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Following Andreas, we can represent the rate of TKE converted to potential energy in the surface tension of droplets as
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Where 
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D

is some small fraction the total energy input, ρwP, to breaking waves (W/m^2),  the surface tension of the water-air interface (Nt/m), r the droplet radius, and ns(r) the number of droplets produced per second per square meter of surface.  P is actually an integral over the wavenumber space of wave energy transfer spectrum.  Before looking at P, consider the common representation of the dissipation of turbulent kinetic energy, ε, as an integral of the turbulent energy spectrum
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where υ is the kinematic viscosity of the fluid and E(k) the energy spectral density in wave-number space.  At any given wavenumber energy transfers from larger to smaller scales are characterized by the spectral transfer parameter, T(k).  In the inertial subrange, T(k)=ε; for wavenumbers exceeding the Kolmogorov wavenumber, k, T(k) decreases.  In the inertial subrange, the energy spectrum is given by familiar Kolmogorov -5/3 spectrum
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(3)
where α is the Kolmogorov constant (≈ 0.5).  

The rate of change of TKE at any wavenumber is associated with local (in wavenumber space) dissipation and the transfer of energy in the spectral domain is described by the equation
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(4)

Tennekes and Lumley (1972) give a form of T(k) that is consistent with the -5/3 power-law behavior
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(5)

The first expression is considered more general.  The second expression follows from assuming that T is some fraction of E if ε and k are considered as the only relevant scaling parameters.  If we substitute the inertial subrange form of E(k) from (3), then we recover the expected result T(k)=ε.  In other words, in the inertial subrange there is no significant local dissipation and energy cascades from large to small sizes until it is dissipated at very small scales.  
To balance the production of droplets by turbulent energy, we are interested in the scales of velocity fluctuations at very small sizes (100 micron), so we want the form of T(k) as it goes into then dissipation range.  Using 
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Tenekes  and Lumley derive a form of the energy spectrum that extends into the smallest scales:
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Here 
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 is the Kolmogorov microscale, which characterizes the point where the energy spectrum begins to drop faster than -5/3.  Thus, T(k) becomes


[image: image10.wmf]]

)

(

4

9

exp[

)

(

3

/

4

h

a

e

k

k

T

-

=









(8)

Since we are interested in droplets of some size, we transform from a wavenumber spectrum to a size spectrum, T(r).  We assume that 
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 and energy is conserved in density space (
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).  It then follows that in the inertial subrange, E(r) is given by
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and
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(10)

Now, we relate energy input per unit area, P, versus energy dissipated near the surface (per unit volume).  The total wave dissipation is distributed vertically such that
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(11b)
where Λ is a characteristic depth scale for breaking wave turbulence near the surface of a breaking wave.  Newell and Zakharov (1984) assumed that all of the wave breaking input was consumed at the interface and set Λ equal to the Kolmogorov scale; this implies
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(12)
However, this must be considered a lower limit on the dissipation scale.  This limit determines the smallest spume droplets that are produced by the breaking process.  Sea spray observations, suggest this is about 10 μm.    


Suppose we now assume that some small fraction of the energy being transferred in r-space is lost to the droplets.  This implies
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(13)

where f is an unspecified constant and T is the value in the region very close to the interface.  This gives a final expression for ns expressed as the droplet volume flux
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where 
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 and we have assumed that the ‘appropriate’ size scale describing the dissipation rate near the surface on the upwind side of the breaking wave is proportional to Λ (so that f now incorporates an additional factor).  

This approach gives us some estimate of the droplet spectrum produced by the breakdown of the air-water interface, but it says little about the introduction of those droplets into the turbulent surface layer over the water.  To do this, we postulate that the large droplets will be accelerated at along the windward face of the breaker and be blown off the top of the wave and execute a nearly ballistic trajectory into the trough ahead of the breaker.  They will spend a significant time airborne if their fall velocity is less than the local wind speed near the wave crest times the local slope of the waves.  If we assume a Gaussian distribution of horizontal wind speed fluctuations, then an error function describes the integral probability that a droplet of size r is ejected from the top of the wave.  Thus
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(15)
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where 
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is the gravitational settling speed of the droplet, U(h) the mean wind speed at height h, Ub the forward speed of the breaking wave top, and σu the standard deviation of wind speed fluctuations at h.    For large droplets, low wind speeds, or small wave slopes the argument of the error function with be significantly negative so erf-1 and no droplets are observed.  For very small droplets, η/r becomes large, and no droplets are produced because it takes too much energy to overcome surface tension.  

A sample calculation is shown in Fig. 1 using a bunch of assumptions 
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(16)
where Pw refers to the dissipation concentrated in the breaking wave region, Cw is the wave group velocity, and Wf  is the active whitecap fraction.   We use Pw in (11b) because it is the dissipation scale on the breaker whereas we use P in (15) because it is the area-averaged wave dissipation and area-averaged droplet source.  One problem we encountered is the computation of η.  If we use (12) with P, then η is about 5 10-6 m, which is consistent with sea spray observations.  However, if we use Pw with (11b), then we must set Λ to about 1 mm to get reasonable agreement.  This implies that a significant amount of breaking wave energy is dissipated in a very thin layer at the top of the breaker.  Given this uncertainty, we have decided to use (12) for the parameterization.
Other parameters are:

*Source height is estimated as 
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*Slope= 0.1

*Λ = 1 m.  

*Cb=Cw/2

For the wind speed at the breaking wave top, we assumed a log-wind profile down to very close to the surface
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(17)
Using these assumptions, a value of f=0.04 gave the fit to the Fairall or Andreas functions.  Because (16) is also uncertain by a constant, we don’t attach any significance to f.  If we reduce Λ to 0.1 m, then f would be 0.004.  
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Figure 1.  Spume droplet volume source function at a 10-m winds speed of 21 m/s.  The green line is the Fairall et al. (1994) function; the cyan line is the Andreas (1992) function; the blue line is the physically based model tuned to agree approximately at this wind speed; the red line is a Gaussian fit to the DeLeeuw (1990) data from the HEXMAX field program.
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