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SUMMARY

Inaccurate air-sea fluxes are a major source of error in ricedecean model simulations. The ocean is
a key actor in the climate system, and any estimation praeel@ading to improved geophysical forcing fields
is thus of potential benefit. Variational estimation methaan yield theoretically optimal corrections to any
model parameters, given appropriate observations of tearpstate. We have investigated the optimization of
air-sea forcing fields using a 4D-Var method applied to a Béudlantic configuration of the OPA ocean general
model. The ability of this assimilation system to improvienatological air-sea fluxes is examined in the idealised
context of identical twin data experiments. In particuleg, define the notion of parameter identifiability and try to
establish the identifiability of surface fluxes during thetaal summer. We first show that seasonal hydrographic
data can be used to identify the seasonal mean heat and &teshfluxes, separately or jointly, whereas they
are less effective at reconstructing intraseasonal \iittlatRetrieving the wind stress from hydrographic data
is a much more difficult task. Seasonal mean zonal stresseandperly recovered in the subtropical gyre and
in coastal upwelling areas, but the westerly winds are ewosly reconstructed. Furthermore, meridional stress
cannot be recovered, even partially. These results sugjggtsteasonal mean hydrological data are not effective
in constraining the seasonal mean wind stress field. Thessavestimation problem is ill-posed in the proposed
setting. A stronger result is that a perfectly known win@ssrfield can be remarkably degraded to balance a heat
flux estimation error. Limitations related to the presentfiguration are discussed, as well as extensions of our
conclusions to real data experiments.
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1. INTRODUCTION

The advent of satellites and worldwidie situ observation programs such as the
World Ocean Circulation Experiment (WOCE) has resulted large amount of data
over the last decade, which show that state-of-the-art noaiemodels often fail
to represent accurately reality. This is not acceptablendetstand the past ocean
circulation, and possibly to predict some components ahtdution, especially with a
view to climate monitoring.

The quality of a simulated ocean trajectory mainly depenmdthe model physics,
particularly its parametrisations of unresolved physjrakcesses, and on the accuracy
of both initial conditions and geophysical surface forcfigdds. Assimilation methods
have been developed which can take into account availatdesets to improve model
trajectories. For example, four-dimensional variatiomsdimilation (4D-Var) has been
used for many years in meteorology and oceanography to izgtimodel initial condi-
tions to give an improved fit to observations.

By contrast, air-sea surface flux optimisation remains mesk explored, espe-
cially in idealised contexts which allow us to clarify the tined’s strengths and limita-
tions in a perfectly known framework. The heat flux inverselyem is the best docu-
mented. Gaspaet al. (1990) estimated the turbulent heat fluxes using the ewoludf
the thermal content of a one-dimensional (1D) oceanic mixger model, as observed
with sea surface temperature (SST) data. The same 1D modalseal by Roquett
al. (1993) who implemented a 4D-Var scheme to estimate heat ftur femperature
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profile data. Yuan and Hsueh (1998) and Yuan and Rieneck@&3j28lso estimated
heat flux by assimilating SST data, with a 4D-Var algorithnplagal to a linear ther-
modynamical submodel. Zhat al. (2002) explored the ill-posed nature of this problem
by assimilating high frequency upper ocean temperatura idad different 1D model
to estimate heat forcing at various temporal resolutiormdérning the wind stress
estimation problem, Bonekangt al. (2001) showed that tropical wind stress could be
improved over a two month assimilation window by assimilgta dense temperature
dataset (Tropical Ocean-Atmosphere) using 4D-Var. Thaibated this result to the
fast equatorial dynamics. Recently, Stamraeal. (2002) estimated all air-sea fluxes
as well as initial conditions of temperature and salinitingghe 1992-1997 assimila-
tion window, by 4D-Var assimilation of Levitus monthly mehaydrography, Reynolds
monthly SST, and sea level anomaly maps in a global oceangearieulation model
(OGCM).

However, systematic twin data experiments have never bedormed to assess
how well air-sea fluxes may be recovered, either separatejyintly, via a 4D-Var
method applied to an OGCM. To explore this problem, we haweldped an ocean
4D-Var system aimed at improving air-sea fluxes by means efg@onal model-data
synthesis. In this paper, we explore the optimal results ¢ha be obtained from a
4D-Var estimation of air-sea fluxes, given agpriori knowledge of the sought after
fields, and by assimilation of simulated seasonal mean lgydphic data. Following
Navon (1997), any of the fluxes is said to be identifiable (of) thy the data if it
can be properly reconstructed. We begin to investigatetiftsility by exploring the
sensitivity of model counterparts of the observations tdase fluxes. The stronger
this sensitivity, the better their identifiability by thetdaMoreover, these experiments
provide insight into underlying physical processes by WWhite assimilation method
corrects air-sea fluxes to reduce model-data discrepancies

This paper is organized as follows. In section 2, we desdhieeSouth Atlantic
model configuration implemented for this study. The estiomgproblem and the assim-
ilation system are also described. A spin-up integratiothefmodel provides synthetic
(twin) data for the assimilation experiments. The twin data defined as a seasonal
mean of simulated model hydrology in order to mimic the infation content in avail-
able climatologies such as Reynaetdal. (1998).

In sections 3 and 4, we explore the extent to which forcingrim&tion can be
extracted from the data. Section 3 is devoted to the detatiomof thermohaline fluxes.
In section 4, wind stress is added to the control variableusraary and conclusions
are given in section 5.

2. METHOD AND MODEL

(@ Model configuration and spin-up.

Due to the high computational burden associated with 4Ds\varchose to concen-
trate on the South Atlantic basin. In the framework of the BRER modeling project,
a French contribution to WOCE, model configurations witliedtént spatial resolutions
have been implemented in the whole Atlantic domain from Agtiea to 70GN. The
OGCM OPA 8.1 was used Madext al. (1998). Details about the Atlantic configura-
tions can be found in CLIPPER (2001). In the present studylioited area model is
essentially a subdomain of the CLIPPER low resolution caméition. The horizontal
grid is a Mercator isotropic grid with resolutioi &t the equator. The meridional extent
of the domain ranges from 18, inspired from the MOCA model (Barniet al. 1998),
to 71°S, to avoid problems in the assimilation algorithm assedatith ice. The zonal



4D-VAR ESTIMATION OF AIR-SEA FLUXES 3

extent ranges from 72V to 31°E. The vertical grid has 43 geopotential levels with a
tight spacing (less than 15m) for 8 levels near the surface.

A horizontal Laplacian operator is used for lateral mixifigracers and momentum
(K, =2000 nt/s). The vertical mixing of momentum and tracers is cal@daising a
1.5 turbulent closure model based on a prognostic equaiicifoulent kinetic energy
(TKE) and a closure assumption for the turbulent lengthescéBlanke and Delecluse
(1993), Madeet al. 1998). A no-slip boundary condition is applied along thestlizes,
and non-linear friction is applied at the bottom.

Open boundaries are defined at Drake Passage and&tt®@ween Africa and
Antarctica. Because of the Antarctic Circumpolar Currék®C), with a transport of
the order of 140 Sverdrup (1 Sverdrapl0® m?/s), the choice of these boundaries is
extremely important for the circulation of the South Atlar{fTreguieret al. 2001)). We
preferred implementing a fixed open boundary condition (PB«ther than a radiative
boundary condition to avoid differentiating a thresholagass in constructing the
adjoint model. In contrast, the boundary at $6s modelled as a coastline surrounded by
a thick buffer zone (6 grid points, with relaxation timesgarg from 3 days to 100 days)
where water masses can be recycled. This choice is compaiiti the net northward
transport across the Atlantic, which is close to zero. A kimgsouthern boundary was
chosen at 77S for the same reason.

The surface forcing fields are derived from the European i€efar Medium-
Range Weather Forecasts (ECMWF) reanalysis ERA-15 (Gikbsah 1997, Garnier
et al. 2000). To reduce the dimensionality of the flux estimatioobpem, we define
the forcing fields by linear interpolation between monthlgan fields from an ERA-15
climatological yeari(e. 15 year mean).

The hydrological seasonal climatology of Reynaudl. (1998) is used to initialize
the model, and as relaxation fields in the buffer zones bliivgerpolation to the model
time. The Southern Hemisphere summer data serve as irotigitions, because other
seasons are worse sampled. This configuration has beersiggdor 9 years starting
from rest. During this spin-up, surface temperatures afiditi@s are relaxed toward
Reynaucet al. (1998) climatology to prevent surface fields from driftimg tmuch from
observed values. Figure 1 shows the resulting mean streaatidn, which is quite
similar to that obtained by Treguiet al. (2001) for a higher resolution configuration of
the global Atlantic basin. In particuliar this shows that oboice of a closed boundary
at 16’S is reasonable to the modeled basin.

(b) The 4D-Var assimilation system.

Following standard notations (lo=t al. 1997), we denot& the vector of model
initial conditions x* the corresponding background state, ghthe vector of space and
time distributed observations. 4D-Var aims at optimizingd®l input parameters such
as initial conditionsx to fit simultaneouslyi® andy® in a statistically weighted least
squares sense. This is achieved by minimizing a cost fumatibich takes the form:

700 = X~ TBGx—x) £ 3 S(rix(a) — D) R () )

Ts Josi

wheren is the number of time steps within the assimilation windei#; ) = M (¢;, 0)(x)
is the model state vector at tintg, obtained by integration of the direct mod#&l
(described above) from initial state= x(0) up to timet;. B(x, is the background error
covariance matrix, ang denotes the observation error covariance matrix, inctythe
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contribution from representativeness error (Lorenc 1986% the observation operator,
mapping the state vector space into observation space.ratiegt of the observational
cost function, needed to iteratively bring to zero the casicfion’s gradientv 7 (x),
makes use of the adjoint model ", whereM = (O M /0x)|x—x- is the tangent linear
(TL) model. The specific approach chosen in the OPA-VAR a#aiion system is of
incremental type (Courtiezt al. 1994, Courtier 1997). It is fully described in Weaegr
al. (2003) (WVA hereafter), and we recall briefly it main chasaidtics.

Assuming the required correction is small enough, one cagrate the increment
viathe TL modelinstead of integrating the updated controlmeay help of the full non-
linear modelM. The underlying assumption is known as the TL hypothesis. ddst
function is then approximate but quadratic, which ensuregkistence and uniqueness
of a minimum, and ensures numerical efficiency of the iteeatninimization algorithm.

The main drawback of this formulation is that model-datafitsisare linearly
approximated about the same background state. Coutied. (1994) suggested a
pragmatic approach for accounting for weak nonlinearitigsoccasionnaly updating
the reference trajectory during the minimization procébe operator andH (TL of
‘H) are then linearized about this new reference trajectdmg. dpdate of the trajectory
and the computation of the innovation vector are performethe outer loops, using
increments calculated within inner minimization loops.

In practice, the vertical physics in the direct model is difigal before linearization,
because the TKE algorithm is highly nonlinear and discarttirs. The vertical diffu-
sivities are held constant during the inner iterations, aredtaken from the reference
trajectories. A similar approximation was made by Yuan armehBcker (2003). Zhet
al. (2002) discuss higher order variants of this approximagiod show that such mod-
ified TL models allow us to improve predictability by help aié¢arized dynamics and
thus to enlarge the assimilation window. They indeed shawttie linearized physical
processes may fail to represent major feedback loops — amtiated saturation with
time — between the nonlinear processes, thus leading tonexpial growth of initial
perturbations.

() South Atlantic configuration of the assimilation system.

(i) Climatological observation operator.

This investigation uses idealized observations. Howeter, dataset we would
ultimately like to assimilate consists of the Reynaatdal. (1998) Atlantic seasonal
climatological atlas of temperature and salinity, whichrépresentative of a mean
historical seasonal cycle of the basinNfdenotes the number of time steps over one
season, and if we assume to simplify notations that all si@t@bles are observed, the
seasonal atlas incremental cost function takes the form:

N T
joz'nc((sx) — % { (N;H Z M (t;,0) 5X> - d} R {3 (2a)

al R™!d
whose gradient reads:V.7;"“(dx) = >~ M(;,0)" < > : (2b)
=0

N+1

The latter expression shows that the adjoint forcing assediwith the climatological
innovationd = y° — 52 SNV, xb(t;) is a constant fraction of the weighted innovation.
Note that the observational constraint requires the TL @pration to be valid over
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an assimilation window as large as three months, the valaitvhich will be justified
later.

(i) Optimization of air-sea fluxes.

So as to estimate the climatological seasonal air-sea aeflhg Q, the freshwater
flux £ — P, and the wind stress = (7, 7,), we added them to the control variables.
For the heat flux estimation problem, one may wish to dististysolar and nonsolar
components in the estimation procedure. However, the gualwf the mixed layer
thermal content is driven by the net heat flux, so that inmgriioth components from
mixed layer data would lead to an ill-posed problem Roguet. (1993).

A three-month assimilation window, as discussed abovayjires| four monthly
forcing fields for linear interpolation. We therefore defareextended control vector:

oz=(6x",6q")" (3a)
with: g = (59,69, 503,60 ) " (3b)
and:  6q, = (0Qx ",6(E —P), o Toer? )T, k=1,..,4 (3¢c)
The new incremental cost function reads:

T(52) = % 52 B0z + 7" (52) @)
where 7i"¢(6z) has the same expression as before with an additional dependa
6q. Its gradient makes use of the adjoint fields of the inputifas. The extended
background error covariance mati,, is taken to be block diagonal, and its forcing
partBq) is purely diagonal in the current implementation. Note hesvehat the linear
interpolation formulation may be interpreted as a time&ation constraint for the heat
flux.

(d) Formulation of the estimation problem.

An estimation problem is well-posed if (i) it possesses atsmh, (ii) this solution
is unique, (iii) this solution is stablég. depends continuously on the observations. The
concept of parameter identifiability refers to points (iddii), and can be formulated
as the one-to-one property of mapping from observation espacparameter space
(Kitamura and Nakarigi 1977, Goodson and Polis 1979, Cha¥8i9; see Navon
1997 for a review). In our situation, the relationship begwgparameters to estimate
and observations is defined by a combination of the oceanlranddghe seasonal-mean
observation operator. If we denote §yhe generalized observation operator (parameter-
to-observations mapping), the problem is actually to intke equationG(q) =y°,
whereq are the required unknown parameters. As our focus will beiesea fluxes,
g will denote in turn heat flux, freshwater flux, windstressg @ombinations of them.
However, agj includes an OGCM integration, it cannot be inverted anedty, and
we have to design a numerical strategy to try to obtain sosighiinto the question of
identifiability.

From now on, the control vector is taken to be ofity i.e. we ignore errors in the
initial conditions,dx = 0 . The assimilation problem then has O{Lforcing degrees
of freedom to be estimated from=0(5.1F) hydrological observations. Denoting by
G the TL of G about the backgroung®, the problem read& ¢q = d within the first
outer loop, wherel = y° — G(g°) is the innovation vector. The incremental 4D-Var cost
function takes the form:

. 1 B 1 B
J"(6a) =5 6q" Bg 0q+ 5 (Goq—d) 'R (G dq —d). (5)
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The minimizing solutiom® exists and is uniquely defined becauseZf even ifq is
not identifiable by the data,e. wheneverG is not invertible. On the contrary, were
identifiability ensured, both the true physical solutighand the 4D-Var analysig®
would coincide within observational error.

A straightforward way to investigate sensitivity and thdisritifiability is to explore
the way the model equivalent to the observations is modifia@$ponse to a change
in parameter space. In this paper, we will qualitatively lexp this sensitivity with
the assumption that na priori information about the fluxes is available. To introduce
this inside the assimilation system, we set minimisatiantisty points and background
values to zero. The background uncertainties will be chdasge enough so as to
downplay the role of the background terB( is close to zero in some sense). If
the fluxes are indeed identifiable by the data, this choicelldhaot be critical to the
solution. The sensitivity study to any given flux then cofssisf assessing the latter’s
impact on the ocean trajectory by turning if off in a “freefrailation (forced and free
simulations are hereafter denoted(by) and(—), respectively).

3. IDENTIFIABILITY OF THERMOHALINE FLUXES BY HYDROLOGICAL DATA

(a) Experimental strategy.

The austral summer season of the ninth year of the spin-upsidered as thieue
ocean state. No noise is added to the observations, sinceewgerested in determining
the information contained in the data in the most favoralileaon. No relaxation to
observed SST and sea surface salinity (SSS) is used in timeilaisn system. Were
they activated, model-data misfits due to flux misspecificatvould be substantially
reduced without the need to improve input fluxes. In thisieactve shall investigate
the separate and then the joint identifiability of heat ardHwater fluxes.

Let us describe in detail the heat flux experimgrt () (analogous for the freshwa-
ter experiment). The background heat flux is set to Zgre= 0, which physically means
that air and sea do not exchange any heat in the backgrowegtatibn. The associated
background error covariance matByy, is diagonal with constantvariano%. In order
to be large enough is arbitrarily defined as four times the standard deviatibthe
true flux o =4 x 80 = 320W/m?. Strictly speaking, such a situation is beyond the
validity of estimation theory Lorenc (1986) because the summer flux has a nonzero
mean@Q! = 50W/m?, while no bias is theoretically allowed. The observatiarabr co-
variance matrixR is defined to be 1/10-th of a realistic mean vertical T ans & @mnofile
deduced from Reyanuet al. (1998). This corresponds to an observational uncertainty
of about 0.08C (resp. 5.102 p.s.u.) in the upper 100m ocean depth, decreasing down
t0 0.02°C (resp. 2.103 p.s.u.) at 500m depth, and then to 5:20C (resp. 103 p.s.u.)
below 1000m.

(b) Model sensitivity to heat flux.

The surface boundary condition for potential temperafuiesads to a heating rate
given byod /ot = Q/(p C,Az) for a water column of heightz, wherep andC,, are
the density and specific heat of seawater. Over the sumnedean mainly gains
heat from the atmosphere. A constaf¥w/m? flux over Az =50 meters increases sea
temperature by 2 in three months. Thét — 6— surface temperature map (Fig. 2a)
shows indeed variations ranging on the orderi® 2nainly confined to 50m depth (not
shown). Note that this behaviour cannot be representatinénder convection, which
makes the impact of strongly negative heat flux patternstpetieenuch deeper into the
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ocean. In contrast, surface salinity and mean horizontatitg are much less sensitive
to heating, with variations of the order of 1®p.s.u. and 5 mm/s respectively.

The temperature sensitivity map shows qualitative agre¢mith the correspond-
ing heat forcing field (Fig. 2a,b). To first order, this may isate that the heat flux
acts upon the ocean surface in a local linear way by modifjimghermal content,
other physical processes like horizontal advection owdifin being negligible. How-
ever, there are noticeable sensitivity patterns that s@eoontradict this suggestion.
One striking feature is that the sensitivity clearly vaeishalong the austral open
boundaries. Close to the Drake Passage, the incoming ACEctxdprescribed water
masses, and thus diminishes any physical sensitivity ttaseirexchanges with the
atmosphere. Moreover, neither the Brazil/Falklands Cemite region (58V,45°S)
nor the Benguela upwelling (2E,25'S) area seem to agree with this local heating
interpretation. These surface considerations thus stifgecean dynamics may play
an important role in those regions. This can be further asseby means of the lo-
cal one-dimensional evolution equation for the water colutrermal content, which
makes it possible to calculate an equivalent seasonal meanflux Qgq. Denot-
ing by h the water depth impacted by the heating, this instantanequsalent flux
can be expressed as the difference of thermal content betweeand (—); it takes

the formQeq(t) =p Cp & ffh[9+ — 07] dz. AssumingQgq(t) to be linear in time
over the season, it can be conveni.en.tly writt@pg (t) = Qeg + AT—?_(t_— %) vyhere
AQ = Q4 — Q1 is the heat flux variation over the seasonal assimilatiordexwnT,.

Integrating from time0 to ¢ and taking the seasonal average yields the desired mean
equivalent flux:

— + _ A— .
QEroQ T, _h(e 0-)dz+ 5 (6)
In the above expressia@/6 is O(—30W/n?), so thatQgq(t) could not have been
taken constant in time. Note thatshould best correspond to the oceanic mixed layer
depth to retrieve heat fluxes by thermal content estimatiasp@ret al. (1990). Our
resulting flux (Fig. 2c¢) with constanit is however well correlated with truth, with
a maximum correlation 06.82 being reached foh = 42m (4-th model level). Still,
local discrepancies over strong dynamical regions ardasira the sensitivity patterns
discussed in the sensitivity map (Fig. 2a). This supporspirevious suggestion that
nonlinear dynamics can play a significant role in the way #wt flux impacts the water
column.

An additional advantage of this simplgg computation is that it shows in a very
simple, yet physical, way that the mean heat flux is actudigntifiable by our mean
hydrological data, since (6) is a linear inverse of G®perator. Furthermore, a small
ocean depth and no salinity data were used to achieve thik.ldswever, an important
limitation of the conclusions in this section is that theg @onfiguration dependent,
and may not be entirely approporiate in more nonlinear modéeping this in mind
however, one can now be optimistic about the variational thearetrieval discussed in
the next section.

S 2pcp/0 AQ

(c) Seasonal heat flux identifiability.

(i) Convergence of the minimization.
The normalized cost functio%jmc reaches a minimum value of 0.75 (Fig. 3a),

which is less than its statistical expectation of 1 (Brysod Ho 1975). This corresponds
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to a reduction by 171 of the background cost value, after d&ifibns. However, the
minimal state seems to be reached within a few inner itarat&ince the first outer
update (iteration 6) yields a cost already close to the mininvalue. When estimating
heat flux from SST data, Yuan and Rienecker (2003) also rahattmost of their
optimization takes place in the first 5 iterations, aftersbhiurther decrease is difficult
to obtain. The efficiency of this convergence is closelyteslato the existence of a
direct linear relationship between the observed thermatlrd evolution and the surface
heating expressed in (6). The surface temperature residaaé a slightly negative mean
value -0.03C, with a standard deviation 0.92Z almost twice as large as the prescribed
observational error 0.0€. This is probably due to the strong biases in our background
setting Talagrand (1998), but the residuals match fairli the assumed Gaussian error
distribution (Fig. 3b).

(i) The optimal mean heat flux.

The mean of the heat flux analysis increm&gt is shown in Fig. 2d. Its correlation
with the true forcing fields reach@®s92. Compared to the thermal content method (Eq.
6), the estimated fluxes are enhanced in the strongly dyrsmgigions, and now look
similar to truth. This demonstrates the superiority of tieVar method, which takes
dynamics into account in reconstructing the heat flux.

This good agreement is modulated by a relatively large r.emrer of 17W/m?. As
suggested by residual satistics, the latter may be due tsttheg bias imposed in the
background state. Using a 4D-Var method in identical twitadsperiments, Zhet
al. (2002) tried to recover the nonsolar heat flux over a few days fa background
obtained by shifting the truth with a bias 60W/m?. They assimilated simulated
temperature observations every 30min at high verticaluéisn. Their r.m.s. estimation
error is as large as ours, which they attribute to the illggbsature of the inverse heat
flux problem.

Some noise also occurs in the dynamically sensitive regi@staissed above, with
geographical scales close to the model resolution. This beagiue to the effects of
nonlinearities, which may violate the TL approximation otres three month integration
window used here, and lead to isolated poor values of theinental gradient. This
may also indicate a stability issue, a common feature aatamtivith ill-posed inverse
problems (Tichonov 1963, Navon 1997, Zéual. 2002). In other terms, large analysis
error can be attributed to locally noisy estimates of thenamkn fields. However, this
problem does not appear critical in our situation, and cduddefficiently solved by
smoothing the increment by introducing non diagonal terasrelations) inBq). If
not fundamental in the current study, the introduction afr@ations within the flux
background error specification would be needed for moréstaastudies, as is typically
done when controlling initial conditions (seeg.WVA and Weaver and Courtier (2001).

We conclude that the seasonal mean heat flux is identifiablsebgonal mean
hydrological data. Even if this conclusion may be condiidtry the above limitations,
there is no doubt that such data contain pieces of informatjmpropriate to constrain
the mean air-sea heat flux within the inverse system.

(d) Intraseasonal heat flux retrieval.

No subseasonal information is contained in our twin datawéier, fluxes are
controlled monthly, and one could thus hope to retrieveasgasonal variability fea-
tures by combining constraints from data and model dynanSiome features of this
reconstructed history are indeed encouraging. The moimibhgments are reasonably
well correlated with truth (.69, 0.93, and 0.65), as illustrated in their zonal means
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(Fig. 4). Amplitudes are poorly retrieved mainly since tltzeg biased, and this may be
related to the poor background state in our experiment. Wetearefore conclude that
some part of the intraseasonal variability has been rettieVhis result is necessarily
achieved using the model dynamical constraints, whichllgipts a strength of the 4D-

Var framework.

A noticeable feature is that the fourth field hardly devidtesn its background
value. This can be explained by its short impact on the ocesgectory (one month),
while memory from previous heat flux fields are kept at leastitwonths by the system.
As a consequence, the last field’s contribution must be tritalised over the previous
ones, which can not be expected to be highly reliable.

(e) Freshwater flux and joint thermohaline fluxes identifiabilit

In our rigid lid model, the freshwater flux is introduced as igual salt flux
SSS x (E — P) which immediately impacts the ocean surface salinity inreedr
local way similar to the influence of heat flux on temperatuiscassed in section
(b). Therefore, the freshwater flux is expected to have a weakdingn temperature,
which indeed is the case (not shown). The identifiability @dsonal and intraseasonal
freshwater fluxes (Fig. 5) turns out to be similar to thosesioled for the heat flux in
the previous sections.

Moreover, joint estimation of heat and freshwater fluxesl$éet increments that
are similar to those obtained when the fluxes were estimatpdrately (not shown).
We conclude that mean thermohaline fluxes are jointly idieble by our data. The
explanation for this result is given by the absence of cressisivity of both controls
upon observed quantities in the present situati@n;to first order, the heat flux only
influences temperature, and the freshwater flux only inflassalinity. The assimilation
system thus does not have any other choice to fit the obsemgdtian to adjust the fluxes
as it did in the separate estimation experiments. This méeishe heat flux is only
constrained by temperature observations and that thesegshflux is only constrained
by salinity observations in our configuration. Although pemature and salinity data
were both assimilated, only the temperature informatios actually used to optimize
the heat flux, and only the salinity information was used ttiroze the freshwater flux.
This was further confirmed by the failure of an additionalesment (not shown) where
we tried to estimate heat flux retaining salinity data only.

(f) Discussion.

We could probably have obtained the same results with letss Has likely that
mixed layer temperature observations or maybe even onlyda&would be sufficient
to properly constrain the heat flux, as suggested by our tleramtent computation or
by mixed layer models Zhat al. (2002). Our results suggest that upper ocean salinity
data probably constrain the freshwater flux in a similar vilaythermore, it is presum-
ably not necessary to estimate these fluxes with high haatoesolution for climate
studies since relevant patterns have large horizontaésc@herefore horizontal data
density could be relaxed, even if dynamically sensitiveaargtill probably need to re-
main better sampled. Yet the observing network structungéavihen be reflected on the
resulting increments, unless tBgy) matrix is improved by introducing autocorrelations
in both the background heat and freshwater errors.

In contrast, recovering intraseasonal history obvioustyuires better observational
time sampling than provided by a seasonal climatologictlsi. SST data and ARGO
profiles sample the water column thermal content and italbdity at high frequency,
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and look therefore to be a most promising dataset to estiimad¢ flux. Freshwater
flux estimation would also benefit from the use of future gldB&S datag.g.from
the satellite SMOS mission (Foat al. 2000). However, the choice of zero background
fluxes is probably critical to our results, and it is likelyatta reduced background bias
would improve the estimations. Note that in real data expenits, background heat
fluxes are better known, and only corrections to them arelgoiifpis may reduce the
problem of estimating the fluxes in the last month of the agatimn window.

However, the results obtained in this section demonstretedur data can effec-
tively constrain the thermohaline fluxes, and that it is Wartoving to real data appli-
cations (see Deltel (2002)).

4. CAN HYDROLOGICAL DATA LEAD TO WIND IDENTIFIABILITY ?

(@ Wind stress identifiability.

In our assimilation system, to estimate the wind stiess T, ) is a priori a more
difficult problem than to estimate heat and freshwater fluX®kile the number of
data remains unchanged, there are twice as many unknown$ers @ach of the
thermohaline fluxes was estimated. Moreover, wind stress @mwon ocean currents
through a boundary condition so that their effects upon dipdjical fields results from
nonlinear heat and freshwater advection by Ekman trangpgrimping. It is thus not
obvious that indirect data of this kind can allow for windests identifiability, a question
we now investigate.

As before, we begin by exploring ocean sensitivity to winkss fields. Com-
parison of (+) and (—) trajectories shows that the wind stress generates currents
over the uppermost three grid levels (figure not shown),ciaitig a model Ekman
layer depth of aboubz. = 35m. As expected, the associated transport perturbation

AM = fféEk(u_Jr —u~) dz is oriented to the left of, and nearly perpendicular to the
wind direction (Fig. 6a). In addition, the zonal integrl’”; AM (z, y) da correlates

with the theoretical transpogfuf‘e’jz _/JTST)SZE@}?) dx given by Ekman theory by more than

0.99 (Fig. 6¢). The numerical ocean response to wind stressnigrsi thus fully ex-
plained by Ekman theory, which in turn suggests how assiimilawill be able to work
to bring the model nearer to observations.

South 0f40°S, heat advection is principally due to horizontal Ekmamgpeort.
Westerly winds give rise to strong northward Ekman transjgonling down the Ekman
layer §g up to 3C (Fig. 6b). This cooling is in agreement with the northwa®ITS
gradient in(—) and an advective“3latitude meridional scale, roughly computed from
maximal Ekman velocitiest¢m/s at;0°S). Moreover, upward Ekman pumpings;, =
curl, polf = O(10~°m/s) over one season gives an estimatad advective vertical scale
(close to one model level), which explains the cooling obseérbeneath the surface
cold tongue anomaly (green in Fig. 6b). Finally, noticeakéter downwelling occurs
(Fig. 6a,b) along the south-eastern coast of the basinedaog local easterly wind
patterns.

The ACC barotropic flow is prescribed by the OBC algorithm @nthus inde-
pendant of the wind stress. This is not realistic howevagesthe ACC properties are
substantially determined by the wind forcing. Note that$lverdrup balance is unlikely
to be valid in the Southern Ocean: the ACC characteristiesat by a complex inter-
play between wind forcing, eddy forcing, and topographie&s (Tansley and Marshall
2001, Genet al. 2001), which makes them strongly dependent on wind foraivith
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a time scale possibly as short as 9 days (Clarke 1982). Yetegd @BCs to realisti-
cally simulate a basin like the South Atlantic. No simplesaiative to this obstacle is
available, as the problem is mathematically ill-posed (Bahand Kloeden 1981). It is
therefore important to keep in mind that a significant parb@dan sensitivity may be
inhibited in regional models like this one.

North of 40°S, permanent anticyclonic winds sustain the oceanic spicaibgyre
along with downward Ekman pumping. On a seasonal mean tile,she latter in-
creases temperature at mosth3-0.7°C below the Ekman layeb{th model level, yel-
low in Fig. 6b), but still by abou®.05-0.1°C at400m depth, which remains significant
as compared to our idealized observation er62°C at the same depth. On the other
hand, subtropical regions are weakly influenced by OBCs{lamsithe gyre barotropic
flow becomes sensitive to wind forcing. On the seasonal me@ngcale, the western
boundary current’s (WBC) transport is indeed changed bysv.betweer{+) and(—)
trajectories. Lastly, coastal upwelling occur along the@eela and Brazil coasts.

The above discussion indicates that hydrological seiityitio wind stress can be
strong enough to be depicted by signals exceeding obsemahgrrors in our idealized
context. There are thus good indications that our data nhiglappropriate to identify, at
least partially, wind stress patterns by 4D-Var. The adation set-up is similar to the
one for thermohaline flux experiments, with large constaukiground errors defined
as four times the standard deviation of the true fluxés & 4 x 0.08 = 0.32N.m2,
UZU =4 x 0.03 = 0.12N.m~2). Interestingly, we find that the seasonal mean wind stress
is poorly retrieved by the assimilation system (Fig. 7aJis)e convergence was slow
and required twice as many iterations as needed for estighiiermohaline fluxes to
achieve an acceptable level of convergence. Most remaskifilel meridional stress,
hardly deviates from its zero background value. The absehaeignificant sensitivity
of the mean hydrological fields with respect to meridiona¢ssr, alone (compared
to observational error) might explain this failure. On thkey hand, zonal wind stress
T, IS unequally reconstructed over the basin. Northt®fS, an excellent correlation
of 0.96 is found with truth, thus demonstrating the ability of ouisem to extract
Ekman pumping information from the data. This partial idféadtility of the wind
stress may be related to the Sverdrup equilibrium, whicblistaes at mid latitudes
a linear balance between the wind stress field and the meabioansport of water
columns. The latter is indeed observed in our hydrographia,dvia geostrophy.
Consequently, the barotropic WBC is properly reconstudickeirthermore, westward
zonal wind stress patterns associated with upwellingsaB#gnguela and Brazil coastal
regions have been correctly reconstructed as well (not shoReconstructed wind
stress at latitudes higher thééf S also correlate well with truttd(92), showing that the
southern downwelling mechanism was properly captured bysifstem. By contrast,
this correlation drops down t6.53 within latitudes40-55°S, because of erroneous
estimated eastward wind stress. On the seasonal meartf¢hésincorrectly positioned
as well as underestimated in strength and meridional extent

From these results we conclude that the seasonal mean wesb stan not be
fully identified by mean hydrological data, and that thiskgemn is strongly ill-posed
in our configuration. Recalling the sensitivity issue rethto the OBC specification,
one can argue that part of our conclusions are restrictdtetsdope of regional models
like ours. This is not relevant to the, estimation problem however. In addition, it is
likely that better background information might help to fithe correct solution, which
would be the case in realistic data assimilation experimdowever, it seems risky to
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trust wind stress estimation by 4D-Var in our configuratiamd this warning is largely
corroborated by the results in the next section.

(b) Simultaneous estimation of wind stress and thermohalixed$lu

By controlling all air-sea fluxes together, we can at besteekpgo reproduce
the results from the separate identification experimenthénprevious section. Joint
estimation can thua priori not give satisfactory results regarding wind stress faycin
The experiment (not shown) actually degrades the positigalts acquired when only
thermohaline fluxes were simultaneously identified, andenohthe fields can be
properly recovered. The large increase in the number ofrcbparameters in the
estimation problem thus leads to an ill-posed, physicafigardetermined problem
unless more appropriate information is given.

We have just shown that badly constrained degrees of freezdomprevent well
constrained ones from being improved. We now illustrate teowerfectly known
control variable, which is weakly constrained by the dat) te substantially de-
graded. In this experiment, wind stress along with heat 8uxg ., r,) are esti-
mated. Background winds stresses are chosen to be perfeeteas heat fluxes are
defined by austral autumn fields, introducing a seasondlightifeat flux forcing with
respect to the true fluxes which are defined by summer fieldadtition, the back-
ground error standard deviations are now smaligs £ 80W/m?, % = 0.08N.m~2

andob. = 0.03 =N.m~?), which brings us closer to a realistic 4D-Var data assitiia
experiment set-up. The estimated seasonal mean heat fhexrieat qualitatively agrees
with truth (Fig. 8b), but is significantly underestimated &lyout10 to 30W/m? (on
zonal mean). At the same time, it is found that the wind sti®ssodified by a relative
perturbation ofl4% r.m.s., a noticeable degradation of the originally perfietd. The
wind stress amplitude is reduced, and its maximum is shifbethe south (Fig. 8a).
Thus, to warm up ocean surface temperatures, a reductionrtéfward Ekman heat
advection takes place instead of enhanced positive heathtioocean. In other words,
a heat flux estimation error is balanced by an unrealistic\siness increment.

(c) Discussion.

In this section, we showed that coastal upwelling obsewaatallow us to recover
the generating wind stress. This could be partly expectembghe associated hydrolog-
ical perturbations are large, and since no other wind mashenare likely to generate
them. An apparently stronger result is that the weak Ekmanginyg signal observed
in hydrology can also be converted into a zonal anticyclaviied pattern. As in the
thermohaline flux experiments, improved wind stresseslghmiobtained using a better
background state and time-distributed data to introducelwiolution information into
the system. Howeverer, it is not obvious that our Ekman pampasult can apply to real
data experiments. In the latter framework, observatiost{inmental and representative-
ness) errors could make the upward pumping oceanic sigrditdiscernable from the
observations.

On the other hand, we demonstrated above the strong ségitivocean surface
currents to wind stress, which can be explained by analogytwe hydrology sensitiv-
ity to thermohaline fluxes. This suggests that surface atioleservations may therefore
be more appropriate than hydrological data to identify wétieéss forcing. Note that
altimeter data would provide a constraint on the surfaceigephic currents. The latter
is already implicitly used in hydrological data like oursheveas wind induced Ekman
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currents are ageostrophic. Hence altimeter derived sidawent data are probably not
appropriate to the wind stress inverse estimation problem.

We recommend therefore to take extra care when controlliimgl stress forcing,
unless available data have explicitly been shown apprpfa this task. Note how-
ever that improving the wind stress is probably not as cfuociaacean modelling as
improving the thermohaline fluxes, since satellite scattesters provide wind fields of
relatively high quality while heat and freshwater fluxes @itber calculated by help of
bulk formulae with large uncertainties or taken from atntasic models where they are
generally known to be poorly reliable.

5. SUMMARY AND CONCLUDING REMARKS

(@ Summary

In this paper, we have investigated a method for estimatingea fluxes from
ocean data, which does not require the use of bulk formuldecan take observation
and background errors into account. More precisely, we baes concerned with the
identifiability of climatological forcing fluxes using sea®l hydrological data, in an
idealized framework where data are perfect with respedigamtean model and where
all estimated fields have a known true value. The estimationgaure relied on a 4D-
Var algorithm, which makes use of the adjoint of a primitivguation ocean model
to minimize a cost function measuring the distance betwdmsemvational and model
information. Monthly mean forcings were taken as controlafgles, and the ability of
the assimilation system to retrieve them at different tic@es (seasonal, monthly) by
use of our data was discussed. A stringent framework wasechaghere no usefid
priori information about fluxes was assumed available. At the same data were
perfect with respect to the model dynamics, and no simulabsgrvational noise was
added to them. Other model parameters, such as initial tonsliand open boundary
forcings, were also assumed perfectly known.

The ocean sensitivity of the model equivalent to the obgims with respect
to the surface fluxes was first explored. The stronger thisitety, the better the
identifiability of the fluxes from the data. It was found thia¢ tseasonal mean heat and
freshwater fluxes could be identifiable by such data, regasdbf whether they were
estimated separately or jointly. The associated intragedssariability was partially
recovered. This was particularly surprising since the detae seasonally averaged,
and was attributed to the dynamical evolution constraimforeed by the OGCM
within the cost function. Data with higher temporal samgliwould be necessary to
improve the intraseasonal retrieval. These results detradesonetheless that it would
be meaningful to control the thermohaline fluxes when motwingal data experiments.

By contrast, the wind stress was poorly estimated from rydyohic data. Seasonal
mean zonal stress could be properly recovered in the subélogyre and in coastal
upwelling areas, whereas the westerly winds were erromgoasonstructed. Further-
more, meridional stress could not be recovered, even parttavas suggested that the
failure to estimate westerly winds might be an artifact & tdpen boundary specifica-
tion, which artificially removes any barotropic sensitvio wind forcing in the ACC
area. This points out that regional models, though necgfmamany applications, may
give rise to a number of critical issues that we must be awarthaddition, it was
suggested that upper ocean current observations might be appropriate to wind
stress estimation than hydrological data.
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Whenever wind stress was estimated, the assimilationreystes unable to recover
the true solution, and convergence was difficult to achiédveerfectly known back-
ground wind stress field was even shown to be significantlyaksg in order to balance
a heat flux estimation error. This showed that in our settihg,inverse wind stress
estimation problem is physically ill-posed, even thoughirityoducing a background
term it always possesses a mathematical answer. In othésydifferent forcing fields
can drive the ocean model close to the observations (in theesef Eq. 5), because
of the nullspace of the linearized opera@mvhich inhibits identifiability. Not enough
information is given to the system to allow it to distinguisétween possible solutions,
and further examination of optimal cost values (not showwagals that a minimal norm
solution can be picked out, as enforced by the background ter

(b) Concluding remarks

Some of our conclusions related to OBCs suggest that it woelldorth estimating
open boundary parameters. Optimizing hydrological fieldag@open boundaries can
indeed prove beneficial in real data experiments if the pitgsd fields are not fully com-
patible with interior observations (Deltel 2002). In ounfiguration, improved fields of
this kind only have a local impact restricted to the neighbhood of OBCs, since the
advective scale due to ACC over one season does not exceedariered kilometers.
On the other hand, one may be tempted to also optimize pbestiarotropic fields, like
the ACC transport. Such corrections can again improve stesty with interior data,
and would impact the whole basin. However, the results ohghend Marotzke (1999)
and Ferron and Marotzke (2001) suggest, in a similar framlevtioat hydrographic data
badly constrain boundary velocities. Moreover, estingatirese fields can not be helpful
in the wind stress identification process, unless they bequugnostic variables instead
of being introduced as forcings.

On the other hand, when estimated in this study, all backgtdarcing errors were
assumed to be mutually uncorrelated, which is a crude appedion to reality. Actual
correlations result from a complex balance, and are difficuspecify. The ocean was
also considered to be purely forced by the atmosphere, smtheoupling processes
between the two fluids were involved. Relaxing these assomgptvas beyond the scope
of this paper.

Another limitation of this study is that we have been invgating only the austral
summer season, restricted to the South Atlantic basin.eftier, our findings cannot
probably be extended to strong winter cooling events witoeisited oceanic convec-
tion, or to very different dynamical regimes like those ie #quatorial area, which both
deserve specific investigation.

An important issue raised by simultaneous estimation dfaintonditions and
forcings is that the number of control parameters would lgmiicantly increased.
One can wonder whether the assimilation system could thesridiinate, within the
data, relevant contributions to both substantially défer control sets. Our results
demonstrate that the system might erroneously attribute,ekample, the Ekman
pumping signal to an initial condition misspecificationtaed of wind stress error,
because of relative sensitivity reasons. Note that a loroy@gm assimilation window
could help separate out these contributions, since onlyiritial ocean trajectory
is probably most sensitive to initial conditions whereagciftgs control the model
trajectory at later times (Bonekangt al. 2001). However, in their 1D twin data 4D-
Var experiments, Zhet al. (2002) successfully estimate initial conditions alonghwit
heat flux (over 7 days), which provides an indication thag tirocedure might work in
a more general OGCM context, at least whenever oceanic idneemains weak.
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To conclude, we recall that our OGCM was applied as a stromgtcaint, and
that neither observational noise nor representativerressweere added to the data. A
weakness when extrapolating our estimation approach talega experiments is that
the model strong constraint hypothesis would be violatecgddition, the observation
error covariance matrbR would need to be revisited. Observational errors would
be significantly larger, and the complicated error coriefastructures introduced by
objective mapping to construct a climatological hydrodpiaplatabase could need to
be accounted for, to avoid overweighting individual obséipns (Daley 1991). A
weak constraint approach would make it possible to explititke model error into
account within the variational framework (Bennett and Tusn 1992, Courtier 1997,
Bennettet al. 1998, Bennetiet al. 2000). However this would largely increase the
underdeterminacy of the problem, which is obviously novifable with a dataset like
ours, and may also be impractical with currently availalleamic observations.
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6. FGURES
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Figure 1. Mean stream function of the spin-up simulationi{U8verdrup, contouring interval:
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flux forcing (b). The mean heat flux inverse estimation by (®rtal content and (d)
4D-Var methods.
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Figure 5. Seasonal freshwater flix— P (zonal mean): the dashed line shows the 4D-Var estimatiensaolid
line illustrates the true field. The background si@e— P)? is zero.
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Figure 6. Sensitivity to wind stress forcing. In (a), the meand stress field (blue) is represented

along with its impact on surface currents (red) integratesr the Ekman layer depth (3

model levels). Cross section of temperatut€)along 12W is shown in (b). The wind

stress impact on the Ekman layer meridional transport iesho (c) (dashed line), along

with the corresponding theoretical Ekman tranport (satid).
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Figure 7. Identifiability of wind stress. The seasonal meamaz and meridional stresses are illus-
trated in (a) and (b) (zonal means). The true wind stresg&l(§ok) can be compared to
the wind stress reconstructed by 4D-Var after 36 iterat{dashed line). The background

stater? is zero.
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