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Geometric collision rates and trajectories of cloud droplets falling
into a Burgers vortex
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Droplet velocities, concentrations, and geometric collision rates are calculated for droplets falling
into Burgers vortices as a step toward understanding the role of turbulence-induced collisions of
cloud water droplets. The Burgers vortex is an often used model of vortices in high Reynolds
number turbulence. Droplet radii considered are 10, 20, andmMpthose radii are relevant to warm

rain initiation. A method of calculating the concentrations of droplets along their trajectories by
means of differential geometry is derived and implemented. A generalization of the rate of
geometrical collisions of inertial particles is derived; the formulation applies for any local vorticity
and rate of strain, and the classic collision-rate formula is obtained in the process. The relative
velocities of droplets of different radii and their spatial variation of concentration affects spatial
variation of collision rate; greater variation exists for a stronger vortex. The physical effects
included in the droplet equation of motion are inertia, gravity, viscous drag, pressure and shear
stress, added mass, the history integral, and the lift force. The lift force requires calculation of
droplet angular velocity, the equation for which contains rotational inertial and viscous drag. An
initial condition is found that does not cause an impulse in the history integral. The important terms
in the droplets’ equations of motion are found such that simpler approximate equations can be used.
It is found that the lift force is negligible, the history integral is not. For smaller droplets in regions
of lower vorticity, the time derivative of the difference of slip velocity and gravitationally induced
drift velocity may be neglected. The present study suggests that acceleration-induced coalescence is
most significant for droplets that are entrained into or formed within an intensifying vortex as
distinct from falling toward the vortex. @005 American Institute of Physics

[DOI: 10.1063/1.1858191

I. INTRODUCTION wind-tunnel experiments and direct numerical simulation
(DNS) the fluid-particle acceleration correlation was three
Turbulence is an essential aspect of Earth’s clouds. Turimes that predicted by the older theorfésiccelerations in
bulence affects collisions, coalescence, and preferential comigh Reynolds number turbulence are strong. A typical tur-
centration of cloud droplets and local supersaturatiS®  bulence energy dissipation rate in moderate cumulus convec-
long-standing mystefy and topic of vigorous current tion is 100 cnd s73, such that the root mean squdrens) of
researcfi® is how liquid-water clouds evolve from an almost the turbulence acceleration is about one-third that of
unimodal droplet size distribution with median size of aboutgravity>'? Experiments in which particles are tracked in tur-
10 um radius to contain enough droplets of large enougtbulence have quantified the probability density of accelera-
size (say 40um radiug to initiate rain by gravitationally tions to show that extreme events are likely because the ac-
induced coalescence. The issue is that this can occur ongglerations are highly intermittent; for example, accelerations
time scale of 10 min rather than houesg., see Shaw'sFig. 26 times the rms occur at the Fprobability level™>'* Be-
3). Many hypotheses have been suggebtetti continue to  cause only about 1 in $0droplets grows to precipitation
be investigated Amongst the hypotheses are several distinctsize, the phenomenon of droplet coalescence is that of rare
effects of turbulence, including small-scale intermittency andevents; suggesting that the large turbulent accelerations that
turbulent accelerations. Empirical evidence exists to supporccur in a small fraction of the flow might induce droplet
turbulence mechanisms; for example, Pobahal® found  coalescence.
that regions of clouds where large droplets form are associ- Several facts simplify the hydrodynamics of cloud drop-
ated with strong wind shear, and therefore with turbulencelet motion. The volume of liquid water in a cloud is of the
Our interest in the possibility that turbulent accelerations in-order of 10° of the air’s volume and the ratio of mass den-
duce droplet coalescence arose from our finjcﬁrtgat the sities of water to air is about $0Therefore, air turbulence is
pressure-gradient correlatiofand hence also the fluid- unaffected by the presence of cloud dropi@fkcourse, tur-
particle acceleration correlatiprincreases with turbulence bulence is generated, in part, by buoyancy created by ex-
Reynolds number, whereas older theories that assumed joiohange of latent heatFurther, only binary collisions need be
Gaussian probability density functions of velocity predictedconsidered. The smallest spatial scale of air turbuléKog
no such increase. Even at the modest Reynolds numbers nfogorov’'s microscaleis of order 1 mm, whereas the size of
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droplets being considered is of order “i@nm. Conse- m;=(4ma3/3)p is the mass of air having the same volume as
quently, vorticity and strain rate are approximately homoge+the dropletyg is the gravitational acceleration vectaris the
neous in the neighborhood of each droplet. The small size afoefficient of air viscosity;u is air velocity;  is droplet
cloud droplets, and the fact that the ratio of the dynamicangular velocity vectorw=V Xu is air vorticity which
viscosity of air to that of water is 121072, and the surface equals twice the air angular velocitgi{dt and D/Dt denote
tension of water, allows the cloud droplets to be approxi-time derivatives following the motion of the droplet and fol-
mated by rigid spheres. For example, the effect of that vislowing the air motion, respectively. Thudy/ /dt is droplet
cosity ratio on the Saffman lift force as determined by Leg-acceleration andu/Dt is the air’s acceleration. The terms
endre and Magnaudétis only 0.8%. The rigid sphere on the right-hand side ofL) are gravity, viscous drag, pres-
approximation is important because there are no analytisure and shear stress, acceleration of displacedaduled
equations of motion in the time domain for finite droplet massg, history integral, and the lift force of Rubinow and
viscosity"® The air flow around each droplet is laminar Keller? The lift force is demonstrated to be negligible in
(small droplet Reynolds numbesuch that the viscous drag subsequent calculations. Lift forces dependent on nonzero
is well approximated by the Stokes force. Although limited viscosity have been obtained for uniform shear by Saffftan,
by the above simplifications, the formulation and calculationwho finds the Rubinow and Keller lift at the next order in
in this paper apply to fluids other than air and water. droplet radius. The estimate of the relative magnitude of the
Despite the above simplifications, the equations solvedift forces of Saffman versus Rubinow and Keller as given by
here numerically are complicated. To best understand the nlMcLaughnnzz shows that the Saffman lift can dominate for
merical results, it is prudent to consider a simplified flow thatthe large values of shear at small scales in clouds, but
has often been used to model vortices in turbulence. Tha{icLaughlin also shows that the range of droplet Reynolds
flow is the Burgers vortex in its inviscid limit such that there numberR, for which the Saffman-type lift formula is valid is
is only an azimuthal velocity around the vortex centerynknown for those same cases. Michaell8egeviews
(Stokes drag on the droplets is not neglegtdthe simplicity  progress on Saffman-type lift forces, but points out that the
of the chosen flow allows clear interpretation of droplet mo-analytic expressions are presently of too limited generality to
tion and collision. Vortex tubes have been documented irbe included in the equation of motion. An exception may be
many DNS studies! The velocity profile of vortex tubes in  the formulas for all components of the lift forces given by
laboratory turbulence has been shown to be close to that of giyazakiet al?* for stationary homogeneous flow, but use of
Burgers vortex, from which the radii, circulation velocity, those formulas would overwhelm computer resources. For

and spatial distribution of vortex tubes were obtainét. the present, we confine the calculation to the lift force of
Section Il states the equation of motion of droplets, itSRubinow and Keller.

justification, and the dimensionless equations. The initial ve-  Auton et al?* clarify that, for the case of inviscid flow,
locities and positions are described in Sec. Ill. Derivation ofthe added mass term must invold¥ /dt—Du/Dt and not

the equations for calculation of concentration along a droplegly /dt—du/dt. Magnaudetet al®® prove the concept of
trajectory is given in Sec. IV. Derivation of the generaliza— added mass for nonuniform viscous flows and that/ Dt,

tion of the geometrical collision rate is given in Sec. V. The not du/dt, must appear. Meet a|_26 use numerical solution
two Burgers vortex flow cases, called “gentle” and “strong,”to determine that the added mass force is the same at finite
are described in Sec. VI. Sections VII and VIII give the and vanishing Reynolds numbers. Thus, the result of Auton
trajectories, velocities, concentrations, and geometric colliet al** also applies to viscous flow. Both the added mass and
sion rates as calculated for the gentle and strong vortekistory terms are two aspects of a single unified derivation
cases, respectively. Approximations to the equations of motsee Landau and Lifschitzand Clift et al?®) such that it
tion that are valid for the present calculations are given inseems thatlV/dt-Du/Dt must also appear in the history

Sec. IX. term, althoughdV /dt—du/dt appears more often in the lit-
erature(e.g., Michaelide$® Armenio and Fiorottd? etc). To
II. DYNAMICAL EQUATIONS AND NOTATION prove which is the correct history kernel requires quantifying

the effects of the history integral for nonuniform flaive.,

The equation of droplet motion that we solve is Vu+0) because (dV/dt—Du/Dt)—(dV/dt—du/dt)=(V

dv _ 5 v , . bu -u)-Vu [see(4) below]. Recently, Candelieet al* report
Ma gy = (My = my)g = Bmau(V - u) +my Dt experimental data for a flow in whicKu #0 and compari-
son with calculations for which botllV/dt—-Du/Dt and
- }mf<d_v - %) — 6a%(mup)*? dV/dt-du/dt were used in the history integral. The result is
2 '\dt Dt that use ofdV/dt—Du/Dt overestimates andV /dt—du/dt

t dV Du underestimates the history force required to agree with the
xf dt’(—, - —,>(t —t)712 data. Candelieet al®° give qualitative arguments in favor of
- dt’ Dt dV/dt-du/dt. On the other hand, the history integrand tran-
® sitions to a more rapid decay thah-t')"'2, as discussed
+ W33P<Q - E) X (V-u). (1) below, such that the calculation by Candeliral® is ex-
pected to overestimate the effect of the history force; that
Here,my is droplet massy is droplet velocityt is time;ais  argument qualitatively favordV/dt—Du/Dt. Magnaudeet
droplet radius, ang is the mass density of air such that al.® argue thatdV/dt—du/dt is correct because a time de-
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pendence is caused in the history force for their steady flow a0 3 ®

if dV/dt-Du/Dt is used. On the other hand, their argument 'y, =~ 87@ “(Q - _>’ (2)

involves the abrupt introduction of acceleration at an initial ) ) o

time to. The time dependence that they obtain is correct invherel =2mga’/5 is the rotational inertia of the droplet. The

comparison with problem 7 in Sec. 24 of Landau andequatlon of droplet position is

Lifshitz2” when uniform acceleration is abruptly introduced dx

into the history integral. dt
Correction for nonuniform flow leads to Faxen terms.

Because of4) below, the arguments of Autaat al?* suggest

revisign of Faxen laws. That is.; why Faxen te'rmsshich absence of the droplet.

were included by Maxey and Ril&y are absent in(1). By The time rate of change following the motion of an air

the above reasoning, we obtain€d), which is the same particle,D/Dt, is related to the time rate of change observed

equation as given by Crowet al** (who include no lift  from a fixed reference frame/ét (Eulerian observerby

force) and who state its equivalence to the derivation ofD/Dt=(d/dt)+u-V, whereV is the spatial gradient operator.

Maxey and Rile§" on the basis of small Reynolds number; Likewise, for the time rate of change following a droplet,

(1) is also given by Mantor® d/dt, the relationship isl/dt=(d/dt)+V -V. The difference
The effect of an initial impulse in the history integrand Of these operators gives the obvious and useful result that

V. (3

Above, the air-flow properties, Du/Dt, and w, are evalu-
ated at the droplet positior as they would exist in the

requires an additional term in the equation of motion, as § p
shown by Reeks and McKé& The intention of the calcula- T V-u)-V. (4)
tions in this paper is to avoid any initial impulse in the his-

tory integrand. Mekt al® use numerical solutions to deter-  In subsequent calculations, there are large cancellations

mine a modification to the long-time behavior of the historyPetween the termém,—my)g and —6rau(V -u) in (1), es-
integrand for the case of finite droplet Reynolds numRgr pecially for small droplet radius. Those cancellations reduce
and Mef® discusses how the inclusion of higher—orderuserI computer word length. Therefore, we change the de-

Reynolds-number effects in the drag requires modification Opendent variable fronv to w, as defined by

the history integral as well. By retaining effects to onﬂér w=V-u-Uy, (5
Lawrence and MéP show that the history integral for impul-
sive motion decays aS? at long times, and that for reversed
and halted motion the history integral decaystas Both Ug = (mg—my)g/6mau

cases have more rapid decay than € decay implied by s the drift velocity of the droplet in still air. The cancellation
the history integral in(1). Mei and Lawrenc¥ study cases is removed because

for which the particle suddenly starts, stops, and increases or
decreases its speed; they elucidate cases for which the his-
tory integral has an asymptotic decaytas Lovalenti and The equation fow requiresdw/dt, which is expressed in
Brady® formulate the force on particles which is correct to terms of known air-motion quantitié®u/Dt andVu by use

order R3, including the history integral; that force includes of (4) and(5) as follows:

where

(mg—my)g - 6mau(V —u) = - 6rauw. (6)

effects of changes in direction of particle motion. Kigt dw d(V-u) dv Du

al.*° determine a kernel for the history integral that matches dt = gt = ot - (Et +(V-u)-V U)
numerical solutions of the Navier—Stokes equation for the

case of straight-line particle motidaxisymmetric flow, uni- — dv._Du w+Uy) - Vu 7
form ambient flow fielg; their history kernel reduces to the dt Dt d '

fprm in (1) at shor't times and.changes to thédecay ‘t"t Iong' More s0,Q2 andw/2 are so nearly equal in subsequent cal-
times. Such studies do not include effects of spatial derivag |ations that the computation 62) would fail without the

tives of the ambient flow on the particle motion; those effeCtsyefinition of the relative angular velocity of droplet and air,
do appear in1) and our solutions. The generalizations of thes as follows:

history integral by Lovalenti and Bra@ﬁ/as well as by Kim

et al*® have kernels that are not simply functions tefr s=0-2 (8)
consequently, an efficient algorithm for calculation of the 2
history integral is not possible. Use of(4) and(8) gives
Although computer algorithms are not a topic here, our
calculation of the history integral requires about one-half of as = o2 _ldw = 92 1Dw }(W +Uy) - V.
the total computation time. That seems to be an improvement dt dt 2dt dt 2Dt 2
relative to difficulties reviewed by Michaelidé®. The equations of motion are next expressed in dimen-
Because the droplet angular velocy appears in1),  sionless form. For that purpose, define the following param-
we require its equation, namely, eters: Uy=|U4 denotes the drift speed in still airyy
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=my/6mau is droplet relaxation timefy =Uy7y is droplet initial time. This is a valid approximation if the droplets have
relaxation distancej=g/g is the unit vector in the direction been in quiescent flow prior td,. Our solutions of(9)

of gravity, andg=|g|. The specific expression used here for showed thatiw/dt evolves to become much smaller than the
droplet Reynolds number Ry=Uga/ v, wherev=pu/pis the  other terms in(9) when the air flow is not strong. Because
kinematic viscosity. Add1/2)m;dV/dt to both sides of1)  the droplet initial positions are chosen to be where the flow is
and divide bymy+(1/2)my. Scale all quantities by length and quiescent, the appropriate initial conditionds/dt=0. Sub-
time scalesty and 74. That is, defind=t/r, andt’ =t'/7, sStitution ofdw/dt=0 in (9) and moving terms that contaim

V=V/U, Ti=ulU, W=w/U, V=V, Q=0 to the left-hand side give, att,,

= w71y, S=S1y, andX=x/{y4. Below, the tildes(i.e.,™) are

Du .
deleted for clarity. Then(l) becomes the dimensionless Aw+w. Vu=- BE -g-vu. (12)

equation . I . .
. SinceDu/Dt andVu are known at the initial positior{12) is
dw Du . dw i ' i ' inii
W AW-B— —(w+§) Vu- Cf dt’(— F(w an algebraic equation that is solved to obtain the initial
dt Dt o dt’
IV. CONCENTRATIONS ALONG TRAJECTORIES
+§)- Vu|t-t)Y2-DSX (W+9Q). 9 .
9 >( ) w+9 © To calculate the rate of collisions of droplets of one ra-
Here dius with droplets of another radius at a given place in the

flow, we must know the concentration of both types of drop-
A=[1+(y/2)]Y, B=(1-yA, C=(9y2m?A, lets. The concentration along a droplet trajectory is relative
D = (3y/4)A to the concentration at the initial point on the trajectn(ts)

' at the initial timet,. The concentrations can be determined
where y=m;/my. For water droplets in airy=10"°% so A by calculating a dense set of trajectories such that the local
=1,B=1,C=4x107 andD=7x10"* The dependence distance between trajectories can be calculated. Differential
of C on y"2 shows that the history term becomes less imporgeometry offers a better method. Calculating both methods
tant as y decreases. Lawrence and Mei Vojir and  has verified the derivation and programming of the method
Michaelides'® and Michaelide¥ point out that the history from differential geometry. Consider one trajectory,
integral is of lesser importance whenis small. Druzhinin  =x[x(ty),to,t]; it is the locus of points through which the
and Ostrovsk$! find that the history integral is significant center of a droplet passes. The meaning of the argument list

for v near unity; for their cas€~1. [x(to) ,to,t] is as follows: a poink on the trajectory depends
Written using our scaled variable@) becomes on the initial position of the droplet(ty); for unsteady flow,
ds 1Do 1 10 x depends explicitly on when the droplet was relea@ed,
—=—-——-—(wW+0@)- Vo-—85, (10 onty); x also depends on the duration since reletasg, and
dt 2bt 2 3 therefore ort. The initial velocity for the trajectory is V,
and (3) becomes which is obtained fronf12) and(5). The initial concentration
of droplets isNy. Of courseV, andN, depend orx(ty), and,
ax Su+w+g. (11 for unsteady flowV, andNy depend explicitly ort, as well.
dt One could prescribe a dependenceNgfon ty even if Vg is

constant, and vice versa. It is useful to think of the differen-
tial of time dt as being a constant time step used throughout
the integration of the equations.

Let the initial points of trajectories of identical droplets

An important issue is how to start the droplet so as to notie in a plane that is normal t@. Let Cartesian coordinates in
cause an impulse in the history integral. We found that arthat plane bey,yy. Consider an infinitesimal rectangle in the
impulse strongly influences the subsequent calculation, imnitial plane; differential displacementix, and dy, are the
agreement with Reeks and McK&eFor example, if the lengths of the sides of the rectangle; the center of the rect-
droplet is initially moving with the air velocity, i.e\=u so  angle is the initial point of the trajectormy(ty). Consider the
w=-Uy, or if w=0, then an impulsedV/dt-Du/Dt is  volume swept out by the continuum of trajectories that have
caused in the history integral. The initial conditivreu has  their initial points in that infinitesimal rectangle. Between
been used by Armenio and Fiorctido find that the history timest, andt,+dt, those trajectories advance by the vector
integral is significant for a very wide range of;/ m;, but the  displacementVqdt, thereby forming a parallelepiped of
influence of the initial condition was not studied and theheight-Vqdt such that volume swept out in the first time
additional terms in the equation of motion required by Reeksstep of durationdt is dxydy,g-Vodt. Differential geometry
and McKeé” for an impulsive start were not included. gives us the fact that further along the trajectey) at a

Various initial conditions were tried. The initial condi- later timet, the points on the initial infinitesimal rectangle
tion that the droplet is not spinning relative to the air is usedform a surface of aredxydyp|dx/dxyX dx/dye| having unit
i.e., Q=w/2 s0S=0. The history integral is assumed to be normal (9x/ dxy X dx/ dyo)l|dx! Ixg X I/ dyy|. The partial de-
initially zero; in fact it is assumed to be zero throughout therivatives dx/dx, and dx/dy, are the changes in the trajecto-
prior unevaluated history fror=— to t=ty, wherety is the  ry’s position at timet for a given infinitesimal change in the

Of course, all quantities i©)—(11) are dimensionless.

IIl. INITIAL CONDITIONS
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initial point of the trajectory. In the differential of timelt, mula for the number of collisions of droplets 1 and 2 at a
this surface advances by the vector displacemént,t)dt  given location x per unit volume per unit time is
thereby sweeping out a volume dxdyy(dx/dx,  7N;N,|R|?|Vg. From (13), the concentrations are known
X axldyg)-V(x,t)dt. For equal differentialsdt, the same relative to the initial concentratiorisy; and Ny, that exist at
points swept out the initial differential volume as swept outthe beginning of their respective trajectories. bék,t) de-
the later one. The number of points in each volume is theote the number of collisions of droplets of type 1 and 2 per
concentration along the trajectoly(x,t) multiplied by the unit volume per unit time per unit initial concentratidi,
volume. That is, equating the number of points givesand per unit initial concentratioNy,; the classic formula is
dXo dyo(ax/ %X ax 1 dyg) -V (X, 1) dtN(X, t) = dxadyed - V odtNy, N, (X, 1) No(X, 1)
. . . . . 71X, 20X,
from which is obtained the ratio of the concentration along  o(x,t)= 7——————
the trajectory to the initial concentration: Noi  Nog

aX o It is understood thatl4) applies where each type of droplet
N(X,t)NO:g'VO ( ) V(X,t)

(a1 +a)?Vr(x,1)|. (14)

— X (13)  has a trajectory.
X Y jeciory
Becausex=x[X(tp),tg,t], the argument list ofN(x,t) and  B. Generalized collision formula
V(x,t) can also be written dx(tg),to,t], where the explicit

dependence of is for the case of unsteady flow. One can case of equal-size droplets, or nearly equal-size droplets. For

consider unsteady initial conditions in the sense that one Callat case. one can visualize the geometric collision rate as

aIIow_to to increase and start new drpplets at the initial pIaneDeing caused by the crowding together of trajectories. The
ast, increases; for each droplétbegins at that droplett,  asqic theo?“*for the number of collisions of droplets of

and thereafter increases. The problem of determining thﬁ/pe 1 and 2 per unit volume per unit time while the unit
concentration of droplet®J(x,t), is reduced to specifyintyy

and calculating the partial derivatives/dx, and dx/dyg.

Now consider the generalization ¢f4) to include the

vectorR = R/(a;+a,) points within the differential of solid

The equations for those partial derivatives are given in th@ngledﬂé IS

Appendix. N1 (XN (xz) (1 + 8)°R -[V(x) = V1(xp)]dQR,  (15)

V. GEOMETRICAL COLLISION RATES where the dependence oras been suppressed for brevity.
Define the centroid positiol€=(x,+x4)/2. Taylor's series

A. The classic collision mechanism

gives

The problem of calculating geometric collision rates of _
spheres was studied over a century ago by Boltzitfann Va(x)) =V(C) + (x2 = C) - [ViVoX) e + -
(modern texts such as Harf*sare easier to readThe con-  and a similar series fov 1(x4). Noting thatx,—C=R/2 and
centration is assumed to be so small that only binary collix,-C=-R/2, the difference of the two series gives
sions are considered; this is accurate for applications to R
clouds. Let subscripts 1 and 2 denote two droplets whose V,(x,) = V(x;) =[V4(C) = V1(C)]+ = - {V,[Vx(X)
collision is under consideration at poirtand timet. Their 2
radii area; anda,. The droplets touch at one point when the + V() hee + .
separation vector from the center of droplet 1 to the center of
droplet 2, namel\R =x,—X,, has magnitude, +a,. The rela- The first two terms of this series suffice on the spatial scale
tive velocity of the droplets whe[R|=a,+a, is denoted by of ordera;+a, surrounding the given droplets. Substitution
VR(X,1)=V,(X0, 1) =V4(Xq,1); the meaning of the argument of the first two terms of this series intd5) gives two terms
list (x,t) is that, within the present approximation, andV 28 .
are nearly constant within distances of ordet-a, from x, Ni(X0)NZ(x2) (2 +8)"R - [V2(C) =Va(C)]d%,  (16)
and x;, respectively. The concentrationhl;(x;,t) and
Na(x,,t) are approximated bi¥;(x,t) andN,(x,t). One col-
lision is counted when the droplets’ surfaces touch at one
point and the distance between their centers is decreasing
(i.e., R-Vg is negative. If the radiia; anda, are equal, or
nearly so, then there is the possibility that their trajectorie€®ne could also introduce series expansionsNeix;) and
are nearly parallel, andl nearly vanishes; then the mecha- Na(X2) to find yet more terms arising from the gradients of
nism of collision is the crowding together of adjacent trajec-N1 andN,.
tories. In this caseVr can depend on the directionBf then ~_ The first term (16) leads to(14) as follows. Now,
the classic formula for collision rate does not apply. ThatR-[V,(C)-V;(C)]=|V,(C)-V4(C)|coss, which defines the
case is considered in Sec. V B. For distinctly different radii,polar angleé of a spherical coordinate system; kgtdenote
Vg is substantial becausé, and V, differ in direction or the azimuthal angle. Integraté6) over all solid angles for
magnitude or both. For this caség is constant on the spa- which cosé is positive; this corresponds to the distance be-
tial scale of ordem; +a, surrounding the given droplets; this tween the droplets decreasing when their surfaces touch at
simplifies the integration of collision rate over the direction one point. Thusg varies from 0 torr/2 and¢ varies from 0
of R such that the classic formula applies. The classic fort{o 27, and the integrand is cassin 6. The integration pro-

Ny (x)No(Xp) (8 + a)*
)Vz(X) +Va(X)

xR-| (R-V, . ]
.

d0g. (17)
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duces mN;(x1)Nx(X,) (8, +a,)?|V,(C) - V4(C)|; when this is  did not assume that the vorticity is zero. Also, Saffman and
normalized by the initial concentrations and the distinctionTurne® neglected14), whereas our derivation obtains it.
betweenN,(x,) and N,(x;) is neglected, then we recover

(14). VI. BURGERS VORTEX

The contribution of the second terth?7) to the collision Of th " dt del th I le struct ¢
rate is determined as follows. Index notation is more conve- € vortices used to moael the smalfl-scalé structure o

. 49 -
nient in the second terfi.7), within which we have turbulence(PuI(I)m and SaffmaH), Burgers vor.tex9 is the
most commor’ Burgers vortex is a steady, axially symmet-

R {(R - V[Va(x) +V4(x)1/2} ric solution of the Navier-Stokes equation in which vorticity
. L is maintained against viscous dissipation by an inward radial
=RR[a(Vy, +Vy)/ox112 = RiRj%(jV), (18)  flow and outward axial flow. If only gravity and viscous drag
b are included on the right-hand side @), then there are
where multiple equilibrium points in the droplet’s motion for a Bur-

gers vortex’* The full equation(1) would produce yet more

(V) — .
Sj = [(9Vg 19%+ N 19%)I2 + (IVy, 19%; complex droplet motion. To best understand results from the

+ Ny 19x)12]/2 complicated set of equations above, it is prudent to consider
RN a simplified version of the Burgers vortex. To simplify the
= %(,W) + si(j“), (199  Burgers vortex, we consider its inviscid limit such that the

W _ _ ~ radial and axial flows vanistof course, Stokes drag on the
wheres;” = (du;j/ dx;+ du;/ %))/ 2 is the strain rate of the air droplets is not neglect¢dThe flow is a vortex tube with a

flow and S,(J-W)E[(&sz/ﬂxi+0\Nzi/ﬂxj)/2+(z7W1j/z9Xi horizontal axis, i.e., transverse to gravity; call the axial di-
+(?w1i/(9x,-)/2]/2. Integration of(18) over solid angles gives rection as thez axis. The flow is two dimensional in the
the following integral: x-y plane. The simplicity of the chosen flow allows clear
interpretation of droplet motion and collision. The vorticity
|Efjﬁqﬁejg<}’> sindode, (200 'S
w,= woe_(mo)z. (22

where the integration is over only the portion of the unit

W) , ~The other vorticity components are zero. Thus, is the
s. <0, which corresponds to approaching

sphere wher&R, ij i vorticity at the center of the vortex;is the distance from the
droplets. In an EFAPS docgme“ﬁtthe computational algo-  center:r, is the parameter describing the size of the vortex.
rithms for (19) and(20) are discussed, as is reduction of the e azimuthal component of velocity calculated fram
double integral in20) to obtain a single integral that can be =V XU is

tabulated. Now, the contribution dfl7) to the number of ,

collisions of droplets of type 1 and 2 per unit volume per unit U, = — wo(rg/2r)[1 - 0], (23

time per unit of both initial concentrations is The other velocity components are zero. Flow properties that

N, (X, 1) Ny(x, 1) s appear in the equations to be solved that must be calculated
T (tray)l]. (21 are
No:  Noz
. . o Du Du
At this point the distinctions betweeN;(x) and N;(x;), u, Vu, VVu, ot VE’ o, Vo,
N,(x) andNx(X,), V1(C) andV4(x,), andV,(C) andV(x,)
are neglected; for instance, the Taylor series would not be vV Do Do o4
convergent on scale, +a, if a singular point of the velocity “ bt Dt (24)

fields were in the neighborhood of the collision point. The . . . )
sum of (14) and (21) is the total collision rate. In accordance witliAl) in the Appendix,V appears in(24)

The derivation of collision rate for small, inertialess par- Where (7/(7Xo_ appears in the equatiqns. Note t@Vu and
ticles by Mei and Hi is a special casé.e., forV-w=0) of vV « are third-order tensors. The air moves in circles around
the derivation above. Becaug@l) was obtained indepen- the vortex center such that, when following the motion of an
dently of their derivation and numerical validation, their re- &r particle, the vorticity is constant; that is,
sult corroborates the present result. The collision rate above p, Dw
is a local and instantaneous value. The collision rate models Dt =0, so V Dt =0.
of Sundaram and Colliff& and of Wanget al*’ are for vol-
ume and time averaged rates. Now, w, Vw, andVV o are readily calculated frort22), as

Saffman and Turnéf considered, in their Secs. Il and areu, Vu, andVVu from (23). The contraction of the strain
IV, the geometric collision rate caused by spheres movingate with itself is obtained fronVu; it is
with the air in a uniform strain-rate flow, in particular, their 1 VIR , ]2
vorticity was zero. Their result is equivalent to uses{?\f) S=g"s" = Ewé[e‘(’”o) - (—0> (1-e o )} . (25
:sl(].”) to calculate(21). Our term sl(.w) in (19) accounts for '
droplet motion relative to the flow. Although air-velocity de- By comparison, Eq(11) of Pumir® for s? is missing the
rivatives enter(19) only in terms of the strain ratq(j“), we  rightmost exponent 2, which results from a misprint because
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TABLE I. Flow parameters: left to right, maximum vorticity, vortex radius, TABLE Il. Droplet parameters: left to right, radius, drift speed, relaxation
maximum azimuthal speed, and Froude number. Gentle vortex, second rowime, Reynolds nhumbeR;=Uqa/v.
strong vortex, bottom row.

a (um) Ug (cms?) 74 (5) Ry
wg (s ro (cm U (cms? 11U%/T'g
40 20 2.1x 1072 4.2x 101
18 1 5.7 0.036 20 5.0 5.2¢1073 5.3x 1072
180 1/3 19 1.2 10 1.3 1.3 108 6.8x 1073

Fig. 12 of Pumir agrees witt25). Let p be pressure divided Similarly, the third and fourth terms on the left-hand side
bygéir density Pofc']sson’s equat.ion VEzp:(ZZ/Z)—sz' after of (9) contain the second-order tens®i, which can be

: ; : _ -
substituting(22) and (25), Poisson’s equation is solved for réscaled by the maximum ofu,/dr _S_UCh that Vi
the pressure gradiep. Only the radial component of the =0-11wo7d[VU/(dUy/r)mad.  The  coefficient 0.1

pressure gradient is nonzero; it is given by =3.474U%/T is a Stokes numbe(see Davila and Hum.
A relatively gentle vortex having maximum air speléd
p oy )2 of the order of the drift velocityUy is chosen for the first
O = 200(1 g lrho?)?, (26) : - :
o 4r calculation. A relatively strong vortex is chosen for the sec-

ond calculation; its vorticityw, is ten times that of the gentle

A further integration produces the same radial variation ofvortex and its radius, is smaller by a factor of 1/3. The
pressure as is given in EqL2) of Pumir® that serves as a flow parameters, including the Froude numbet/3/"g are
check of the calculation. For our inviscid case, the Navier-given in Table I. Consider cloud height of 3.1 km above
Stokes equation i®u/Dt=-Vp, which determine®u/Dt  mean sea level and temperature of 275 K; these values de-
from (26); VDu/Dt in (24) is obtained by one further spatial termine the viscosity of the aifrv=0.19 cnfs™). As men-
differentiation. Now all quantities ir24) have been deter- tioned in the Introduction, a typical mean energy dissipation
mined. rate of cumulus clouds is 100 érg 3, for which value the

In high Reynolds number turbulence, the viscous forceKolmogorov microscale ig;=0.1 cm. Ifry is roughly 1 cm,
around strong vortex tubes is much less than the pressurénen the position of the maximum of the pressure gradient
gradient forcé”? The inviscid Burgers vortex is a useful, from (26), i.e.,r=0.74, corresponds to the length scale of

simple model. the pressure gradient correlation at high Reynolds numbers
(about 5, see Fig. 1 of Hift%). Thereforer,=1 cm is cho-
A. Calculated flow and droplet parameters sen for the gentle vortex. Table Il gives the droplet drift

With the Burgers vortex as a model, one can determind€locity, relaxation time, and Reynolds numbij=Uqa/ v,

Froude and Stokes numbers similar to those defined b{Pr droplet radii of 40, 20, and 1pm. Numerically calcu-
Davila and Hun®? Burgeré‘g gives the circulation ad’ ated history-force kernels of Lawrence and Medliffer

— mwgr2: from (23) the maximum air speed I$=0.320yr,at  roM the formula of Mei and Adriar> Nevertheless, a sub-
r=1 1rg’ and the maximum ofdu,/dr is (du,/dr) jective estimate of the time of transition between tht?
. I [ max

=0.11wp atr=1.8; and from(26) the maximum ofp/ar is decay at short times of the history integrand and the long-
: -dos ; ; ; 2 -2

(3p! 31 )= 0.11wr o at r=0.74. Restoring the tilde nota- M€ decay can be obtained by equatm_g?]thjé_ and t

tion (e.g.,U) to explicitly denote dimensionless quantities, asymptotes in the formula of Mei and AdrianUsing values

the term -BDU/ DT in (9) can be written as from Table Il for velocityUy and R_eynolds n_umbeng, for N
equating those two asymptotes gives the times of transition

- BDU/DT =[1 +(1/2)]70.11wr /) to be roughly 10?7, 74, and 5@ for 40 um, 20 um, and
10 um droplets, respectively. Thus, the history integral is
X[(DU/DY/(FpIIr) masd overestimated in(1) for 40 um droplets. From the value
where the air acceleration is now scaled by its maximunﬁdzo""z’ the drag is underestimated by thg Stokes drag in
(P! e The factor 0.1&2ro/g=1.1U%/r,g=11U%Tg is (1) by about 15% for the 4@m droplets, but is accurate for
a Froude numbersee Davila and Hurf). For several the smaller droplet_s. . I
Froude numbers, Marcet al % compute trajectories in coun- A droplet remains motionless if it is brought to rest at an

terrotating vortices using Stokes drag and gravity as thgquilibrium point where the sum of all forces on it vanishes.

forces. If the rms acceleration in a cumulus cloud is of order

9/3 as SqueStEd in the Introlgl"Ction’ then, using the prObTABLEIII. Stokes number and equilibrium positions. Gentle vortex: second
ability density of LaPorteet al,” the probability of observ-  and third columns. Strong vortex: fourth and fifth columns.

ing an acceleration equal to 0%, is about unity for the
gentle vortex and greater than %Cfor the violent vortex. a (um) 3.474U%IT Fequi/To 3.47U%IT Fequil'To
Despite relatively high probability, it is shown that the 40
smaller droplets are deflected away from the position where
dplar is maximum. This has important implications where
coalescence is prevalent.

4.0¢107? None 4.0<101 None
1.0x107? 0.71, 1.7 1.0<10t 0.17, 6.0
2.5x10°° 0.15, 6.9 2.5¢107? 0.043, 23
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Neglecting the history integral, spin deflection, and initial VIl. GENTLE VORTEX

c_onditions, one finds that, for the present ﬂoyv, the equilib-5 Droplet trajectories and concentrations

rium points are close to the horizontal axis that passes

through the vortex center. To excellent approximation, the  Figure 1 shows trajectories of droplets of radiusa@
equilibrium points are on that axis at positions where thewhich are falling from their initial points at the top of the
flow velocity is upward and equal td4. Fora=40 um, U,  figure. It is useful to think of the trajectories as potential
exceeds the maximum air spe&dof both the gentle and trajectories that may be taken by droplets starting at random
strong vorticegsee Tables | and Jisuch that no equilibrium initial times and positions. On the top graph in Fig. 1, the
point exists. Our smaller droplets have two equilibriumspeed of the droplets is indicated in color and a droplet’s
points whose distances from the center of the vortexyelocity vector is the unit tangent vector to the trajectory
l'equi o, @re given in Table Ill. The Stokes number discussednultiplied by the droplet speed. At the top of the top graph in
above, i.e., 3.4U?/T, is also given in Table III. Fig. 1, where the dominant forces are gravity and viscous

droplet radius: 10um

20[ ]
100 ]
1% - ]
@ C ]
2 r ]
£ o ]
£ r ]
8 C ]
[ -]
=10~ —
-20 N : =
20
centimeters
[ S Ie——
0 1 2 3 4 5 6
droplet speed in cm s™' FIG. 1. (Color. Trajectories of droplets of 1om ra-
dius are shown for the gentle vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
. defined in(27) is in color. Vortex center is marked
droplet radius: 10um
by +.

0 S R s 8 Y eSS 77777777 ]
10 .
o - ]
8 c ]
£ of + -
5 ]
(S} > |
-10[- .
=200 v o AOOOINONDOAOOINDNANAYN | i
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| ——— ]
=17 9 29 49 69 89 109

concentration change x 1000
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droplet radius: 20um
20[ ST E " T y T T 111
10 E
o F 4
o C ]
2 F ]
£ o -
= r ]
8 L ]
-10F .
—20: . L . . . | . A ]
5 10 15 20
centimeters
[ Eaaaaaeaassmees
2 3 51 6 8 9 11
) . FIG. 2. (Color). Trajectories of droplets of 2am ra-
droplet speed in cm s dius are shown for the gentle vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
. defined in(27) is in color. Vortex center is marked
droplet radius: by +.
20[ T ]
100 -
v F ]
3 £ ]
2 F ]
£ O E
= F ]
8 B ]
-10 .
-20LC ]
centimeters
______  Eaaaaseassemees |
—1'3 —5) 2 9 17 24 32
concentration change x 100
drag, the color indicates the drift spedd given in Table Il.  There is zero concentration change at the top of the graph. A

The slowing of droplets to the right of the center is caused byross marks the vortex center. Below the vortex center there

the updraft there, and the increased speed to the left of thg a concentration enhancement on the trajectories that pass

center is caused by the downdraft. For the i radius |eft of the vortex center and a depletion for those that con-

droplets, the bottom graph in Fig. 1 shows the same trajeainue downward to the right of vortex center.

tories as in the top graph, but the color quantifies the con- Figures 2 and 3 are the same type as Fig. 1, but for

centration change defined by 20 um and 40um radius droplets, respectively. Again, the
colors at the top of the top graph indicate the drift spedgls
given in Table II, and there is zero concentration change at

[N(x,t)/Ng — 1]. (27)  the top of the bottom graph. There are no equilibrium points
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droplet radius:

Phys. Fluids 17, 037103 (2005)

L2

centimeters
o
TT T 1T 1rrrrir ‘ TTrrrrrrrorrT [ TrrTrrrrrrorr | TTrrrrrrrr

povvv v b b by

5] 15

20

centimeters
EEEES . e E—
14 16 18 20 22, 24 26
) . FIG. 3. (Color). Trajectories of droplets of 4am ra-
droplet speed in cm s dius are shown for the gentle vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined in(27) is in color. Vortex center is marked
droplet radius: 4O;J.m by +.
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for the 40um radius droplets, so the droplets can fall

through any point in Fig. 3unlike in Figs. 1 and R In Fig.
3 there is a concentration depletitat most 11% below the
center of the vortex with an enhancemétat almost 4% at
both rightward and leftward of the depletion.

The axes in Figs. 1-3 are in centimeters apdl cm
such that the axes can be considered dimensionles/r.g.,

At the rightmost equilibrium pointsee Table Il), trajec-
tories split into those that go rightward and those that go
leftward. Falling from above, 1@m and 20um radius
droplets are excluded from an oblong region in Figs. 1 and 2;
that region is leftward of the rightmost equilibrium point
listed in Table Ill. Droplets exist in that region only if they
are there initially(although, in unsteady flow, droplets could

y/ry (the vertical axis is compressed by about a factor of 2enter a region that is later excluded because of vortex inten-
relative to the horizontal axisBecause the same spatial do- sification); those trajectories are not part of this study. Fﬁﬁng
main is shown in Figs. 1-3, it is evident that as the dropleshows particle trajectories for inertial particles in the ex-
size increases, there is a decrease in the size of the regiondiuded region and their residence times therein. Below and to
which the vortex has a strong influence. the right of the rightmost equilibrium point, the excluded
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droplet radii: 10um and
20 C T | T ¥ i T ]
10F .
o f ]
j L ]
o C ]
£ o -
§ L ] FIG. 4. (Color). For the gentle vortex case, collision
C i rates of droplets of radii 10 and 20m are shown in
C ] color on the trajectories of the 1@m droplets. Vortex
L ] center is marked byt.
=10 =]
=200 il
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centimeters
| .. ]

102 108 114 121 127 133 140

collision rate in 107° s' cm?®

region extends into a narrow gap between the trajectorieson increase there that is evident in Figs. 1 and 2; a lesser
that sweep around the vortex and those that fall rightwardconcentration decrease is seen on the rightward side of the
This gap, in which there are no trajectories, is discussed igap.

detail by Davila and Hurit and is therefore not emphasized

here. The gap becomes evident when many trajectories agg Geometric collision rates

calculated that pass close to the rightmost equilibrium _ _ -
point>? An aspect of the gap is the pileup of trajectories on ~ Now that we have concentrations and relative velocities,

the leftward side of the gap which results in the concentrawe can calculate geometric collision rates frgid); for dis-

droplet radii: 10um and
—— ; |
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S C ] FIG. 5. (Color). For the gentle vortex case, collision
° L ] rates of droplets of radii 10 and 40m are shown in
L ] color on the trajectories of the 1@m droplets. Vortex
L ] center is marked byt.
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collision rate in 10 s cm?®
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droplet radii: 20um and 40um
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§ L ] FIG. 6. (Color). For the gentle vortex case, collision
C ] rates of droplets of radii 20 and 4@m are shown in
C ] color on the trajectories of the 20m droplets. Vortex
C ] center is marked byt.
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collision rate in 10 s cm?®

parate particle sizes the contribution(@f) is negligible. For  rates in Figs. 4 and 5. Clearly, spatial variation of relative
the gentle vortex case, the collision rates are shown in colovelocity also modulates the collision rates in Figs. 4—6.
in Figs. 4—6 for binary collisions of droplets of radius &t
with those of 20um, 10 um with 40 um, and 20um with  VIIl. STRONG VORTEX
40 um, respectively. The collision rate can be calculated . . .
. . - A. Droplet trajectories and concentrations
only where both sizes of droplets have a trajectory. Since the
smaller droplet has trajectories in a lesser volume than the To better show details near the vortex center for the case
heavier droplet, the collision rates are shown in Figs. 4—@&f the strong vortex, the vertical axes in the figures for the
superimposed on the trajectories of the smaller of the twestrong vortex case are limited to the range—7-cm,
droplets. Concentrations and velocities of the larger dropletvhereas the figures for the gentle vortex case above show the
are interpolated to the smaller’s trajectories. The collisionfull computation range of 20=20 cm. Also to better show
rate has units of T0 s> cm?® because it is normalized by details, the horizontal range is reduced for theutf drop-
both initial concentrations. When interpreting the collisionlets relative to the gentle vortex figures, and it is yet further
rates, keep in mind that in a cloud that will soon producereduced for the 20 and 4@m droplets. A cross marks the
rain, droplets of radius 1@m are about 100 times more vortex center. As in the gentle vortex figures, the axes are in
numerous than 2@m droplets, and 2@m droplets are per- centimeters, but now,=1/3 cmsuch that the axes can be
haps 1000 times more numerous tharyd@ droplets. At the  considered dimensionless in the foxh(3rg), y/(3rg).
top of Figs. 4—6 the collision rate is dominated by the classic  For the case of the strong vortex, the top graph in Fig. 7
mechanism of the larger droplet overtaking the smaller beshows trajectories of droplets of radii 20n with color in-
cause of the difference in their drift velocitiék. Nearer to  dicating droplet speed, and the bottom graph in Fig. 7 shows
the vortex center, below it, and near the gap, one can see tlw®ncentration change as defined(&Y). Figure 7 looks sur-
effect of the concentration change of both droplets as well aprisingly similar to Fig. 1. The reason is tha} is ten times
that of their relative velocity. In Fig. 2, the lower end of the larger for Fig. 7 relative to Fig. 1, but, is three times
20 um droplet’s trajectory that passed almost through thesmaller. The rightmost equilibrium point from Table Ill is at
vortex center shows increased concentrations, as do trajectberizontal position 6.8=6.9 cm in Fig. 1 and at 23
ries at near left of that trajectory; these increases are reflected7.7 cm in Fig. 7; the fact that the equilibrium points are of
in the increased collision rates at the corresponding positionsimilar value causes the similar appearance of those figures.
in Fig. 4, and similarly in Fig. 6. The depletion in concen- In units of vortex radius,, the trajectories are roughly 3.3
tration below the vortex center for the 40m droplets in Fig.  times further from the vortex center in Fig. 7 as compared to
3 is reflected in the decrease of the collision rates at thé&ig. 1.
corresponding spatial positions in Figs. 5 and 6. Below the  For the 20um droplets, the trajectories and velocities
vortex center in Fig. 1, there is increased concentration of thare shown in the top graph in Fig. 8, and concentration
10 um droplets leftward of the gap and decreased concerchange is in the bottom graph in Fig. 8. Note that the hori-
tration rightward of the gap. This is reflected in the collision zontal range in the top graph is5-7 cm but only—2-4.6
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droplet radius: 10um
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0 1 2 3 4 S 6 FIG. 7. (Color). Trajectories of droplets of 1om ra-

dius are shown for the strong vortex case. Top graph:
droplet speed in cm s™ Speed is in color. Bottom graph: Concentration change
defined in(27) is in color. The extent of the horizontal
axis is reduced relative to the top graph to better show
1’0,“"“ ‘ I the concentration change. Vortex center is marked
by +.
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cm in the bottom graph for the purpose of better showing thevortex case in Fig. 3; a similar observation regarding the
concentration change. The existance of the gap is evident irange of concentration changes is obtained by comparing
Fig. 8. Comparison of Figs. 2 and 8 shows a much largeFig. 9 with Fig. 3. This results from the 40m droplets
excluded region and gap for the strong vortex case in Fig. 8nteracting with the middle of the vortex. In contrast, the 10

Also, the maximum concentration change and maximunyng 20,m droplets are excluded from the middle of the
speed are greater in the strong vortex case. vortex.

For the 40um droplets, extra trajectories are shown to
better d_isplay det_ails in Fig. 9 because the narrower range ¥ Geometric collision rates
the horizontal axif—2-2.5 cm makes the trajectories ap-
pear further apart. Although there is no excluded region or ~ The collision rates are given in Figs. 10-12 for binary
gap in Fig. 9, there is one crossing of trajectories. The rangeollisions of droplets of radius 12m with those of 20um,
of speeds in Fig. 9 is significantly greater than for the gentlélO um with 40 um, and 20um with 40 um, respectively.
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droplet radius: 20um
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For the same reasons given regarding Figs. 4—6, the collisioexcluded region of the smaller droplets; hence, those velocity
rates are shown in Figs. 10-12 in color superimposed on theariations have little effect on the collision rates in Figs. 11
trajectories of the smaller of the two droplets. In Fig. 10, thegnd 12. Comparing the gentle and strong vortex cases, there
ingrease of the'zmn droplet; near thg Ieft'side Of_th_eir 9ap; gpecifically, for the collision of droplets of radius 2on
e e oo i those of 20um, the range of calison rates s

' (1to 1.4 x10* st cn? for the gentle vortex case in Fig. 4

in the region that is below and to the right of the vortex d 161 to 5 X 104 sLend in the st ;
center is seen to dominantly modulate the values of collisiors compare @1 to 5 S~ cmin the strong vortex

rates in Figs. 11 and 12. The large variation of droplet velocase Of Fig. 10. Similarly, for collisions of 16m with
ity of the 40 um droplets seen in Fig. 9 occurs mostly in the 40 um droplets, the range of collision rates (i3 to 16
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droplet radius: 40um

LIS B B B LALLM S S S S B S

v b b b b by 3

centimeters
=)
T ‘ | I L | [ UL [ 1 1 [ L i | [ 1 1 [ L [ T

=2
-4
-6
-2 1 2
centimeters
__________________  Eaaaaasa—— ]
3 8 18 18 23 28 33
. . FIG. 9. (Color). Trajectories of droplets of 4am ra-
droplet speed in cm s dius are shown for the strong vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined in(27) is in color. Vortex center is marked
droplet radius: 40um by +.
“““““ P T P LT, 0 O B O Lo
6 bl
4
2

centimeters
o
T ‘ T T T ‘ T T T | T T T | T T T ‘ T T T [ T T T ‘ T

oo by by b e by by g

|
N

centimeters

~ T 289 652 1015 1378 1741 2105

concentration change x 100

x10%4stem® versus (3t030x10%stcm’, and is IX. APPROXIMATE EQUATIONS OF MOTION
(14t0 29 X10*stcm® versus (6 to 120 X 10 st e

for collisions of 20um with 40 um droplets. The figures The limits of applicability of approximations to the

equations that we have solved are discussed next. By graph-

o ) (?ng the terms in the differential equations, we determine un-
not lend themselves to determination of a single number sucfer what conditions some of these terms may be neglected.

as the space-averaged collision rate. This is because spaggaglect of these terms can simplify the equations but may or
averaged rate depends on the volume of the average; it mugtay not simplify the computation. The spin deflection term
approach the gravitationally induced collision rate as the volin (9), i.e., DSX (w+4), is orders of magnitude smaller than
ume increases. the other terms. This term is always negligible in the present
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droplet radii: 10um and 20um
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FIG. 10. (Color). For the strong vortex case, collision
rates of droplets of radii 10 and 20m are shown in

=2 color on the trajectories of the 1@m droplets. Vortex
center is marked byt.
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calculationg(perhaps not so in all possible calculatipride-  A. Approximate equations of motion: Gentle vortex
glect of the spin deflection is a significant simplification to
the computation becaug&0) and (A3) need not be solved,

and the air-flow quantities within these equations need not b

evaluated, but there is negligible savings of computatior?y Unit vectorx or subscriptx, e.g.,V,=x-V, and vertical
time. denoted by unit vectoy or subscripty. Note thaty is oppo-

The equations of droplet motio®) are solved in two-
gimensionaI(ZD) Cartesian coordinates: horizontal denoted

droplet radii: 10um and 40um
— — ; —

centimeters
o

FIG. 11. (Color). For the strong vortex case, collision
rates of droplets of radii 10 and 40m are shown in

=2 color on the trajectories of the 1@m droplets. Vortex
center is marked byt.
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droplet radii: 20um and 40um

FIG. 12. (Color). For the strong vortex case, collision
rates of droplets of radii 20 and 40m are shown in
color on the trajectories of the 20m droplets. Vortex
center is marked byt.
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site to the direction of gravityy=-g. The horizontal com- radius decreases; this is true for all trajectories of 10 and
ponent of terms in the differential equati¢® are shown for 20 um droplets(for this gentle vortex flow, of cour$gethat

the gentle vortex in Fig. 13; top, middle, and bottom graphsfact is shown foridw,/dt| in Fig. 13 and is also true for the

in Fig. 13 are for droplet radii 1@&m, 20 um, and 40um,  vertical componentdwy/dt|. This means that, for a small
respectively. The terms in the differential equation are showrenough radiusdw/dt can be neglected within the history
for the trajectory that passes closest to the vortex center. Thiategral as well as on the left-hand side(6f; this is true for
abscissa is the time in units of the droplet relaxation timpe the gentle vortex case for 10 and 2@n droplets, but not
since the beginning of the trajectory. For the A® radius, 40 um droplets. Then, neglectindw/dt, a simplified equa-
only the middle of the trajectory is graphed to avoid com-tion of motion can be solved, namglgfter multiplication of
pressing that portion into a small fraction of the graph. The(9) by —1],

vertical components of terms i{9) are qualitatively similar ¢

to the horizontal components; they differ in details, of 0= Aw + B% +(w+§)- Vu+ Cf dt’

course. Similar conclusions are obtained when other trajec- Dt —o

tories are studied, including the trajectories that remain right- A N—1/2
ward of the rightmost equilibrium point. Because the terms XLw+g) - Vult-t)== (28)
vary by orders of magnitude along the trajectory, their absoThe scaled version of7) is dw/dt=dV/dt—Du/Dt—(w
lute value is graphed on a logarithmic scale; those times-§)-Vu; since Fig. 13 and similar results for the vertical
when a term changes sign are seen as abrupt minima in itﬁ)mponent show thadw/dt may be neglected relative to

curve. BDu/Dt and(w+@)-Vu or their sum, we have
For the 40um droplets, the two termsBDu/Dt and
—-(w+Q) - Vu closely cancel each other except near the center av ~ Du +(W+§) - Vu (29)

of the trajectory; therefore, an extra curve equal to their sum, dt Dt

|X-(-BDu/Dt-(w+@)-Vu)|, is shown in Fig. 13. For this

case, the significance of the history integral, as well as th

other terms, can be judged relative toBBu/Dt—(w

+0)-Vu rather than to BDu/Dt and (w+@)-Vu sepa- t

rately. One sees in Fig. 13 that the history integral is an  dV , . _

important term for the 4Gum droplets except when the drop- P CJ_W dt(w+§) - Vul(t-t)77],  (30)

let is close to the vortex center. The history integral is seen to

be significant all along the trajectories of the 10 andu20  whereA=1 andB=1 were used. For purposes of reducing

droplets. The hysteresis effect of the history integral is seethe difficulty of solving the equationg30) is not simpler

to cause an asymmetry to the curves plotted versus time ithan (28). The history integral is not negligible if80) for

Fig. 13. either the horizontal or vertical components; th@6) gives
The termdw/dt becomes rapidly negligible as droplet dV/dt# —w, which, when unscaled, is

for the 10 and 2Qum droplets. This is not true in Fig. 13 for
fhe 40um droplets. Then, for the above limited cases, sub-
stitution of (29) in (28) shows that28) can also be written as
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FIG. 13. (Color). For the gentle vortex case, the abso-
lute magnitudes of the horizontal component of terms in
(9) are shown vs/ 74 for the trajectory that passes clos-
est to the vortex center. Solid blackiw,/dt|. Dotted
red: |-Aw,|. Short-dashed orangé-BDu,/Dt|. Dash-
dot green]-(w+@) - Vu,. Dash-dot-dot-dot light blue:
history integral. Long-dashed dark  blue:
|-BDu,/Dt—(w+@)- Vu,|. Text states which trajectory
was used.
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\/ droplet radii 10um, 20 um, and 40um, respectively. The
May; # (My—mp)g - 6mau(V —u) (unscaled. (31)  ajectories used for Fig. 14 are second to the last trajectory
that passes leftward of the vortex center in Fig(far the
It is significant that(31) with # replaced by= does appear 10 um droplet$ and in Fig. 8(for the 20um droplets. The
ub;quitously in the literaturde.g., as described by Kirat trajectory used for the 4@m droplets in Fig. 14 is the
al.*). Use of(29) and Fig. 13 shows that the history integral yyelfth from the left of the closely spaced trajectories in Fig.
should not be neglected relative mydV/dt. Note that the g j; s the third trajectory that turns at the right side of the
above approximations are not true for the 4@ droplets ey center. Similar conclusions are obtained when other
because Fig. 13 shows that only the spin deflection term i ;e ctories are studied. Similar to the gentle vortex case in

) can be neglected for. the horizontal component, and th'l:fig. 13, the absolute values of the terms are graphed on a
same is true for the vertical component. {

The maanitudes of terms in Fig. 13 have more than ius ogarithmic scale; as before, the vertical components of
. gn 9- . nan J erms in(9) are qualitatively similar to the horizontal com-
relative meaning. Retur to the scaled Var@le notaliien onents. Only the middle of the trajectories are graphed in
~) and note that the maximum values |[gfAw,| in Fig. 13 b oY : jecone grap
increase for the horizontal-component equ;tion fro.m aboulliFlg' 14 to avoid compressing that portion into a small frac-
e ion of the graph. As in the gentle vortex case, the spin de-
0.006 to 0.02 as droplet radii decrease from 40 to grap 9 b

_ ) flection term in(9), i.e.,DSX (w+Q), is orders of magnitude
10 um. Not shown is the corresponding decrease-#,|  gmajier than the other terms and is therefore far below the
as droplet radius decreases by about 0.03 to 0.006. All th

ther traiectoriesthat t sh i the i o " Bottom axes on Fig. 14; that term is always negligible. For
other trajectoriesthat are not shown in the figuesave yet 40um radius, an extra curve equal tR-(-BDu/Dt

smaller maxima i—Aw| and|-Aw,|. The fact thaf-Aw| —(w+@)-Vu)| is shown(the long-dashed curyebut unlike
=0.03 is equivalent to the fact that the sum of all terms otheg; o gentle vortex case, the two term8DBu/Dt and «w
than -Aw, in the vertical component @) equals Aw, such  +§).vu closely cancel each other only on the upper part of
that|-Aw,| is small compared to unity. The scaled version ofthe trajectory.

(6) is “W=g—-(V-1); becaused=1, it follows that For the 10um radius, the entire horizontal extent of the
—~ top graph in Fig. 14 is remarkably similar to the middle
= Awy == 1-(Vy—uy)/Uq. one-third of the gentle vortex case in Fig. 1®lore of the

Because the left-hand side has magnitude 0.03 or less and tngectory is shown ?n t.hellatter figuyeThis simila_lrity cor-
right-hand side contains unity, the two terms on the right"€SPOnds to the similarity in the top graphs of Figs. 7 and 1,

hand side cancel to about 3% or less. That is, to an error o¥hich was explained in Sec. VIII A; briefly, the 1om drop-

3% or less lets are excluded from such a large central region of the
strong vortex that the flow they encounter is relatively qui-
0=Ug+(Vy—uy) (unscaled. (32)  escent. One concludes that the approximations to the differ-

There is no corresponding approximation for the horizontafential equations deduced above for the,r droplets _in the
component, other than|V,—u,| =< 0.03J,. Of course,(32) gentle vortex case also apply to the Afth droplets in the

is the approximation tha¥, is the drift speedJ relative to ~ SOng vortex case. Specificallz8), (30), and(32) apply.
the vertical component of the local flow. The facts that the For the 20um droplets, comparison of Fig. 14 for the
slip-velocity's vertical component, —u, differs little from  Strong vortex case with the gentle vortex case in Fig. 13
-Uq4 and that|V,—u,|<0.03J, supports use ofly in our shows that the time-derivative terdw/dt is not negligible
definition of droplet Reynolds number, i.&®,=Uga/ v. in the strong vortex case becausi,/dt| rises to within
As radius is reduced, computation time {8 increases about 1/5 or the largest term in Fig. 14 as compared to about
greatly for two reasons. First, the droplets fall more slowly1/30 of the largest term in Fig. 13; although not shown, the
such that the time for them to fall out of the computationsame is true for the other componéahty /dt|. Also, the term
volume increases, as evidenced by the larger values on theAw/ is larger in the strong vortex case. In the20 um
abscissa of the top graph in Fig. 13 as compared to the bograph in the middle of Fig. 14, the maximum BfAw,| is
tom graph. Second, a greater number of time stepsper  0.32 whereV,—u,=0.32J,4. One maximum of-Aw,/| (not
required for accuracy, and the integrand of the history inteshown) is whereV,—u,=-0.41J, and another is wher¥,
grand must be stored for each time step. Consequently, use eUy:—1_24Jd; in contrast,(32) gives Vy,—u,=-Ug. Follow-
(32) becomes useful and becomes more accurate as droplgly the discussion in Sec. IX A, one sees that none of the
radius is reduced much below }0n. Approximations have approximationg28), (30), and(32) applies to the strong vor-
not been used in this study. tex case for 2Qum droplets. That is, except for the neglect of
The above agrees in detail with Mantdt{'scaling of the  the spin deflection ter®S x (w+§), Eq. (9) must be solved.
equation of motion and its approximation, except that his  For the 40um droplets, the above conclusions regarding
neglect of the history integral is contradicted. the 20um droplets are even more strongly confirmed. Spe-
cifically, in thea=40 um graph at the bottom of Fig. 14, the
time-derivative termdw,/dt| has the largest maximum value
The horizontal component of terms in the differential of all terms, namely, 0.6. The vertical compongahiy,/dt]
equation(9) are shown for the strong vortex in Fig. 14 for also has the largest maximum value, namely, 0.6. The maxi-

B. Approximate equations of motion: Strong vortex
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mum of [-Aw,| is 0.44, whereV,-u,=0.44J4. The maxi- that the validity of approximations depends on the specific
mum of |—Awy| is where V,—u,=-0.41, whereas(32) flow and droplet radii studied here. Other flows and radii

givesV,—u,=-Uyg. require further study. For both the gentle and strong Burgers
o _ vortex cases studied here, the spin deflection terr{®jris
C. Approximations for the other equations always negligible. For ancillary equatiori2) and (A3),

Equations(10) for S, (A2) for ow/ax,, and (A3) for ~ ©One€ finds that their important terms are those that correspond

S/ dx, can be studied by the same method as used abovi? the terms that dominate in the equation from which they
For (A2) and (A3) one finds that their important terms are &re derived. _ _
those that correspond to the terms that dominate in the equa- APProximations applicable to the equation of droplet ve-
tions from which they were derived, namel®) and (10,  locity (9) were studied. First consider the case of the gentle
respectively. vortex. For the 10 and 2@m droplets, but not the 4om
Now consider(10). Recall thatDw/Dt=0 in our flow.  droplets, the angular velocity of the droplets is approxi-
For spinS the three nonzero terms i10) are of the same Mately equal to the angular velocity of the air. The history
order of magnitude for droplets of 4@m radius(dS/dt is integral is an important term for all three droplet radii: 10,
the smallest of the terms at most pojntsut dS/dt quickly 20, and 40um. The termdw/dt becomes rapidly negligible
becomes smaller with decreasing radius, and it is negligibl@s droplet radius decreases. Neglecting dt gives the ap-
for 10 um radius. The 2Qum droplets pass through and proximate equation of droplet motiof28), which can be
close to the vortex center where vorticity is large in theapproximately written a¢30); those equations are valid for
gentle vortex case; neverthelestS/dt is not more than 10 and 20um droplets, but not for 4gm droplets. In par-
about 2% of the other terms. Thus, for the smaller dropletgicular, (31) is obtained; that is, the equation of motion most
(10) becomes the algebraic equati®+(3/20(w+§)-Vw.  frequently used is inaccurate because the history integral is
Reverting to the tilde notatiof”) for scaled variables and not negligible. The importance of the history integral, even
using [+§| =1, |§|20.15005(<p)da)/d?|, where ¢ is the  for smallm¢/my, is in agreement with calculations by Arme-
angle betweefiv+§ and the radial direction. For our vortic- Nio and FiOfOttOZ:g To an accuracy of about 3%, the approxi-
ity (22), we have [S|=0.30(r)4lyr/r3cos¢)|; unscaled, Mation(32) applies. o
this gives |S|/[w(r)/2]=0.6(4 /rcode)]. In Fig. 1 for Now consider the strong vortex case for approximation
10 um radius, for example, on the trajectory closest to thel® (9)- For 10um droplets, the same approximate equations
vortex center, we have/r,=2.5 (recallr,=1 cm such that are valid in the strong vortex casg as |p the gentle vortex
|S|/[w(r)/2]<3x 103, Similarly, at any point on trajecto- CaS€; namely(28), (30), and (32); this fact is related to the
ries of the 20um droplets where vorticity is large, e.g., €Xtent of the excluded region such that A droplets do
r/ro<1 in Fig. 2, we haveS|/[w(r)/2]<2X 1072 Recall- NOt enter the region of strong_vorticity. Unllke_ the gentle
ing the definitionS=Q - /2 and thatw(r)/2 is the magni-  VOrtex case, those approximations are not valid for.20
tude of the angular velocity of the flow, one sees thaho ~ droplets. None of(28), (30), and (32) is valid for 40 um
and 20um droplets are spinning with the flow to excellent droplets in the strong vortex case. The history integral cannot
approximation. Further, at/r,=2.5, the largest magnitude P neglected. _ .
of the term -D~S><(\Tv+g) in (9) for 10 um radius is It is prgferable to pase our understandmg of the impor-
bout D[S| = 7% 104075 exit—2 . ) Jwgrglyl T~ 4 tant terms in the equations of motion on data such as Figs. 13
abou _ . (2 EXPe. ) JwoTatal To and 14 as compared to generalized flow parameters like the
XlU_ll' which explains why BSX (W+9) is negligible and  rroude and Stokes numbers in Tables | and Ill, which are
why its curve does not appear in the figurésr the two  pased on the maximum values of acceleration and velocity
larger droplets, use scaling with(). gradient. A case in point is that the relative values of
|-BDu/Dt| and |~(#+§)- V| in Fig. 1 are opposite to the
X. DISCUSSION AND CONCLUSION expectation based on the Froude and Stokes numbers be-
The equations of motion of water droplets in air were Cause, for 1Qum radius the trajectory closest to the vortex
calculated to determine trajectories, velocities, and thé&enter lies significantly beyond the position of those
change of concentration caused when droplets fall into a vorhaxima of acceleration and velocity gradient.
tex. Droplet radii were chosen on the basis of relevance to The computations presented here suggest further inves-
rain initiation in atmospheric clouds. The resultant geometritigations. The radial inflow of the Burgers vortex could be
cal collision rates show the effects of both the relative velocincluded. This case would be especially different for the
ity of droplets as well as their concentrations. Relative tol0 um droplets in the strong vortex because the smaller
gravitationally induced collision rates, locations of both in- droplets will be swept closer to the vortex center by the
creased and decreased collisions are shown. The collisignward flow, and there would be a smaller excluded region.
rates do not lend themselves to being reduced to a singl€alculations could be performed using other droplet sizes
number for the case presented; for example, a volume aveand other strengths of vortices. Droplets’ motion in other
age depends on the volume used in the average. flows could be calculated, for example, strained-spiral vorti-
Approximate equations are determined on the basis ofes and nonstationary flows including DNS of turbulence.
the relative values of terms in the differential equations asThe present computer program is applicable to 3D nonsta-
functions of position on trajectories. It must be kept in mindtionary flows. One could study droplets within the excluded
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region. This is a more difficult computation because the vor- dox du dw  9x oW
tex must be nonstationary and increasing in maximum vor- P P
ticity such that droplets are entrained into the volume that
will become the excluded region. Of particular interest forSince this equation requiresv/dx,, we obtain an equation
that case is the exit of the droplets through the gap as well d9r w/dx, by differentiating(9):
the '(|:'(k)1"i5i0n rattes cl)f elq?al—s'izfed groplleis.f o 0 B d ow A'?W 5 9 DU ow Vu_wed)

e present calculation is for droplets falling into a Bur- —V—==A_-B——-——- -
gers vortex from above; the flow deflects 10 and 20 dtoxo Mo XDt X
droplets from positions where the accelerations are greatest, du t [ dow  ow
despite the fact that those maximum accelerations have prob- ' f_w (Rgo + 50
ability greater than 16 (Sec. VI A). Therefore, the greatest
flow accelerations experienced by droplets in a cloud are
within the excluded region of this study. Vortices of greater
maximum acceleration and lesser probability of occurrence
might be more significant to the coalescence of droplets, par- X m _ D‘9_S X (W +§). (A2)
ticularly so for droplets within the excluded region. The Xo 2%
present study suggests that acceleration-induced coalesce
is most significant for droplets that are entrained into o
formed within an intensifying vortex as distinct from falling

d S 10D 10w 1 . J
toward the vortex. ——=————w———-Vw—§(w+g)-V—w

—— =+ = -Vu .
dtaxg dxg Xy IXg X

Ju
-Vu+(w+Q) -V —)(t—t’)'”z— DS
%o

Cifice this equation requiretS/ dxy, we obtain an equation
Tfor s/ X by differentiating(10):

Calculation of geometric collision rates in vortices is a  dtgx, 2%, Dt 23X, X
step toward understanding droplet coalescence in liquid
clouds. Another part of the understanding of coalescence is - E)’?_S_ (A3)
determining the collision efficiencl, which is the ratio of 3 %o

the number of collisions to the number of geometric colli- Replacingdx, with dy, gives the equation set that yields
sions. Droplets falling because of gravity in still air haze axlay, for use in(13). Thus, we have nine coupled first-

<1 because :7;queezing fidivcauses a repulsive fore. o ger gifferential equations for nine vectors. Those equations
Rogers and Yautabulate for that caseE <0.053 for drop- ¢ he solved simultaneously. For a three-dimensional flow,

lets of radius 1Qum colliding with smaller dropletSE  hare are 3 9=27 coupled equations for the nine vectors’
=0.17 for 10um and 20um droplets, E=0.55 for 10um  components. The initial condition faix/dx, is unity for the

with 40 um, andE=0.75 for 20um with 40 um. Instead of oo mhonent ok that is the same Cartesian componenk@s
the still-air model, the hydrodynamic interaction of droplet and is zero otherwise; likewise for the initial condition for

pairs of various radii within local vorticity and strain-rate ax/ ay,. The initial condition forow/dx, is obtained by op-

fields must be determined. For this case, the collision efﬁ'erating on the initial condition fow, i.e., (12), with 9/ dxy

ciency might be much different as compared to the still-aifjeyise for the initial condition foraw/ay,. SinceS=0 in
model. Existing empirical probability density functions of 4 initial plane, the initial condition foBS/ax, is 39S/ o,

vorticity'” and acceleratiofd in high Reynolds-number tur- =0: also,dS/ dy,=0. The history integral itA2) is zero from
bulence are also part of the calculation of collision kernels - _, o t=t,.

for use in understanding rain initiation from liquid-water
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