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Droplet velocities, concentrations, and geometric collision rates are calculated for droplets falling
into Burgers vortices as a step toward understanding the role of turbulence-induced collisions of
cloud water droplets. The Burgers vortex is an often used model of vortices in high Reynolds
number turbulence. Droplet radii considered are 10, 20, and 40mm; those radii are relevant to warm
rain initiation. A method of calculating the concentrations of droplets along their trajectories by
means of differential geometry is derived and implemented. A generalization of the rate of
geometrical collisions of inertial particles is derived; the formulation applies for any local vorticity
and rate of strain, and the classic collision-rate formula is obtained in the process. The relative
velocities of droplets of different radii and their spatial variation of concentration affects spatial
variation of collision rate; greater variation exists for a stronger vortex. The physical effects
included in the droplet equation of motion are inertia, gravity, viscous drag, pressure and shear
stress, added mass, the history integral, and the lift force. The lift force requires calculation of
droplet angular velocity, the equation for which contains rotational inertial and viscous drag. An
initial condition is found that does not cause an impulse in the history integral. The important terms
in the droplets’ equations of motion are found such that simpler approximate equations can be used.
It is found that the lift force is negligible, the history integral is not. For smaller droplets in regions
of lower vorticity, the time derivative of the difference of slip velocity and gravitationally induced
drift velocity may be neglected. The present study suggests that acceleration-induced coalescence is
most significant for droplets that are entrained into or formed within an intensifying vortex as
distinct from falling toward the vortex. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1858191g

I. INTRODUCTION

Turbulence is an essential aspect of Earth’s clouds. Tur-
bulence affects collisions, coalescence, and preferential con-
centration of cloud droplets and local supersaturation.1–6 A
long-standing mystery7 and topic of vigorous current
research3,6 is how liquid-water clouds evolve from an almost
unimodal droplet size distribution with median size of about
10 mm radius to contain enough droplets of large enough
size ssay 40mm radiusd to initiate rain by gravitationally
induced coalescence. The issue is that this can occur on a
time scale of 10 min rather than hoursse.g., see Shaw’s3 Fig.
3d. Many hypotheses have been suggested8 and continue to
be investigated.3 Amongst the hypotheses are several distinct
effects of turbulence, including small-scale intermittency and
turbulent accelerations. Empirical evidence exists to support
turbulence mechanisms; for example, Pobanzet al.9 found
that regions of clouds where large droplets form are associ-
ated with strong wind shear, and therefore with turbulence.
Our interest in the possibility that turbulent accelerations in-
duce droplet coalescence arose from our finding10 that the
pressure-gradient correlationsand hence also the fluid-
particle acceleration correlationd increases with turbulence
Reynolds number, whereas older theories that assumed joint
Gaussian probability density functions of velocity predicted
no such increase. Even at the modest Reynolds numbers of

wind-tunnel experiments and direct numerical simulation
sDNSd the fluid-particle acceleration correlation was three
times that predicted by the older theories.11 Accelerations in
high Reynolds number turbulence are strong. A typical tur-
bulence energy dissipation rate in moderate cumulus convec-
tion is 100 cm2 s−3, such that the root mean squaresrmsd of
the turbulence acceleration is about one-third that of
gravity.3,12 Experiments in which particles are tracked in tur-
bulence have quantified the probability density of accelera-
tions to show that extreme events are likely because the ac-
celerations are highly intermittent; for example, accelerations
26 times the rms occur at the 10−6 probability level.13,14 Be-
cause only about 1 in 106 droplets grows to precipitation
size, the phenomenon of droplet coalescence is that of rare
events; suggesting that the large turbulent accelerations that
occur in a small fraction of the flow might induce droplet
coalescence.

Several facts simplify the hydrodynamics of cloud drop-
let motion. The volume of liquid water in a cloud is of the
order of 10−6 of the air’s volume and the ratio of mass den-
sities of water to air is about 103. Therefore, air turbulence is
unaffected by the presence of cloud dropletssof course, tur-
bulence is generated, in part, by buoyancy created by ex-
change of latent heatd. Further, only binary collisions need be
considered. The smallest spatial scale of air turbulencesKol-
mogorov’s microscaled is of order 1 mm, whereas the size of
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droplets being considered is of order 10−2 mm. Conse-
quently, vorticity and strain rate are approximately homoge-
neous in the neighborhood of each droplet. The small size of
cloud droplets, and the fact that the ratio of the dynamic
viscosity of air to that of water is 1.2310−2, and the surface
tension of water, allows the cloud droplets to be approxi-
mated by rigid spheres. For example, the effect of that vis-
cosity ratio on the Saffman lift force as determined by Leg-
endre and Magnaudet15 is only 0.8%. The rigid sphere
approximation is important because there are no analytic
equations of motion in the time domain for finite droplet
viscosity.16 The air flow around each droplet is laminar
ssmall droplet Reynolds numberd such that the viscous drag
is well approximated by the Stokes force. Although limited
by the above simplifications, the formulation and calculation
in this paper apply to fluids other than air and water.

Despite the above simplifications, the equations solved
here numerically are complicated. To best understand the nu-
merical results, it is prudent to consider a simplified flow that
has often been used to model vortices in turbulence. That
flow is the Burgers vortex in its inviscid limit such that there
is only an azimuthal velocity around the vortex center
sStokes drag on the droplets is not neglectedd. The simplicity
of the chosen flow allows clear interpretation of droplet mo-
tion and collision. Vortex tubes have been documented in
many DNS studies.17 The velocity profile of vortex tubes in
laboratory turbulence has been shown to be close to that of a
Burgers vortex, from which the radii, circulation velocity,
and spatial distribution of vortex tubes were obtained.18,19

Section II states the equation of motion of droplets, its
justification, and the dimensionless equations. The initial ve-
locities and positions are described in Sec. III. Derivation of
the equations for calculation of concentration along a droplet
trajectory is given in Sec. IV. Derivation of the generaliza-
tion of the geometrical collision rate is given in Sec. V. The
two Burgers vortex flow cases, called “gentle” and “strong,”
are described in Sec. VI. Sections VII and VIII give the
trajectories, velocities, concentrations, and geometric colli-
sion rates as calculated for the gentle and strong vortex
cases, respectively. Approximations to the equations of mo-
tion that are valid for the present calculations are given in
Sec. IX.

II. DYNAMICAL EQUATIONS AND NOTATION

The equation of droplet motion that we solve is

md
dV

dt
= smd − mfdg − 6pamsV − ud + mf

Du

Dt

−
1

2
mfSdV

dt
−

Du

Dt
D − 6a2spmrd1/2

3E
−`

t

dt8SdV

dt8
−

Du

Dt8
Dst − t8d−1/2

+ pa3rSV −
v

2
D 3 sV − ud. s1d

Here,md is droplet mass;V is droplet velocity;t is time;a is
droplet radius, andr is the mass density of air such that

mf =s4pa3/3dr is the mass of air having the same volume as
the droplet;g is the gravitational acceleration vector;m is the
coefficient of air viscosity;u is air velocity; V is droplet
angular velocity vector;v= = 3u is air vorticity which
equals twice the air angular velocity;d/dt andD /Dt denote
time derivatives following the motion of the droplet and fol-
lowing the air motion, respectively. Thus,dV /dt is droplet
acceleration andDu /Dt is the air’s acceleration. The terms
on the right-hand side ofs1d are gravity, viscous drag, pres-
sure and shear stress, acceleration of displaced airsadded
massd, history integral, and the lift force of Rubinow and
Keller.20 The lift force is demonstrated to be negligible in
subsequent calculations. Lift forces dependent on nonzero
viscosity have been obtained for uniform shear by Saffman,21

who finds the Rubinow and Keller lift at the next order in
droplet radius. The estimate of the relative magnitude of the
lift forces of Saffman versus Rubinow and Keller as given by
McLaughlin22 shows that the Saffman lift can dominate for
the large values of shear at small scales in clouds, but
McLaughlin also shows that the range of droplet Reynolds
numberRd for which the Saffman-type lift formula is valid is
unknown for those same cases. Michaelides16 reviews
progress on Saffman-type lift forces, but points out that the
analytic expressions are presently of too limited generality to
be included in the equation of motion. An exception may be
the formulas for all components of the lift forces given by
Miyazaki et al.23 for stationary homogeneous flow, but use of
those formulas would overwhelm computer resources. For
the present, we confine the calculation to the lift force of
Rubinow and Keller.

Auton et al.24 clarify that, for the case of inviscid flow,
the added mass term must involvedV /dt−Du /Dt and not
dV /dt−du /dt. Magnaudetet al.25 prove the concept of
added mass for nonuniform viscous flows and thatDu /Dt,
not du /dt, must appear. Meiet al.26 use numerical solution
to determine that the added mass force is the same at finite
and vanishing Reynolds numbers. Thus, the result of Auton
et al.24 also applies to viscous flow. Both the added mass and
history terms are two aspects of a single unified derivation
ssee Landau and Lifschitz27 and Clift et al.28d such that it
seems thatdV /dt−Du /Dt must also appear in the history
term, althoughdV /dt−du /dt appears more often in the lit-
eraturese.g., Michaelides,16 Armenio and Fiorotto,29 etc.d. To
prove which is the correct history kernel requires quantifying
the effects of the history integral for nonuniform flowsi.e.,
=uÞ0d because sdV /dt−Du /Dtd−sdV /dt−du /dtd=sV
−ud ·=u fsees4d belowg. Recently, Candelieret al.30 report
experimental data for a flow in which=uÞ0 and compari-
son with calculations for which bothdV /dt−Du /Dt and
dV /dt−du /dt were used in the history integral. The result is
that use ofdV /dt−Du /Dt overestimates anddV /dt−du /dt
underestimates the history force required to agree with the
data. Candelieret al.30 give qualitative arguments in favor of
dV /dt−du /dt. On the other hand, the history integrand tran-
sitions to a more rapid decay thanst− t8d−1/2, as discussed
below, such that the calculation by Candelieret al.30 is ex-
pected to overestimate the effect of the history force; that
argument qualitatively favorsdV /dt−Du /Dt. Magnaudetet
al.25 argue thatdV /dt−du /dt is correct because a time de-
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pendence is caused in the history force for their steady flow
if dV /dt−Du /Dt is used. On the other hand, their argument
involves the abrupt introduction of acceleration at an initial
time t0. The time dependence that they obtain is correct in
comparison with problem 7 in Sec. 24 of Landau and
Lifshitz27 when uniform acceleration is abruptly introduced
into the history integral.

Correction for nonuniform flow leads to Faxen terms.
Because ofs4d below, the arguments of Autonet al.24 suggest
revision of Faxen laws. That is why Faxen termsswhich
were included by Maxey and Riley31d are absent ins1d. By
the above reasoning, we obtaineds1d, which is the same
equation as given by Croweet al.32 swho include no lift
forced and who state its equivalence to the derivation of
Maxey and Riley31 on the basis of small Reynolds number;
s1d is also given by Manton.33

The effect of an initial impulse in the history integrand
requires an additional term in the equation of motion, as
shown by Reeks and McKee.34 The intention of the calcula-
tions in this paper is to avoid any initial impulse in the his-
tory integrand. Meiet al.26 use numerical solutions to deter-
mine a modification to the long-time behavior of the history
integrand for the case of finite droplet Reynolds numberRd,
and Mei35 discusses how the inclusion of higher-order
Reynolds-number effects in the drag requires modification of
the history integral as well. By retaining effects to orderRd

2,
Lawrence and Mei36 show that the history integral for impul-
sive motion decays ast−2 at long times, and that for reversed
and halted motion the history integral decays ast−1. Both
cases have more rapid decay than thet−1/2 decay implied by
the history integral ins1d. Mei and Lawrence37 study cases
for which the particle suddenly starts, stops, and increases or
decreases its speed; they elucidate cases for which the his-
tory integral has an asymptotic decay ast−1. Lovalenti and
Brady38 formulate the force on particles which is correct to
order Rd

2, including the history integral; that force includes
effects of changes in direction of particle motion. Kimet
al.39 determine a kernel for the history integral that matches
numerical solutions of the Navier–Stokes equation for the
case of straight-line particle motionsaxisymmetric flow, uni-
form ambient flow fieldd; their history kernel reduces to the
form in s1d at short times and changes to thet−2 decay at long
times. Such studies do not include effects of spatial deriva-
tives of the ambient flow on the particle motion; those effects
do appear ins1d and our solutions. The generalizations of the
history integral by Lovalenti and Brady38 as well as by Kim
et al.39 have kernels that are not simply functions oft−t;
consequently, an efficient algorithm for calculation of the
history integral is not possible.

Although computer algorithms are not a topic here, our
calculation of the history integral requires about one-half of
the total computation time. That seems to be an improvement
relative to difficulties reviewed by Michaelides.16

Because the droplet angular velocityV appears ins1d,
we require its equation, namely,27

I
dV

dt
= − 8pa3mSV −

v

2
D , s2d

whereI =2mda
2/5 is the rotational inertia of the droplet. The

equation of droplet positionx is

dx

dt
= V . s3d

Above, the air-flow propertiesu, Du /Dt, andv, are evalu-
ated at the droplet positionx as they would exist in the
absence of the droplet.

The time rate of change following the motion of an air
particle,D /Dt, is related to the time rate of change observed
from a fixed reference frame] /]t sEulerian observerd by
D /Dt=s] /]td+u·=, where= is the spatial gradient operator.
Likewise, for the time rate of change following a droplet,
d/dt, the relationship isd/dt=s] /]td+V ·=. The difference
of these operators gives the obvious and useful result that

d

dt
=

D

Dt
+ sV − ud · = . s4d

In subsequent calculations, there are large cancellations
between the termssmd−mfdg and −6pamsV −ud in s1d, es-
pecially for small droplet radius. Those cancellations reduce
useful computer word length. Therefore, we change the de-
pendent variable fromV to w, as defined by

w ; V − u − Ud, s5d

where

Ud ; smd − mfdg/6pam

is the drift velocity of the droplet in still air. The cancellation
is removed because

smd − mfdg − 6pamsV − ud = − 6pamw. s6d

The equation forw requiresdw /dt, which is expressed in
terms of known air-motion quantitiesDu /Dt and=u by use
of s4d and s5d as follows:

dw

dt
=

dsV − ud
dt

=
dV

dt
− SDu

Dt
+ sV − ud · = uD

=
dV

dt
−

Du

Dt
− sw + Udd · = u. s7d

More so,V andv /2 are so nearly equal in subsequent cal-
culations that the computation ofs2d would fail without the
definition of the relative angular velocity of droplet and air,
S, as follows:

S; V −
v

2
. s8d

Use of s4d and s8d gives

dS

dt
=

dV

dt
−

1

2

dv

dt
=

dV

dt
−

1

2

Dv

Dt
−

1

2
sw + Udd · = v.

The equations of motion are next expressed in dimen-
sionless form. For that purpose, define the following param-
eters: Ud= uUdu denotes the drift speed in still air;td
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=md/6pam is droplet relaxation time;,d=Udtd is droplet
relaxation distance;ĝ=g/g is the unit vector in the direction
of gravity, andg= ugu. The specific expression used here for
droplet Reynolds number isRd=Uda/n, wheren=m /r is the
kinematic viscosity. Adds1/2dmfdV /dt to both sides ofs1d
and divide bymd+s1/2dmf. Scale all quantities by length and

time scales,d andtd. That is, definet̃; t /td and t8̃; t8 /td,

Ṽ ;V /Ud, ũ;u /Ud, w̃;w /Ud, =̃; =,d, Ṽ;Vtd, ṽ

;vtd, S̃;Std, and x̃;x /,d. Below, the tildessi.e., ˜d are
deleted for clarity. Thens1d becomes the dimensionless
equation

dw

dt
= − Aw − B

Du

Dt
− sw + ĝd · = u − CE

−`

t

dt8Sdw

dt8
+ sw

+ ĝd · = uDst − t8d−1/2 − DS3 sw + ĝd. s9d

Here

A ; f1 + sg/2dg−1, B ; s1 − gdA, C ; s9g/2pd1/2A,

D ; s3g/4dA,

where g;mf /md. For water droplets in air,g.10−3 so A
.1, B.1, C.4310−2, andD.7310−4. The dependence
of C on g1/2 shows that the history term becomes less impor-
tant as g decreases. Lawrence and Mei,36 Vojir and
Michaelides,40 and Michaelides16 point out that the history
integral is of lesser importance wheng is small. Druzhinin
and Ostrovsky41 find that the history integral is significant
for g near unity; for their caseC<1.

Written using our scaled variables,s2d becomes

dS

dt
= −

1

2

Dv

Dt
−

1

2
sw + ĝd · = v −

10

3
S, s10d

and s3d becomes

dx

dt
= u + w + ĝ. s11d

Of course, all quantities ins9d–s11d are dimensionless.

III. INITIAL CONDITIONS

An important issue is how to start the droplet so as to not
cause an impulse in the history integral. We found that an
impulse strongly influences the subsequent calculation, in
agreement with Reeks and McKee.34 For example, if the
droplet is initially moving with the air velocity, i.e.,V =u so
w=−Ud, or if w=0, then an impulsedV /dt−Du /Dt is
caused in the history integral. The initial conditionV =u has
been used by Armenio and Fiorotto29 to find that the history
integral is significant for a very wide range ofmd/mf, but the
influence of the initial condition was not studied and the
additional terms in the equation of motion required by Reeks
and McKee34 for an impulsive start were not included.

Various initial conditions were tried. The initial condi-
tion that the droplet is not spinning relative to the air is used,
i.e., V=v /2 soS=0. The history integral is assumed to be
initially zero; in fact it is assumed to be zero throughout the
prior unevaluated history fromt=−` to t= t0, wheret0 is the

initial time. This is a valid approximation if the droplets have
been in quiescent flow prior tot0. Our solutions ofs9d
showed thatdw /dt evolves to become much smaller than the
other terms ins9d when the air flow is not strong. Because
the droplet initial positions are chosen to be where the flow is
quiescent, the appropriate initial condition isdw /dt=0. Sub-
stitution ofdw /dt=0 in s9d and moving terms that containw
to the left-hand side give, att= t0,

Aw + w · = u = − B
Du

Dt
− ĝ · = u. s12d

SinceDu /Dt and=u are known at the initial position,s12d is
an algebraic equation that is solved to obtain the initialw.

IV. CONCENTRATIONS ALONG TRAJECTORIES

To calculate the rate of collisions of droplets of one ra-
dius with droplets of another radius at a given place in the
flow, we must know the concentration of both types of drop-
lets. The concentration along a droplet trajectory is relative
to the concentration at the initial point on the trajectoryxst0d
at the initial timet0. The concentrations can be determined
by calculating a dense set of trajectories such that the local
distance between trajectories can be calculated. Differential
geometry offers a better method. Calculating both methods
has verified the derivation and programming of the method
from differential geometry. Consider one trajectory,x
=xfxst0d ,t0,tg; it is the locus of points through which the
center of a droplet passes. The meaning of the argument list
fxst0d ,t0,tg is as follows: a pointx on the trajectory depends
on the initial position of the dropletxst0d; for unsteady flow,
x depends explicitly on when the droplet was releasedsi.e.,
on t0d; x also depends on the duration since release,t− t0, and
therefore ont. The initial velocity for the trajectoryx is V0,
which is obtained froms12d ands5d. The initial concentration
of droplets isN0. Of course,V0 andN0 depend onxst0d, and,
for unsteady flow,V0 andN0 depend explicitly ont0 as well.
One could prescribe a dependence ofN0 on t0 even if V0 is
constant, and vice versa. It is useful to think of the differen-
tial of time dt as being a constant time step used throughout
the integration of the equations.

Let the initial points of trajectories of identical droplets
lie in a plane that is normal toĝ. Let Cartesian coordinates in
that plane bex0,y0. Consider an infinitesimal rectangle in the
initial plane; differential displacementsdx0 and dy0 are the
lengths of the sides of the rectangle; the center of the rect-
angle is the initial point of the trajectoryxst0d. Consider the
volume swept out by the continuum of trajectories that have
their initial points in that infinitesimal rectangle. Between
times t0 and t0+dt, those trajectories advance by the vector
displacementV0dt, thereby forming a parallelepiped of
height ĝ·V0dt such that volume swept out in the first time
step of durationdt is dx0dy0ĝ·V0dt. Differential geometry
gives us the fact that further along the trajectoryxstd at a
later time t, the points on the initial infinitesimal rectangle
form a surface of areadx0dy0u]x /]x03]x /]y0u having unit
normal s]x /]x03]x /]y0d / u]x /]x03]x /]y0u. The partial de-
rivatives]x /]x0 and]x /]y0 are the changes in the trajecto-
ry’s position at timet for a given infinitesimal change in the
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initial point of the trajectory. In the differential of timedt,
this surface advances by the vector displacementVsx ,tddt
thereby sweeping out a volume dx0dy0s]x /]x0

3]x /]y0d ·Vsx ,tddt. For equal differentialsdt, the same
points swept out the initial differential volume as swept out
the later one. The number of points in each volume is the
concentration along the trajectoryNsx ,td multiplied by the
volume. That is, equating the number of points gives
dx0 dy0s]x /]x03]x /]y0d ·Vsx ,tddtNsx ,td=dx0dy0ĝ·V0dtN0,
from which is obtained the ratio of the concentration along
the trajectory to the initial concentration:

Nsx,tdN0 = ĝ ·V0YS ]x

]x0
3

]x

]y0
D ·Vsx,td. s13d

Becausex=xfxst0d ,t0,tg, the argument list ofNsx ,td and
Vsx ,td can also be written asfxst0d ,t0,tg, where the explicit
dependence ont0 is for the case of unsteady flow. One can
consider unsteady initial conditions in the sense that one can
allow t0 to increase and start new droplets at the initial plane
as t0 increases; for each droplet,t begins at that droplet’st0
and thereafter increases. The problem of determining the
concentration of droplets,Nsx ,td, is reduced to specifyingN0

and calculating the partial derivatives]x /]x0 and ]x /]y0.
The equations for those partial derivatives are given in the
Appendix.

V. GEOMETRICAL COLLISION RATES

A. The classic collision mechanism

The problem of calculating geometric collision rates of
spheres was studied over a century ago by Boltzmann42

smodern texts such as Harr’s43 are easier to readd. The con-
centration is assumed to be so small that only binary colli-
sions are considered; this is accurate for applications to
clouds. Let subscripts 1 and 2 denote two droplets whose
collision is under consideration at pointx and timet. Their
radii area1 anda2. The droplets touch at one point when the
separation vector from the center of droplet 1 to the center of
droplet 2, namelyR=x2−x1, has magnitudea1+a2. The rela-
tive velocity of the droplets whenuRu=a1+a2 is denoted by
VRsx ,td=V2sx2,td−V1sx1,td; the meaning of the argument
list sx ,td is that, within the present approximation,V2 andV1

are nearly constant within distances of ordera1+a2 from x2

and x1, respectively. The concentrationsN1sx1,td and
N2sx2,td are approximated byN1sx ,td andN2sx ,td. One col-
lision is counted when the droplets’ surfaces touch at one
point and the distance between their centers is decreasing
si.e., R ·VR is negatived. If the radii a1 and a2 are equal, or
nearly so, then there is the possibility that their trajectories
are nearly parallel, andVR nearly vanishes; then the mecha-
nism of collision is the crowding together of adjacent trajec-
tories. In this case,VR can depend on the direction ofR; then
the classic formula for collision rate does not apply. That
case is considered in Sec. V B. For distinctly different radii,
VR is substantial becauseV2 and V1 differ in direction or
magnitude or both. For this case,VR is constant on the spa-
tial scale of ordera1+a2 surrounding the given droplets; this
simplifies the integration of collision rate over the direction
of R such that the classic formula applies. The classic for-

mula for the number of collisions of droplets 1 and 2 at a
given location x per unit volume per unit time is
pN1N2uRu2uVRu. From s13d, the concentrations are known
relative to the initial concentrationsN01 andN02 that exist at
the beginning of their respective trajectories. Letssx ,td de-
note the number of collisions of droplets of type 1 and 2 per
unit volume per unit time per unit initial concentrationN01

and per unit initial concentrationN02; the classic formula is

ssx,td = p
N1sx,td

N01

N2sx,td
N02

sa1 + a2d2uVRsx,tdu. s14d

It is understood thats14d applies where each type of droplet
has a trajectory.

B. Generalized collision formula

Now consider the generalization ofs14d to include the
case of equal-size droplets, or nearly equal-size droplets. For
that case, one can visualize the geometric collision rate as
being caused by the crowding together of trajectories. The
classic theory42,43 for the number of collisions of droplets of
type 1 and 2 per unit volume per unit time while the unit

vector R̂;R / sa1+a2d points within the differential of solid
angledVR̂ is

N1sx1dN2sx2dsa1 + a2d2R̂ · fV2sx2d − V1sx1dgdVR̂, s15d

where the dependence ont has been suppressed for brevity.
Define the centroid positionC=sx2+x1d /2. Taylor’s series
gives

V2sx2d = V2sCd + sx2 − Cd · f=xV2sxdgx=C + ¯

and a similar series forV1sx1d. Noting thatx2−C=R /2 and
x1−C=−R /2, the difference of the two series gives

V2sx2d − V1sx1d = fV2sCd − V1sCdg +
R

2
· h=xfV2sxd

+ V1sxdgjx=C + ¯.

The first two terms of this series suffice on the spatial scale
of ordera1+a2 surrounding the given droplets. Substitution
of the first two terms of this series intos15d gives two terms

N1sx1dN2sx2dsa1 + a2d2R̂ · fV2sCd − V1sCdgdVR̂, s16d

N1sx1dN2sx2dsa1 + a2d3

3R̂ ·FsR̂ · =xdV2sxd + V1sxd
2

G
x=C

dVR̂. s17d

One could also introduce series expansions forN1sx1d and
N2sx2d to find yet more terms arising from the gradients of
N1 andN2.

The first term s16d leads to s14d as follows. Now,

R̂ ·fV2sCd−V1sCdg= uV2sCd−V1sCducosu, which defines the
polar angleu of a spherical coordinate system; letf denote
the azimuthal angle. Integrates16d over all solid angles for
which cosu is positive; this corresponds to the distance be-
tween the droplets decreasing when their surfaces touch at
one point. Thus,u varies from 0 top /2 andf varies from 0
to 2p, and the integrand is cosu sinu. The integration pro-
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ducespN1sx1dN2sx2dsa1+a2d2uV2sCd−V1sCdu; when this is
normalized by the initial concentrations and the distinction
betweenN2sx2d and N2sx1d is neglected, then we recover
s14d.

The contribution of the second terms17d to the collision
rate is determined as follows. Index notation is more conve-
nient in the second terms17d, within which we have

R̂ · hsR̂ · =xdfV2sxd + V1sxdg/2j

= R̂iR̂jf]sV2j
+ V1j

d/]xig/2 = R̂iR̂jsij
sVd, s18d

where

sij
sVd ; fs]V2j

/]xi + ]V2i
/]xjd/2 + s]V1j

/]xi

+ ]V1i
/]xjd/2g/2

= sij
swd + sij

sud, s19d

wheresij
sud;s]uj /]xi +]ui /]xjd /2 is the strain rate of the air

flow and sij
swd;fs]w2j

/]xi +]w2i
/]xjd /2+s]w1j

/]xi

+]w1i
/]xjd /2g /2. Integration ofs18d over solid angles gives

the following integral:

I ;E E R̂iR̂jsij
sVd sinu du df, s20d

where the integration is over only the portion of the unit

sphere whereR̂iR̂jsij
sVd,0, which corresponds to approaching

droplets. In an EPAPS document,44 the computational algo-
rithms for s19d ands20d are discussed, as is reduction of the
double integral ins20d to obtain a single integral that can be
tabulated. Now, the contribution ofs17d to the number of
collisions of droplets of type 1 and 2 per unit volume per unit
time per unit of both initial concentrations is

N1sx,td
N01

N2sx,td
N02

sa1 + a2d3uI u. s21d

At this point the distinctions betweenN1sxd and N1sx1d,
N2sxd andN2sx2d, V1sCd andV1sx1d, andV2sCd andV2sx2d
are neglected; for instance, the Taylor series would not be
convergent on scalea1+a2 if a singular point of the velocity
fields were in the neighborhood of the collision point. The
sum of s14d and s21d is the total collision rate.

The derivation of collision rate for small, inertialess par-
ticles by Mei and Hu45 is a special casesi.e., for = ·w=0d of
the derivation above. Becauses21d was obtained indepen-
dently of their derivation and numerical validation, their re-
sult corroborates the present result. The collision rate above
is a local and instantaneous value. The collision rate models
of Sundaram and Collins46 and of Wanget al.47 are for vol-
ume and time averaged rates.

Saffman and Turner48 considered, in their Secs. III and
IV, the geometric collision rate caused by spheres moving
with the air in a uniform strain-rate flow, in particular, their
vorticity was zero. Their result is equivalent to use ofsij

sVd

=sij
sud to calculates21d. Our term sij

swd in s19d accounts for
droplet motion relative to the flow. Although air-velocity de-
rivatives enters19d only in terms of the strain ratesij

sud, we

did not assume that the vorticity is zero. Also, Saffman and
Turner48 neglecteds14d, whereas our derivation obtains it.

VI. BURGERS VORTEX

Of the vortices used to model the small-scale structure of
turbulencesPullin and Saffman17d, Burgers vortex49 is the
most common.50 Burgers vortex is a steady, axially symmet-
ric solution of the Navier–Stokes equation in which vorticity
is maintained against viscous dissipation by an inward radial
flow and outward axial flow. If only gravity and viscous drag
are included on the right-hand side ofs1d, then there are
multiple equilibrium points in the droplet’s motion for a Bur-
gers vortex.51 The full equations1d would produce yet more
complex droplet motion. To best understand results from the
complicated set of equations above, it is prudent to consider
a simplified version of the Burgers vortex. To simplify the
Burgers vortex, we consider its inviscid limit such that the
radial and axial flows vanishsof course, Stokes drag on the
droplets is not neglectedd. The flow is a vortex tube with a
horizontal axis, i.e., transverse to gravity; call the axial di-
rection as thez axis. The flow is two dimensional in the
x-y plane. The simplicity of the chosen flow allows clear
interpretation of droplet motion and collision. The vorticity
is

vz = v0e
−sr/r0d2. s22d

The other vorticity components are zero. Thus,v0 is the
vorticity at the center of the vortex;r is the distance from the
center;r0 is the parameter describing the size of the vortex.
The azimuthal component of velocity calculated fromv
= = 3u is

uw = − v0sr0
2/2rdf1 − e−sr/r0d2g. s23d

The other velocity components are zero. Flow properties that
appear in the equations to be solved that must be calculated
are

u, = u, = = u,
Du

Dt
, =

Du

Dt
, v, = v,

= = v,
Dv

Dt
, =

Dv

Dt
. s24d

In accordance withsA1d in the Appendix,= appears ins24d
where] /]x0 appears in the equations. Note that==u and
==v are third-order tensors. The air moves in circles around
the vortex center such that, when following the motion of an
air particle, the vorticity is constant; that is,

Dv

Dt
= 0, so =

Dv

Dt
= 0.

Now, v, =v, and==v are readily calculated froms22d, as
areu, =u, and==u from s23d. The contraction of the strain
rate with itself is obtained from=u; it is

s2 ; sij
sudsij

sud =
1

2
v0

2Fe−sr/r0d2 − S r0

r
D2

s1 − e−sr/r0d2dG2

. s25d

By comparison, Eq.s11d of Pumir50 for s2 is missing the
rightmost exponent 2, which results from a misprint because
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Fig. 12 of Pumir agrees withs25d. Let p be pressure divided
by air density. Poisson’s equation is=2p=svy

2/2d−s2; after
substitutings22d and s25d, Poisson’s equation is solved for
the pressure gradient=p. Only the radial component of the
pressure gradient is nonzero; it is given by

]p

]r
=

v0
2r0

4

4r3 s1 − e−sr/r0d2d2
. s26d

A further integration produces the same radial variation of
pressure as is given in Eq.s12d of Pumir50 that serves as a
check of the calculation. For our inviscid case, the Navier–
Stokes equation isDu /Dt=−=p, which determinesDu /Dt
from s26d; =Du /Dt in s24d is obtained by one further spatial
differentiation. Now all quantities ins24d have been deter-
mined.

In high Reynolds number turbulence, the viscous force
around strong vortex tubes is much less than the pressure-
gradient force.12 The inviscid Burgers vortex is a useful,
simple model.

A. Calculated flow and droplet parameters

With the Burgers vortex as a model, one can determine
Froude and Stokes numbers similar to those defined by
Davila and Hunt.52 Burgers49 gives the circulation asG
=pv0r0

2; from s23d the maximum air speed isU=0.32v0r0 at
r =1.1r0 and the maximum of ]uw /]r is s]uw /]rdmax

=0.11v0 at r =1.8r0; and froms26d the maximum of]p/]r is
s]p/]rdmax=0.11v0

2r0 at r =0.74r0. Restoring the tilde nota-
tion se.g., ũd to explicitly denote dimensionless quantities,
the term −BDũ /Dt̃ in s9d can be written as

− BDũ/Dt̃ = f1 + sg/2dg−1s0.11v0
2r0/gd

3fsDu/Dtd/s]p/]rdmaxg,

where the air acceleration is now scaled by its maximum
s]p/]rdmax. The factor 0.11v0

2r0/g=1.1U2/ r0g=11U3/Gg is
a Froude numberssee Davila and Hunt52d. For several
Froude numbers, Marcuet al.53 compute trajectories in coun-
terrotating vortices using Stokes drag and gravity as the
forces. If the rms acceleration in a cumulus cloud is of order
g/3 as suggested in the Introduction, then, using the prob-
ability density of LaPortaet al.,13 the probability of observ-
ing an acceleration equal to 0.11v0

2r0 is about unity for the
gentle vortex and greater than 10−2 for the violent vortex.
Despite relatively high probability, it is shown that the
smaller droplets are deflected away from the position where
]p/]r is maximum. This has important implications where
coalescence is prevalent.

Similarly, the third and fourth terms on the left-hand side

of s9d contain the second-order tensor=̃ũ, which can be

rescaled by the maximum of]uw /]r such that =̃ũ
=0.11v0tdf=u / s]uw /]rdmaxg. The coefficient 0.11v0td

=3.4tdU
2/G is a Stokes numberssee Davila and Hunt52d.

A relatively gentle vortex having maximum air speedU
of the order of the drift velocityUd is chosen for the first
calculation. A relatively strong vortex is chosen for the sec-
ond calculation; its vorticityv0 is ten times that of the gentle
vortex and its radiusr0 is smaller by a factor of 1/3. The
flow parameters, including the Froude number 11U3/Gg are
given in Table I. Consider cloud height of 3.1 km above
mean sea level and temperature of 275 K; these values de-
termine the viscosity of the airsn=0.19 cm2 s−1d. As men-
tioned in the Introduction, a typical mean energy dissipation
rate of cumulus clouds is 100 cm2 s−3, for which value the
Kolmogorov microscale ish=0.1 cm. If r0 is roughly 1 cm,
then the position of the maximum of the pressure gradient
from s26d, i.e., r =0.74r0, corresponds to the length scale of
the pressure gradient correlation at high Reynolds numbers
sabout 5h, see Fig. 1 of Hill54d. Therefore,r0=1 cm is cho-
sen for the gentle vortex. Table II gives the droplet drift
velocity, relaxation time, and Reynolds number,Rd;Uda/n,
for droplet radii of 40, 20, and 10mm. Numerically calcu-
lated history-force kernels of Lawrence and Mei36 differ
from the formula of Mei and Adrian.55 Nevertheless, a sub-
jective estimate of the time of transition between thet−1/2

decay at short times of the history integrand and the long-
time decay can be obtained by equating thet−1/2 and t−2

asymptotes in the formula of Mei and Adrian.55 Using values
from Table II for velocityUd and Reynolds number 2Rd for
equating those two asymptotes gives the times of transition
to be roughly 10−2td, td, and 50td for 40 mm, 20mm, and
10 mm droplets, respectively. Thus, the history integral is
overestimated ins1d for 40 mm droplets. From the value
Rd=0.42, the drag is underestimated by the Stokes drag in
s1d by about 15% for the 40mm droplets, but is accurate for
the smaller droplets.

A droplet remains motionless if it is brought to rest at an
equilibrium point where the sum of all forces on it vanishes.

TABLE I. Flow parameters: left to right, maximum vorticity, vortex radius,
maximum azimuthal speed, and Froude number. Gentle vortex, second row;
strong vortex, bottom row.

v0 ss−1d r0 scmd U scm s−1d 11U3/Gg

18 1 5.7 0.036

180 1/3 19 1.2

TABLE II. Droplet parameters: left to right, radius, drift speed, relaxation
time, Reynolds numberRd;Uda/n.

a smmd Ud scm s−1d td ssd Rd

40 20 2.1310−2 4.2310−1

20 5.0 5.2310−3 5.3310−2

10 1.3 1.3310−3 6.8310−3

TABLE III. Stokes number and equilibrium positions. Gentle vortex: second
and third columns. Strong vortex: fourth and fifth columns.

a smmd 3.4tdU
2/G requil/ r0 3.4tdU

2/G requil/ r0

40 4.0310−2 None 4.0310−1 None

20 1.0310−2 0.71, 1.7 1.0310−1 0.17, 6.0

10 2.5310−3 0.15, 6.9 2.5310−2 0.043, 23
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Neglecting the history integral, spin deflection, and initial
conditions, one finds that, for the present flow, the equilib-
rium points are close to the horizontal axis that passes
through the vortex center. To excellent approximation, the
equilibrium points are on that axis at positions where the
flow velocity is upward and equal toUd. For a=40 mm, Ud

exceeds the maximum air speedU of both the gentle and
strong vorticesssee Tables I and IId such that no equilibrium
point exists. Our smaller droplets have two equilibrium
points whose distances from the center of the vortex,
requil/ r0, are given in Table III. The Stokes number discussed
above, i.e., 3.4tdU

2/G, is also given in Table III.

VII. GENTLE VORTEX

A. Droplet trajectories and concentrations

Figure 1 shows trajectories of droplets of radius 10mm
which are falling from their initial points at the top of the
figure. It is useful to think of the trajectories as potential
trajectories that may be taken by droplets starting at random
initial times and positions. On the top graph in Fig. 1, the
speed of the droplets is indicated in color and a droplet’s
velocity vector is the unit tangent vector to the trajectory
multiplied by the droplet speed. At the top of the top graph in
Fig. 1, where the dominant forces are gravity and viscous

FIG. 1. sColord. Trajectories of droplets of 10mm ra-
dius are shown for the gentle vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined in s27d is in color. Vortex center is marked
by 1.
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drag, the color indicates the drift speedUd given in Table II.
The slowing of droplets to the right of the center is caused by
the updraft there, and the increased speed to the left of the
center is caused by the downdraft. For the 10mm radius
droplets, the bottom graph in Fig. 1 shows the same trajec-
tories as in the top graph, but the color quantifies the con-
centration change defined by

fNsx,td/N0 − 1g. s27d

There is zero concentration change at the top of the graph. A
cross marks the vortex center. Below the vortex center there
is a concentration enhancement on the trajectories that pass
left of the vortex center and a depletion for those that con-
tinue downward to the right of vortex center.

Figures 2 and 3 are the same type as Fig. 1, but for
20 mm and 40mm radius droplets, respectively. Again, the
colors at the top of the top graph indicate the drift speedsUd

given in Table II, and there is zero concentration change at
the top of the bottom graph. There are no equilibrium points

FIG. 2. sColord. Trajectories of droplets of 20mm ra-
dius are shown for the gentle vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined in s27d is in color. Vortex center is marked
by 1.
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for the 40mm radius droplets, so the droplets can fall
through any point in Fig. 3sunlike in Figs. 1 and 2d. In Fig.
3 there is a concentration depletionsat most 11%d below the
center of the vortex with an enhancementsto almost 4%d at
both rightward and leftward of the depletion.

The axes in Figs. 1–3 are in centimeters andr0=1 cm
such that the axes can be considered dimensionless, i.e.,x/ r0,
y/ r0 sthe vertical axis is compressed by about a factor of 2
relative to the horizontal axisd. Because the same spatial do-
main is shown in Figs. 1–3, it is evident that as the droplet
size increases, there is a decrease in the size of the region in
which the vortex has a strong influence.

At the rightmost equilibrium pointssee Table IIId, trajec-
tories split into those that go rightward and those that go
leftward. Falling from above, 10mm and 20mm radius
droplets are excluded from an oblong region in Figs. 1 and 2;
that region is leftward of the rightmost equilibrium point
listed in Table III. Droplets exist in that region only if they
are there initiallysalthough, in unsteady flow, droplets could
enter a region that is later excluded because of vortex inten-
sificationd; those trajectories are not part of this study. Fung56

shows particle trajectories for inertial particles in the ex-
cluded region and their residence times therein. Below and to
the right of the rightmost equilibrium point, the excluded

FIG. 3. sColord. Trajectories of droplets of 40mm ra-
dius are shown for the gentle vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined in s27d is in color. Vortex center is marked
by 1.
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region extends into a narrow gap between the trajectories
that sweep around the vortex and those that fall rightward.
This gap, in which there are no trajectories, is discussed in
detail by Davila and Hunt52 and is therefore not emphasized
here. The gap becomes evident when many trajectories are
calculated that pass close to the rightmost equilibrium
point.52 An aspect of the gap is the pileup of trajectories on
the leftward side of the gap which results in the concentra-

tion increase there that is evident in Figs. 1 and 2; a lesser
concentration decrease is seen on the rightward side of the
gap.

B. Geometric collision rates

Now that we have concentrations and relative velocities,
we can calculate geometric collision rates froms14d; for dis-

FIG. 4. sColord. For the gentle vortex case, collision
rates of droplets of radii 10 and 20mm are shown in
color on the trajectories of the 10mm droplets. Vortex
center is marked by1.

FIG. 5. sColord. For the gentle vortex case, collision
rates of droplets of radii 10 and 40mm are shown in
color on the trajectories of the 10mm droplets. Vortex
center is marked by1.
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parate particle sizes the contribution ofs21d is negligible. For
the gentle vortex case, the collision rates are shown in color
in Figs. 4–6 for binary collisions of droplets of radius 10mm
with those of 20mm, 10mm with 40 mm, and 20mm with
40 mm, respectively. The collision rate can be calculated
only where both sizes of droplets have a trajectory. Since the
smaller droplet has trajectories in a lesser volume than the
heavier droplet, the collision rates are shown in Figs. 4–6
superimposed on the trajectories of the smaller of the two
droplets. Concentrations and velocities of the larger droplet
are interpolated to the smaller’s trajectories. The collision
rate has units of 10−6 s−1 cm3 because it is normalized by
both initial concentrations. When interpreting the collision
rates, keep in mind that in a cloud that will soon produce
rain, droplets of radius 10mm are about 100 times more
numerous than 20mm droplets, and 20mm droplets are per-
haps 1000 times more numerous than 40mm droplets. At the
top of Figs. 4–6 the collision rate is dominated by the classic
mechanism of the larger droplet overtaking the smaller be-
cause of the difference in their drift velocitiesUd. Nearer to
the vortex center, below it, and near the gap, one can see the
effect of the concentration change of both droplets as well as
that of their relative velocity. In Fig. 2, the lower end of the
20 mm droplet’s trajectory that passed almost through the
vortex center shows increased concentrations, as do trajecto-
ries at near left of that trajectory; these increases are reflected
in the increased collision rates at the corresponding positions
in Fig. 4, and similarly in Fig. 6. The depletion in concen-
tration below the vortex center for the 40mm droplets in Fig.
3 is reflected in the decrease of the collision rates at the
corresponding spatial positions in Figs. 5 and 6. Below the
vortex center in Fig. 1, there is increased concentration of the
10 mm droplets leftward of the gap and decreased concen-
tration rightward of the gap. This is reflected in the collision

rates in Figs. 4 and 5. Clearly, spatial variation of relative
velocity also modulates the collision rates in Figs. 4–6.

VIII. STRONG VORTEX

A. Droplet trajectories and concentrations

To better show details near the vortex center for the case
of the strong vortex, the vertical axes in the figures for the
strong vortex case are limited to the range 7–27 cm,
whereas the figures for the gentle vortex case above show the
full computation range of 20–220 cm. Also to better show
details, the horizontal range is reduced for the 10mm drop-
lets relative to the gentle vortex figures, and it is yet further
reduced for the 20 and 40mm droplets. A cross marks the
vortex center. As in the gentle vortex figures, the axes are in
centimeters, but nowr0=1/3 cm such that the axes can be
considered dimensionless in the formx/ s3r0d, y/ s3r0d.

For the case of the strong vortex, the top graph in Fig. 7
shows trajectories of droplets of radii 10mm with color in-
dicating droplet speed, and the bottom graph in Fig. 7 shows
concentration change as defined ins27d. Figure 7 looks sur-
prisingly similar to Fig. 1. The reason is thatv0 is ten times
larger for Fig. 7 relative to Fig. 1, butr0 is three times
smaller. The rightmost equilibrium point from Table III is at
horizontal position 6.9r0=6.9 cm in Fig. 1 and at 23r0

=7.7 cm in Fig. 7; the fact that the equilibrium points are of
similar value causes the similar appearance of those figures.
In units of vortex radiusr0, the trajectories are roughly 3.3
times further from the vortex center in Fig. 7 as compared to
Fig. 1.

For the 20mm droplets, the trajectories and velocities
are shown in the top graph in Fig. 8, and concentration
change is in the bottom graph in Fig. 8. Note that the hori-
zontal range in the top graph is25–7 cm but only22–4.6

FIG. 6. sColord. For the gentle vortex case, collision
rates of droplets of radii 20 and 40mm are shown in
color on the trajectories of the 20mm droplets. Vortex
center is marked by1.
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cm in the bottom graph for the purpose of better showing the
concentration change. The existance of the gap is evident in
Fig. 8. Comparison of Figs. 2 and 8 shows a much larger
excluded region and gap for the strong vortex case in Fig. 8.
Also, the maximum concentration change and maximum
speed are greater in the strong vortex case.

For the 40mm droplets, extra trajectories are shown to
better display details in Fig. 9 because the narrower range of
the horizontal axiss22–2.5 cmd makes the trajectories ap-
pear further apart. Although there is no excluded region or
gap in Fig. 9, there is one crossing of trajectories. The range
of speeds in Fig. 9 is significantly greater than for the gentle

vortex case in Fig. 3; a similar observation regarding the
range of concentration changes is obtained by comparing
Fig. 9 with Fig. 3. This results from the 40mm droplets
interacting with the middle of the vortex. In contrast, the 10
and 20mm droplets are excluded from the middle of the
vortex.

B. Geometric collision rates

The collision rates are given in Figs. 10–12 for binary
collisions of droplets of radius 10mm with those of 20mm,
10 mm with 40 mm, and 20mm with 40 mm, respectively.

FIG. 7. sColord. Trajectories of droplets of 10mm ra-
dius are shown for the strong vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined ins27d is in color. The extent of the horizontal
axis is reduced relative to the top graph to better show
the concentration change. Vortex center is marked
by 1.
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For the same reasons given regarding Figs. 4–6, the collision
rates are shown in Figs. 10–12 in color superimposed on the
trajectories of the smaller of the two droplets. In Fig. 10, the
zone of large collision rate is dominated by the concentration
increase of the 20mm droplets near the left side of their gap;
this concentration increase is shown in Fig. 8. Similarly, the
variation of the concentration of the 40mm droplets in Fig. 9
in the region that is below and to the right of the vortex
center is seen to dominantly modulate the values of collision
rates in Figs. 11 and 12. The large variation of droplet veloc-
ity of the 40mm droplets seen in Fig. 9 occurs mostly in the

excluded region of the smaller droplets; hence, those velocity
variations have little effect on the collision rates in Figs. 11
and 12. Comparing the gentle and strong vortex cases, there
is a greater range of collision rates in the strong vortex case.
Specifically, for the collision of droplets of radius 10mm
with those of 20mm, the range of collision rates is
s1 to 1.4d310−4 s−1 cm3 for the gentle vortex case in Fig. 4
as compared tos1 to 5d310−4 s−1 cm3 in the strong vortex
case of Fig. 10. Similarly, for collisions of 10mm with
40 mm droplets, the range of collision rates iss13 to 16d

FIG. 8. sColord. Trajectories of droplets of 20mm ra-
dius are shown for the strong vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined ins27d is in color. The extent of the horizontal
axis is reduced relative to the top graph to better show
the concentration change. Vortex center is marked
by 1.
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310−4 s−1 cm3 versus s3 to 30d310−4 s−1 cm3, and is
s14 to 22d310−4 s−1 cm3 versus s6 to 120d310−4 s−1 cm3

for collisions of 20mm with 40 mm droplets. The figures
show the spatial variation of collision rates, but the results do
not lend themselves to determination of a single number such
as the space-averaged collision rate. This is because space-
averaged rate depends on the volume of the average; it must
approach the gravitationally induced collision rate as the vol-
ume increases.

IX. APPROXIMATE EQUATIONS OF MOTION

The limits of applicability of approximations to the
equations that we have solved are discussed next. By graph-
ing the terms in the differential equations, we determine un-
der what conditions some of these terms may be neglected.
Neglect of these terms can simplify the equations but may or
may not simplify the computation. The spin deflection term
in s9d, i.e.,DS3 sw+ ĝd, is orders of magnitude smaller than
the other terms. This term is always negligible in the present

FIG. 9. sColord. Trajectories of droplets of 40mm ra-
dius are shown for the strong vortex case. Top graph:
Speed is in color. Bottom graph: Concentration change
defined in s27d is in color. Vortex center is marked
by 1.
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calculationssperhaps not so in all possible calculationsd. Ne-
glect of the spin deflection is a significant simplification to
the computation becauses10d and sA3d need not be solved,
and the air-flow quantities within these equations need not be
evaluated, but there is negligible savings of computation
time.

A. Approximate equations of motion: Gentle vortex

The equations of droplet motions9d are solved in two-
dimensionals2Dd Cartesian coordinates: horizontal denoted
by unit vectorx̂ or subscriptx, e.g.,Vx= x̂ ·V, and vertical
denoted by unit vectorŷ or subscripty. Note thatŷ is oppo-

FIG. 10. sColord. For the strong vortex case, collision
rates of droplets of radii 10 and 20mm are shown in
color on the trajectories of the 10mm droplets. Vortex
center is marked by1.

FIG. 11. sColord. For the strong vortex case, collision
rates of droplets of radii 10 and 40mm are shown in
color on the trajectories of the 10mm droplets. Vortex
center is marked by1.
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site to the direction of gravity;ŷ=−ĝ. The horizontal com-
ponent of terms in the differential equations9d are shown for
the gentle vortex in Fig. 13; top, middle, and bottom graphs
in Fig. 13 are for droplet radii 10mm, 20mm, and 40mm,
respectively. The terms in the differential equation are shown
for the trajectory that passes closest to the vortex center. The
abscissa is the time in units of the droplet relaxation timetd

since the beginning of the trajectory. For the 10mm radius,
only the middle of the trajectory is graphed to avoid com-
pressing that portion into a small fraction of the graph. The
vertical components of terms ins9d are qualitatively similar
to the horizontal components; they differ in details, of
course. Similar conclusions are obtained when other trajec-
tories are studied, including the trajectories that remain right-
ward of the rightmost equilibrium point. Because the terms
vary by orders of magnitude along the trajectory, their abso-
lute value is graphed on a logarithmic scale; those times
when a term changes sign are seen as abrupt minima in its
curve.

For the 40mm droplets, the two terms −BDu /Dt and
−sw+ ĝd ·=u closely cancel each other except near the center
of the trajectory; therefore, an extra curve equal to their sum,
ux̂ ·s−BDu /Dt−sw+ ĝd ·=udu, is shown in Fig. 13. For this
case, the significance of the history integral, as well as the
other terms, can be judged relative to −BDu /Dt−sw
+ ĝd ·=u rather than to −BDu /Dt and −sw+ ĝd ·=u sepa-
rately. One sees in Fig. 13 that the history integral is an
important term for the 40mm droplets except when the drop-
let is close to the vortex center. The history integral is seen to
be significant all along the trajectories of the 10 and 20mm
droplets. The hysteresis effect of the history integral is seen
to cause an asymmetry to the curves plotted versus time in
Fig. 13.

The termdw /dt becomes rapidly negligible as droplet

radius decreases; this is true for all trajectories of 10 and
20 mm dropletssfor this gentle vortex flow, of coursed; that
fact is shown forudwx/dtu in Fig. 13 and is also true for the
vertical componentudwy/dtu. This means that, for a small
enough radius,dw /dt can be neglected within the history
integral as well as on the left-hand side ofs9d; this is true for
the gentle vortex case for 10 and 20mm droplets, but not
40 mm droplets. Then, neglectingdw /dt, a simplified equa-
tion of motion can be solved, namelyfafter multiplication of
s9d by 21g,

0 . Aw + B
Du

Dt
+ sw + ĝd · = u + CE

−`

t

dt8

3fsw + ĝd · = ugst − t8d−1/2. s28d

The scaled version ofs7d is dw /dt=dV /dt−Du /Dt−sw
+ ĝd ·=u; since Fig. 13 and similar results for the vertical
component show thatdw /dt may be neglected relative to
BDu /Dt and sw+ ĝd ·=u or their sum, we have

dV

dt
.

Du

Dt
+ sw + ĝd · = u s29d

for the 10 and 20mm droplets. This is not true in Fig. 13 for
the 40mm droplets. Then, for the above limited cases, sub-
stitution ofs29d in s28d shows thats28d can also be written as

dV

dt
. − w − CE

−`

t

dt8sw + ĝd · = ufst − t8d−1/2g , s30d

whereA.1 andB.1 were used. For purposes of reducing
the difficulty of solving the equations,s30d is not simpler
than s28d. The history integral is not negligible ins30d for
either the horizontal or vertical components; thuss30d gives
dV /dtÞ−w, which, when unscaled, is

FIG. 12. sColord. For the strong vortex case, collision
rates of droplets of radii 20 and 40mm are shown in
color on the trajectories of the 20mm droplets. Vortex
center is marked by1.

037103-17 Geometric collision rates and trajectories Phys. Fluids 17, 037103 ~2005!

Downloaded 23 Jan 2006 to 140.172.36.54. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



FIG. 13. sColord. For the gentle vortex case, the abso-
lute magnitudes of the horizontal component of terms in
s9d are shown vst /td for the trajectory that passes clos-
est to the vortex center. Solid black:udwx/dtu. Dotted
red: u−Awxu. Short-dashed orange:u−BDux/Dtu. Dash-
dot green:u−sw+ ĝd ·=uxu. Dash-dot-dot-dot light blue:
history integral. Long-dashed dark blue:
u−BDux/Dt−sw+ ĝd ·=uxu. Text states which trajectory
was used.
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md
dV

dt
Þ smd − mfdg − 6pamsV − ud sunscaledd. s31d

It is significant thats31d with Þ replaced by5 does appear
ubiquitously in the literaturese.g., as described by Kimet
al.39d. Use ofs29d and Fig. 13 shows that the history integral
should not be neglected relative tomddV /dt. Note that the
above approximations are not true for the 40mm droplets
because Fig. 13 shows that only the spin deflection term in
s9d can be neglected for the horizontal component, and the
same is true for the vertical component.

The magnitudes of terms in Fig. 13 have more than just
relative meaning. Return to the scaled variable notationsi.e.,

˜d and note that the maximum values ofu−Awx̃u in Fig. 13
increase for the horizontal-component equation from about
0.006 to 0.02 as droplet radii decrease from 40mm to

10 mm. Not shown is the corresponding decrease ofu−Awỹu
as droplet radius decreases by about 0.03 to 0.006. All the
other trajectoriessthat are not shown in the figuresd have yet

smaller maxima inu−Awx̃u and u−Awỹu. The fact thatu−Awỹu
&0.03 is equivalent to the fact that the sum of all terms other

than −Awỹ in the vertical component ofs9d equals −Awỹ such

that u−Awỹu is small compared to unity. The scaled version of

s6d is −w̃= ĝ−sṼ − ũd; becauseA.1, it follows that

− Awỹ . − 1 − sVy − uyd/Ud.

Because the left-hand side has magnitude 0.03 or less and the
right-hand side contains unity, the two terms on the right-
hand side cancel to about 3% or less. That is, to an error of
3% or less

0 . Ud + sVy − uyd sunscaledd. s32d

There is no corresponding approximation for the horizontal
componentVx other thanuVx−uxu&0.03Ud. Of course,s32d
is the approximation thatVy is the drift speedUd relative to
the vertical component of the local flowuy. The facts that the
slip-velocity’s vertical componentVy−uy differs little from
−Ud and that uVx−uxu&0.03Ud supports use ofUd in our
definition of droplet Reynolds number, i.e.,Rd;Uda/n.

As radius is reduced, computation time fors9d increases
greatly for two reasons. First, the droplets fall more slowly
such that the time for them to fall out of the computation
volume increases, as evidenced by the larger values on the
abscissa of the top graph in Fig. 13 as compared to the bot-
tom graph. Second, a greater number of time steps pertd is
required for accuracy, and the integrand of the history inte-
grand must be stored for each time step. Consequently, use of
s32d becomes useful and becomes more accurate as droplet
radius is reduced much below 10mm. Approximations have
not been used in this study.

The above agrees in detail with Manton’s57 scaling of the
equation of motion and its approximation, except that his
neglect of the history integral is contradicted.

B. Approximate equations of motion: Strong vortex

The horizontal component of terms in the differential
equations9d are shown for the strong vortex in Fig. 14 for

droplet radii 10mm, 20mm, and 40mm, respectively. The
trajectories used for Fig. 14 are second to the last trajectory
that passes leftward of the vortex center in Fig. 7sfor the
10 mm dropletsd and in Fig. 8sfor the 20mm dropletsd. The
trajectory used for the 40mm droplets in Fig. 14 is the
twelfth from the left of the closely spaced trajectories in Fig.
9; it is the third trajectory that turns at the right side of the
vortex center. Similar conclusions are obtained when other
trajectories are studied. Similar to the gentle vortex case in
Fig. 13, the absolute values of the terms are graphed on a
logarithmic scale; as before, the vertical components of
terms ins9d are qualitatively similar to the horizontal com-
ponents. Only the middle of the trajectories are graphed in
Fig. 14 to avoid compressing that portion into a small frac-
tion of the graph. As in the gentle vortex case, the spin de-
flection term ins9d, i.e.,DS3 sw+ ĝd, is orders of magnitude
smaller than the other terms and is therefore far below the
bottom axes on Fig. 14; that term is always negligible. For
the 40mm radius, an extra curve equal toux̂ ·s−BDu /Dt
−sw+ ĝd ·=udu is shownsthe long-dashed curved, but unlike
the gentle vortex case, the two terms −BDu /Dt and −sw
+ ĝd ·=u closely cancel each other only on the upper part of
the trajectory.

For the 10mm radius, the entire horizontal extent of the
top graph in Fig. 14 is remarkably similar to the middle
one-third of the gentle vortex case in Fig. 13.sMore of the
trajectory is shown in the latter figure.d This similarity cor-
responds to the similarity in the top graphs of Figs. 7 and 1,
which was explained in Sec. VIII A; briefly, the 10mm drop-
lets are excluded from such a large central region of the
strong vortex that the flow they encounter is relatively qui-
escent. One concludes that the approximations to the differ-
ential equations deduced above for the 10mm droplets in the
gentle vortex case also apply to the 10mm droplets in the
strong vortex case. Specifically,s28d, s30d, ands32d apply.

For the 20mm droplets, comparison of Fig. 14 for the
strong vortex case with the gentle vortex case in Fig. 13
shows that the time-derivative termdw /dt is not negligible
in the strong vortex case becauseudwx/dtu rises to within
about 1/5 or the largest term in Fig. 14 as compared to about
1/30 of the largest term in Fig. 13; although not shown, the
same is true for the other componentudwy/dtu. Also, the term
u−Awxu is larger in the strong vortex case. In thea=20 mm
graph in the middle of Fig. 14, the maximum ofu−Awxu is
0.32 whereVx−ux=0.32Ud. One maximum ofu−Awyu snot
shownd is whereVy−uy=−0.47Ud and another is whereVy

−uy=−1.24Ud; in contrast,s32d givesVy−uy=−Ud. Follow-
ing the discussion in Sec. IX A, one sees that none of the
approximationss28d, s30d, ands32d applies to the strong vor-
tex case for 20mm droplets. That is, except for the neglect of
the spin deflection termDS3 sw+ ĝd, Eq.s9d must be solved.

For the 40mm droplets, the above conclusions regarding
the 20mm droplets are even more strongly confirmed. Spe-
cifically, in thea=40 mm graph at the bottom of Fig. 14, the
time-derivative termudwx/dtu has the largest maximum value
of all terms, namely, 0.6. The vertical componentudwy/dtu
also has the largest maximum value, namely, 0.6. The maxi-
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FIG. 14. sColord. Same as Fig. 13 except for the strong
vortex case.
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mum of u−Awxu is 0.44, whereVx−ux=0.44Ud. The maxi-
mum of u−Awyu is where Vy−uy=−0.47Ud, whereass32d
givesVy−uy=−Ud.

C. Approximations for the other equations

Equationss10d for S, sA2d for ]w /]x0, and sA3d for
]S/]x0 can be studied by the same method as used above.
For sA2d and sA3d one finds that their important terms are
those that correspond to the terms that dominate in the equa-
tions from which they were derived, namely,s9d and s10d,
respectively.

Now considers10d. Recall thatDv /Dt=0 in our flow.
For spinS the three nonzero terms ins10d are of the same
order of magnitude for droplets of 40mm radiussdS/dt is
the smallest of the terms at most pointsd, but dS/dt quickly
becomes smaller with decreasing radius, and it is negligible
for 10 mm radius. The 20mm droplets pass through and
close to the vortex center where vorticity is large in the
gentle vortex case; nevertheless,dS/dt is not more than
about 2% of the other terms. Thus, for the smaller droplets
s10d becomes the algebraic equationS=s3/20dsw+ ĝd ·=v.
Reverting to the tilde notations̃ d for scaled variables and

using uw̃+ ĝu.1, uS̃u.0.15ucosswddṽ /dr̃u, where w is the
angle betweenw̃+ ĝ and the radial direction. For our vortic-

ity s22d, we have uS̃u.0.3vsrdtd,dr / r0
2ucosswdu; unscaled,

this gives uSu / fvsrd /2g.0.6,dr / r0
2ucosswdu. In Fig. 1 for

10 mm radius, for example, on the trajectory closest to the
vortex center, we haver / r0.2.5 srecall r0=1 cmd such that
uSu / fvsrd /2g,3310−3. Similarly, at any point on trajecto-
ries of the 20mm droplets where vorticity is large, e.g.,
r / r0,1 in Fig. 2, we haveuSu / fvsrd /2g,2310−2. Recall-
ing the definitionS;V−v /2 and thatvsrd /2 is the magni-
tude of the angular velocity of the flow, one sees that 10mm
and 20mm droplets are spinning with the flow to excellent
approximation. Further, atr / r0.2.5, the largest magnitude

of the term −DS̃3 sw̃+ ĝd in s9d for 10 mm radius is

about DuS̃u.7310−4f0.75 exps−2.52dgv0td,d/ r0.4

310−11, which explains why −DS̃3 sw̃+ ĝd is negligible and
why its curve does not appear in the figuressfor the two
larger droplets, use scaling withtd,dd.

X. DISCUSSION AND CONCLUSION

The equations of motion of water droplets in air were
calculated to determine trajectories, velocities, and the
change of concentration caused when droplets fall into a vor-
tex. Droplet radii were chosen on the basis of relevance to
rain initiation in atmospheric clouds. The resultant geometri-
cal collision rates show the effects of both the relative veloc-
ity of droplets as well as their concentrations. Relative to
gravitationally induced collision rates, locations of both in-
creased and decreased collisions are shown. The collision
rates do not lend themselves to being reduced to a single
number for the case presented; for example, a volume aver-
age depends on the volume used in the average.

Approximate equations are determined on the basis of
the relative values of terms in the differential equations as
functions of position on trajectories. It must be kept in mind

that the validity of approximations depends on the specific
flow and droplet radii studied here. Other flows and radii
require further study. For both the gentle and strong Burgers
vortex cases studied here, the spin deflection term ins9d is
always negligible. For ancillary equationssA2d and sA3d,
one finds that their important terms are those that correspond
to the terms that dominate in the equation from which they
are derived.

Approximations applicable to the equation of droplet ve-
locity s9d were studied. First consider the case of the gentle
vortex. For the 10 and 20mm droplets, but not the 40mm
droplets, the angular velocity of the droplets is approxi-
mately equal to the angular velocity of the air. The history
integral is an important term for all three droplet radii: 10,
20, and 40mm. The termdw /dt becomes rapidly negligible
as droplet radius decreases. Neglectingdw /dt gives the ap-
proximate equation of droplet motions28d, which can be
approximately written ass30d; those equations are valid for
10 and 20mm droplets, but not for 40mm droplets. In par-
ticular, s31d is obtained; that is, the equation of motion most
frequently used is inaccurate because the history integral is
not negligible. The importance of the history integral, even
for smallmf /md, is in agreement with calculations by Arme-
nio and Fiorotto.29 To an accuracy of about 3%, the approxi-
mation s32d applies.

Now consider the strong vortex case for approximation
to s9d. For 10mm droplets, the same approximate equations
are valid in the strong vortex case as in the gentle vortex
case, namely,s28d, s30d, and s32d; this fact is related to the
extent of the excluded region such that 10mm droplets do
not enter the region of strong vorticity. Unlike the gentle
vortex case, those approximations are not valid for 20mm
droplets. None ofs28d, s30d, and s32d is valid for 40mm
droplets in the strong vortex case. The history integral cannot
be neglected.

It is preferable to base our understanding of the impor-
tant terms in the equations of motion on data such as Figs. 13
and 14 as compared to generalized flow parameters like the
Froude and Stokes numbers in Tables I and III, which are
based on the maximum values of acceleration and velocity
gradient. A case in point is that the relative values of

u−BDu/Dtu and u−sw̃+ ĝd ·¹̃ũu in Fig. 1 are opposite to the
expectation based on the Froude and Stokes numbers be-
cause, for 10mm radius the trajectory closest to the vortex
center lies significantly beyond ther position of those
maxima of acceleration and velocity gradient.

The computations presented here suggest further inves-
tigations. The radial inflow of the Burgers vortex could be
included. This case would be especially different for the
10 mm droplets in the strong vortex because the smaller
droplets will be swept closer to the vortex center by the
inward flow, and there would be a smaller excluded region.
Calculations could be performed using other droplet sizes
and other strengths of vortices. Droplets’ motion in other
flows could be calculated, for example, strained-spiral vorti-
ces and nonstationary flows including DNS of turbulence.
The present computer program is applicable to 3D nonsta-
tionary flows. One could study droplets within the excluded
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region. This is a more difficult computation because the vor-
tex must be nonstationary and increasing in maximum vor-
ticity such that droplets are entrained into the volume that
will become the excluded region. Of particular interest for
that case is the exit of the droplets through the gap as well as
the collision rates of equal-sized droplets.

The present calculation is for droplets falling into a Bur-
gers vortex from above; the flow deflects 10 and 20mm
droplets from positions where the accelerations are greatest,
despite the fact that those maximum accelerations have prob-
ability greater than 10−2 sSec. VI Ad. Therefore, the greatest
flow accelerations experienced by droplets in a cloud are
within the excluded region of this study. Vortices of greater
maximum acceleration and lesser probability of occurrence
might be more significant to the coalescence of droplets, par-
ticularly so for droplets within the excluded region. The
present study suggests that acceleration-induced coalescence
is most significant for droplets that are entrained into or
formed within an intensifying vortex as distinct from falling
toward the vortex.

Calculation of geometric collision rates in vortices is a
step toward understanding droplet coalescence in liquid
clouds. Another part of the understanding of coalescence is
determining the collision efficiencyE, which is the ratio of
the number of collisions to the number of geometric colli-
sions. Droplets falling because of gravity in still air haveE
,1 because squeezing flow58 causes a repulsive force.58

Rogers and Yau7 tabulateE for that case:E,0.053 for drop-
lets of radius 10mm colliding with smaller droplets,E
.0.17 for 10mm and 20mm droplets,E.0.55 for 10mm
with 40 mm, andE.0.75 for 20mm with 40 mm. Instead of
the still-air model, the hydrodynamic interaction of droplet
pairs of various radii within local vorticity and strain-rate
fields must be determined. For this case, the collision effi-
ciency might be much different as compared to the still-air
model. Existing empirical probability density functions of
vorticity17 and acceleration14 in high Reynolds-number tur-
bulence are also part of the calculation of collision kernels
for use in understanding rain initiation from liquid-water
clouds.
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APPENDIX

The partial derivative of any flow quantity evaluated at a
point on the trajectoryxstd, be it u, Du /Dt, v, Dv /Dt, etc.,
is obtained from the spatial derivatives of the flow quantities,
e.g., foru:

]u

]x0
= S ]x

]x0
·

]

]x
Du =

]x

]x0
· = u. sA1d

Differentiating s11d gives the equation for]x /]x0:

d

dt

]x

]x0
=

]u

]x0
+

]w

]x0
=

]x

]x0
· = u +

]w

]x0
.

Since this equation requires]w /]x0, we obtain an equation
for ]w /]x0 by differentiatings9d:

d

dt

]w

]x0
= − A

]w

]x0
− B

]

]x0

Du

Dt
−

]w

]x0
· = u − sw + ĝd

· =
]u

]x0
− CE

−`

t

dt8S d

dt8

]w

]x0
+

]w

]x0

· = u + sw + ĝd · =
]u

]x0
Dst − t8d−1/2 − DS

3
]w

]x0
− D

]S

]x0
3 sw + ĝd. sA2d

Since this equation requires]S/]x0, we obtain an equation
for ]S/]x0 by differentiatings10d:

d

dt

]S

]x0
= −

1

2

]

]x0

Dv

Dt
−

1

2

]w

]x0
· = v −

1

2
sw + ĝd · =

]v

]x0

−
10

3

]S

]x0
. sA3d

Replacing]x0 with ]y0 gives the equation set that yields
]x /]y0 for use in s13d. Thus, we have nine coupled first-
order differential equations for nine vectors. Those equations
must be solved simultaneously. For a three-dimensional flow,
there are 339=27 coupled equations for the nine vectors’
components. The initial condition for]x /]x0 is unity for the
component ofx that is the same Cartesian component asx0,
and is zero otherwise; likewise for the initial condition for
]x /]y0. The initial condition for]w /]x0 is obtained by op-
erating on the initial condition forw, i.e., s12d, with ] /]x0;
likewise for the initial condition for]w /]y0. SinceS=0 in
the initial plane, the initial condition for]S/]x0 is ]S/]x0

=0; also,]S/]y0=0. The history integral insA2d is zero from
t=−` to t= t0.
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