}{\partial r} = \frac{f}{l}T(r)$$

where *f* is an unknown constant, $\sigma = \Sigma / \rho_w = 7.4 \text{ X} 10^{-5} \text{ m}^3/\text{s}^2$, and *l* an 'appropriate' size scale. This gives a final expression for n_s is

$$\frac{4\pi r^3}{3}n_s(r) = \frac{f\,\mathrm{Pr}}{\sigma l}\exp\left[-\frac{9}{4}\alpha\left(\frac{\pi\eta}{r}\right)^{4/3}\right]$$

It is not obvious to me what should be used for 1. Possibilities include η , $(rE(r))^{\frac{1}{2}}$, some local wave scale, or something associated with surface tension.

Escaping the Interface

This approach gives us some estimate of the droplet spectrum produced by the breakdown of the air-water interface, but it says little about the introduction of those droplets into the turbulent surface layer over the water. To do this, we postulate that droplets will spend a significant time airborne if their fall velocity is less than the local wind speed times the local slope of the waves. If we assume a Gaussian distribution of horizontal wind speed fluctuations, then an error function describes the integral probability that a droplet of size r is ejected from the top of the wave. Thus

$$\frac{4\pi r^{3}}{3}n_{s}(r) = \frac{f \Pr}{\sigma l} \exp\left[-\frac{9}{4}\alpha(\frac{\pi\eta}{r})^{4/3}\right] * \left[1 + erf\left(\frac{U(h) - V_{f} / Slope}{\sigma_{u}}\right)\right] / 2$$

where $V_f(r)$ is the gravitational settling speed of the droplet, U(h) the mean wind speed at height h, and σ_u the standard deviation of wind speed fluctuations at h. For large droplets, low wind speeds, or small wave slopes erf \rightarrow -1 and no droplets are observed. For very small droplets, η/r becomes large, and no droplets are produced.

P energy wave breaking (W/m²) σ surface tension r droplet radius η Kolmogorov microscale = $\nu/P^{1/3}$ f fraction of P going into droplet production

Background

The conservation equation for the ensemble mean of variable x, denoted as X, is

$$\frac{\partial X}{\partial t} + \nabla_{h} X \cdot \boldsymbol{u}_{h} = -\frac{\partial (\overline{w'x'})}{\partial z} + \overline{S}_{x}$$

where the subscript h denote horizontal components and S_x represents the source terms for the variable x. The quantity of interest is the Reynolds flux enclosed in the parentheses.

Stress:
$$\vec{\tau} = \rho \{ \langle w'u' \rangle \vec{i}_x + \langle w'v' \rangle \vec{i}_y \}$$

Sensible heat:
$$H_s = \rho c_p < w'T' >$$

Latent heat:
$$H_l = \rho L_e < w'q' >$$

Bulk Formula for **Surface** fluxes :

$$\tau = -\rho C_d U[u]$$

$$H_s = \rho c_p C_h U[T_o - \theta]$$

$$H_l = \rho L_e C_E U[q_o - q]$$

U=wind speed T=temperature q=specific humidity $C_h = C_E \approx 1.15 \times 10^{-3}$ $C_d \approx$ Increases with wind speed

Sea Spray and Hurricanes

Enthalpy flux = Sensible + Latent heat fluxes $H_k = H_s + H_l$ therefore $C_k = C_h + C_e$

Emanuel (1995) showed relationship between ratio of Ck/C_d affected the maximum strength of hurricanes. A ratio of 1.5 was required to get a hurricane with 80 m/s wind speed.

Questions:

Does sea spray significantly affect hurricane dynamics? What is required to parameterize sea spray effects?

Sidebar:

Note evaporation of droplets changes partition of Hs and Hl, but does not change Hk!!

Steps in the process:

Characterize the surface source strength, s_n, of the ocean. Characterize the thermodynamics of droplet heat/moisture transfer.

Develop parameterization.

See effect on hurricanes.

Definition

 s_n = #drops of radius r/(ocean surface area s dr) volume source = 4/3 π r³ s_n

Single Droplet View

Ocean temperature, Ts Air temperature, Ta

Droplet of radius r_o is ejected as seawater at T=Ts, it cools to the wet bulb temperature, Tw, it evaporates at some rate, E. After some time, t, is re-impacts the sea surface at size r_f .

Net heating of the air by direct transfer from the ocean

$$Q_{si} = \rho_w c_{pw} \frac{4}{3} \pi r_o^3 (T_s - T_w)$$

Net evaporation of sea spray droplet

$$Q_{li} = \rho_w L_e \frac{4}{3} \pi (r_o^3 - r_f^3)$$

To define the impact of a spectrum of droplets, integrate over \boldsymbol{s}_n

$$Q_{s} = \rho_{w}c_{pw} \left[\int \frac{4}{3}\pi r_{o}^{3} s_{n}(r_{o})dr_{o}\right](T_{s} - T_{w})$$
$$Q_{l} = \rho_{w}L_{e}\left[\int \frac{4}{3}\pi r_{o}^{3} s_{n}(r_{o})(1 - (\frac{r_{f}}{r_{o}})^{3})dr_{o}\right]$$

Single Droplet Thermodynamics

Mass lost to evaporation

 $\dot{M} = -4\pi D_v f_p r \rho_a [q_s(T_r) - q_a] = 4\pi r^2 \dot{r}$

Cooling by evaporation

$$E = -L_e \dot{M} = 4\pi D_v f_p \rho_a L_e[q_s(T_r) - q_a]$$

Heating by direct heat transfer from drop to air $H = 4\pi D_T f_p \rho_a c_{pa} [T_r - T_a]$

Wet bulb temperature defined by H=E

$$D_{T}c_{p}[T_{w}-T_{a}] = D_{v}L_{e}[q_{s}(T_{w})-q_{a}]$$

Solve by expanding Clausius-Claperyon relation

$$T_a - T_w = \frac{(1 - \beta)}{\gamma} (1 - S)$$
$$\frac{\partial q_s}{\partial T} = \gamma q_s; \beta = (1 + \frac{L_e}{c_p} \gamma q_s)^{-1}$$

Time constants $\tau_r = r / \dot{r}; \tau_l = M / \dot{M} = 3\tau_r; \tau_s = c_{_{pw}}M / H$ $\tau_r = h / V_r$

Modeling Approaches

Explicit Droplet Models

*PBL turbulence model (k-theory, LES, DNS, waves)

*Throw in droplets according to s_n

*Account for droplet fall velocity/turbulent transport

*Compute evaporation as function of size

*Account for loss at surface

*Can use Lagrangian or Eulerian approaches

Edson et al., 1994: K-theory turbulence with Lagrangian droplets

Kepert/Fairall (1999): 1.5-order closure BL , 10-bin salt spectra

Scaling Models

*Inject droplets at a specified (parameterized) source height

- *Ignore turbulence, assume lifetime dominated by fall velocity
- *Calculate thermodynamic effects based on balance of time constants as a function of droplet size.

*Produce parameterization Qs, QI as function of U

Andreas (1992, 1999) Fairall et al. (1994)

Empirical Models

*Get data on droplet concentrations

*Convert to source function

*Do a fit, extrapolate to higher wind speeds

Feedback Parameterization

Start with no-feedback calculations $H_{so},~H_{lo},~Q_{so},~Q_{lo}$ Droplet evaporation cools profile by δT_a and moistens by δT_d

$$H_{s} = \rho c_{p} C_{h} U[T_{s} - T_{a} - \delta T_{a}]$$

$$H_{l} = \rho c_{p} L_{e} U[q_{s}(T_{s}) - q_{s}(T_{d} + \delta T_{d})]$$

$$Q_{s} = Q_{so}$$

$$Q_{l} = Q_{l} (T_{a} - \delta T_{a}, T_{d} + \delta T_{d}) = \alpha Q_{lo}$$

Feedback coefficient defined by assuming evaporation is limited by the sources of heat available

$$feed = \frac{Q_{lo}}{Q_{lo} + H_s + Q_s + H_s}$$

$$\delta T_a = feed * (T_a - T_w)$$

$$\delta T_{d} = \frac{\beta}{1-\beta} \delta T_{a}$$

Energy Fluxes With Droplet Evaporation

Total sensible heat = $H_s + Q_s - Q_l = H_s + Q_s - \alpha Q_{lo}$

Total latent heat = $H_1 + Q_1 = H_1 + \alpha Q_{10}$

Total enthalpy = $H_s + H_l + Q_s$

Thermodynamic Limits in Scaling Model (no feedback) $s_n(r,U) = W(U)f_n(r)$

*Droplet heat flux

$$Q_{s} = \rho_{w} c_{pw} \left[\int \frac{4}{3} \pi r_{o}^{3} s_{n}(r_{o}) dr_{o} \right] (T_{s} - T_{w})$$

because $T_s << T_{f,}$, this integral is simple

$$Q_s = \rho_w c_{pw} W(U) S_v (T_s - T_w); S_v = 5 \times 10^{-6} \, m \, / \, s$$

*Droplet evaporation flux

$$Q_{l} = \rho_{w} L_{e} \left[\int \frac{4}{3} \pi r_{o}^{3} s_{n} (r_{o}) (1 - (\frac{r_{f}}{r_{o}})^{3}) dr_{o} \right]$$
$$r_{f} = r_{eq} + (r_{o} - r_{eq}) \exp(-\tau_{f} / \tau_{l})$$

because $T_{I>>}T_f$, we expand exponential

$$(1 - (\frac{r_f}{r_o})^3) = \frac{3\tau_f}{\tau_l} (1 - \frac{r_{eq}}{r_o})$$
$$Q_l = \rho_a L_e h(U) W(U) \beta q_s(T_a) \{4\pi D_v \int \frac{f_p r f_n(r)}{V f(r)} dr\} (1 - \frac{r_{eq}}{r_o})$$

{}=S_a=0.125 s⁻¹