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SUMMARY

Inaccurate air-sea fluxes are a major source of error in numerical ocean model simulations. The ocean is
a key actor in the climate system, and any estimation procedure leading to improved geophysical forcing fields
is thus of potential benefit. Variational estimation methods can yield theoretically optimal corrections to any
model parameters, given appropriate observations of the ocean state. We have investigated the optimization of
air-sea forcing fields using a 4D-Var method applied to a South Atlantic configuration of the OPA ocean general
model. The ability of this assimilation system to improve climatological air-sea fluxes is examined in the idealised
context of identical twin data experiments. In particular,we define the notion of parameter identifiability and try to
establish the identifiability of surface fluxes during the austral summer. We first show that seasonal hydrographic
data can be used to identify the seasonal mean heat and freshwater fluxes, separately or jointly, whereas they
are less effective at reconstructing intraseasonal variability. Retrieving the wind stress from hydrographic data
is a much more difficult task. Seasonal mean zonal stress can be properly recovered in the subtropical gyre and
in coastal upwelling areas, but the westerly winds are erroneously reconstructed. Furthermore, meridional stress
cannot be recovered, even partially. These results suggestthat seasonal mean hydrological data are not effective
in constraining the seasonal mean wind stress field. This inverse estimation problem is ill-posed in the proposed
setting. A stronger result is that a perfectly known wind stress field can be remarkably degraded to balance a heat
flux estimation error. Limitations related to the present configuration are discussed, as well as extensions of our
conclusions to real data experiments.
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1. INTRODUCTION

The advent of satellites and worldwidein situ observation programs such as the
World Ocean Circulation Experiment (WOCE) has resulted in alarge amount of data
over the last decade, which show that state-of-the-art numerical models often fail
to represent accurately reality. This is not acceptable to understand the past ocean
circulation, and possibly to predict some components of itsevolution, especially with a
view to climate monitoring.

The quality of a simulated ocean trajectory mainly depends on the model physics,
particularly its parametrisations of unresolved physicalprocesses, and on the accuracy
of both initial conditions and geophysical surface forcingfields. Assimilation methods
have been developed which can take into account available datasets to improve model
trajectories. For example, four-dimensional variationalassimilation (4D-Var) has been
used for many years in meteorology and oceanography to optimize model initial condi-
tions to give an improved fit to observations.

By contrast, air-sea surface flux optimisation remains muchless explored, espe-
cially in idealised contexts which allow us to clarify the method’s strengths and limita-
tions in a perfectly known framework. The heat flux inverse problem is the best docu-
mented. Gasparet al. (1990) estimated the turbulent heat fluxes using the evolution of
the thermal content of a one-dimensional (1D) oceanic mixedlayer model, as observed
with sea surface temperature (SST) data. The same 1D model was used by Roquetet
al. (1993) who implemented a 4D-Var scheme to estimate heat flux from temperature
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profile data. Yuan and Hsueh (1998) and Yuan and Rienecker (2003) also estimated
heat flux by assimilating SST data, with a 4D-Var algorithm applied to a linear ther-
modynamical submodel. Zhuet al. (2002) explored the ill-posed nature of this problem
by assimilating high frequency upper ocean temperature data in a different 1D model
to estimate heat forcing at various temporal resolutions. Concerning the wind stress
estimation problem, Bonekampet al. (2001) showed that tropical wind stress could be
improved over a two month assimilation window by assimilating a dense temperature
dataset (Tropical Ocean-Atmosphere) using 4D-Var. They attributed this result to the
fast equatorial dynamics. Recently, Stammeret al. (2002) estimated all air-sea fluxes
as well as initial conditions of temperature and salinity using the 1992-1997 assimila-
tion window, by 4D-Var assimilation of Levitus monthly meanhydrography, Reynolds
monthly SST, and sea level anomaly maps in a global ocean general circulation model
(OGCM).

However, systematic twin data experiments have never been performed to assess
how well air-sea fluxes may be recovered, either separately or jointly, via a 4D-Var
method applied to an OGCM. To explore this problem, we have developed an ocean
4D-Var system aimed at improving air-sea fluxes by means of a regional model-data
synthesis. In this paper, we explore the optimal results that can be obtained from a
4D-Var estimation of air-sea fluxes, given noa priori knowledge of the sought after
fields, and by assimilation of simulated seasonal mean hydrographic data. Following
Navon (1997), any of the fluxes is said to be identifiable (or not) by the data if it
can be properly reconstructed. We begin to investigate identifiability by exploring the
sensitivity of model counterparts of the observations to surface fluxes. The stronger
this sensitivity, the better their identifiability by the data. Moreover, these experiments
provide insight into underlying physical processes by which the assimilation method
corrects air-sea fluxes to reduce model-data discrepancies.

This paper is organized as follows. In section 2, we describethe South Atlantic
model configuration implemented for this study. The estimation problem and the assim-
ilation system are also described. A spin-up integration ofthe model provides synthetic
(twin) data for the assimilation experiments. The twin dataare defined as a seasonal
mean of simulated model hydrology in order to mimic the information content in avail-
able climatologies such as Reynaudet al. (1998).

In sections 3 and 4, we explore the extent to which forcing information can be
extracted from the data. Section 3 is devoted to the determination of thermohaline fluxes.
In section 4, wind stress is added to the control variable. A summary and conclusions
are given in section 5.

2. METHOD AND MODEL

(a) Model configuration and spin-up.
Due to the high computational burden associated with 4D-Var, we chose to concen-

trate on the South Atlantic basin. In the framework of the CLIPPER modeling project,
a French contribution to WOCE, model configurations with different spatial resolutions
have been implemented in the whole Atlantic domain from Antarctica to 70◦N. The
OGCM OPA 8.1 was used Madecet al. (1998). Details about the Atlantic configura-
tions can be found in CLIPPER (2001). In the present study, our limited area model is
essentially a subdomain of the CLIPPER low resolution configuration. The horizontal
grid is a Mercator isotropic grid with resolution 1◦ at the equator. The meridional extent
of the domain ranges from 16◦S, inspired from the MOCA model (Barnieret al.1998),
to 71◦S, to avoid problems in the assimilation algorithm associated with ice. The zonal
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extent ranges from 72◦W to 31◦E. The vertical grid has 43 geopotential levels with a
tight spacing (less than 15m) for 8 levels near the surface.

A horizontal Laplacian operator is used for lateral mixing of tracers and momentum
(Kh =2000 m2/s). The vertical mixing of momentum and tracers is calculated using a
1.5 turbulent closure model based on a prognostic equation for turbulent kinetic energy
(TKE) and a closure assumption for the turbulent length scales (Blanke and Delecluse
(1993), Madecet al.1998). A no-slip boundary condition is applied along the coastlines,
and non-linear friction is applied at the bottom.

Open boundaries are defined at Drake Passage and at 30◦E between Africa and
Antarctica. Because of the Antarctic Circumpolar Current (ACC), with a transport of
the order of 140 Sverdrup (1 Sverdrup= 106 m3/s), the choice of these boundaries is
extremely important for the circulation of the South Atlantic (Treguieret al.2001)). We
preferred implementing a fixed open boundary condition (OBC) rather than a radiative
boundary condition to avoid differentiating a threshold process in constructing the
adjoint model. In contrast, the boundary at 16◦S is modelled as a coastline surrounded by
a thick buffer zone (6 grid points, with relaxation times ranging from 3 days to 100 days)
where water masses can be recycled. This choice is compatible with the net northward
transport across the Atlantic, which is close to zero. A similar southern boundary was
chosen at 71◦S for the same reason.

The surface forcing fields are derived from the European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis ERA-15 (Gibsonet al. 1997, Garnier
et al. 2000). To reduce the dimensionality of the flux estimation problem, we define
the forcing fields by linear interpolation between monthly mean fields from an ERA-15
climatological year (i.e. 15 year mean).

The hydrological seasonal climatology of Reynaudet al.(1998) is used to initialize
the model, and as relaxation fields in the buffer zones by linear interpolation to the model
time. The Southern Hemisphere summer data serve as initial conditions, because other
seasons are worse sampled. This configuration has been integrated for 9 years starting
from rest. During this spin-up, surface temperatures and salinities are relaxed toward
Reynaudet al.(1998) climatology to prevent surface fields from drifting too much from
observed values. Figure 1 shows the resulting mean stream function, which is quite
similar to that obtained by Treguieret al. (2001) for a higher resolution configuration of
the global Atlantic basin. In particuliar this shows that our choice of a closed boundary
at 16◦S is reasonable to the modeled basin.

(b) The 4D-Var assimilation system.
Following standard notations (Ideet al. 1997), we denotex the vector of model

initial conditions,xb the corresponding background state, andy◦ the vector of space and
time distributed observations. 4D-Var aims at optimizing model input parameters such
as initial conditionsx to fit simultaneouslyxb andy◦ in a statistically weighted least
squares sense. This is achieved by minimizing a cost function, which takes the form:

J (x) =
1

2
(x − xb)⊤B−1

(x)(x − xb)
︸ ︷︷ ︸

Jb

+

n∑

i=0

1

2
(H(x(ti)) − y◦i )

⊤R−1
i (H(x(ti)) − y◦i )

︸ ︷︷ ︸

Jo,i

(1)

wheren is the number of time steps within the assimilation window,x(ti) = M(ti, 0)(x)
is the model state vector at timeti, obtained by integration of the direct modelM
(described above) from initial statex = x(0) up to timeti. B(x) is the background error
covariance matrix, andR denotes the observation error covariance matrix, including the
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contribution from representativeness error (Lorenc 1986).H is the observation operator,
mapping the state vector space into observation space. The gradient of the observational
cost function, needed to iteratively bring to zero the cost function’s gradient∇J (x),
makes use of the adjoint modelM⊤, whereM ∼= (∂M/∂x)|x=xb is the tangent linear
(TL) model. The specific approach chosen in the OPA-VAR assimilation system is of
incremental type (Courtieret al.1994, Courtier 1997). It is fully described in Weaveret
al. (2003) (WVA hereafter), and we recall briefly it main characteristics.

Assuming the required correction is small enough, one can integrate the increment
via the TL model instead of integrating the updated control vector by help of the full non-
linear modelM. The underlying assumption is known as the TL hypothesis. The cost
function is then approximate but quadratic, which ensures the existence and uniqueness
of a minimum, and ensures numerical efficiency of the iterative minimization algorithm.

The main drawback of this formulation is that model-data misfits are linearly
approximated about the same background state. Courtieret al. (1994) suggested a
pragmatic approach for accounting for weak nonlinearitiesby occasionnaly updating
the reference trajectory during the minimization process.The operatorsM andH (TL of
H) are then linearized about this new reference trajectory. The update of the trajectory
and the computation of the innovation vector are performed on the outer loops, using
increments calculated within inner minimization loops.

In practice, the vertical physics in the direct model is simplified before linearization,
because the TKE algorithm is highly nonlinear and discontinuous. The vertical diffu-
sivities are held constant during the inner iterations, andare taken from the reference
trajectories. A similar approximation was made by Yuan and Rienecker (2003). Zhuet
al. (2002) discuss higher order variants of this approximationand show that such mod-
ified TL models allow us to improve predictability by help of linearized dynamics and
thus to enlarge the assimilation window. They indeed show that the linearized physical
processes may fail to represent major feedback loops – and associated saturation with
time – between the nonlinear processes, thus leading to exponential growth of initial
perturbations.

(c) South Atlantic configuration of the assimilation system.

(i) Climatological observation operator.
This investigation uses idealized observations. However,the dataset we would

ultimately like to assimilate consists of the Reynaudet al. (1998) Atlantic seasonal
climatological atlas of temperature and salinity, which isrepresentative of a mean
historical seasonal cycle of the basin. IfN denotes the number of time steps over one
season, and if we assume to simplify notations that all statevariables are observed, the
seasonal atlas incremental cost function takes the form:

J inc
o (δx) =

1

2

{(

1

N + 1

N∑

i=0

M(ti, 0) δx

)

− d

}⊤

R−1 {...} (2a)

whose gradient reads:∇J inc
o (δx) =

N∑

i=0

M(ti, 0)
⊤

(
R−1d
N + 1

)

. (2b)

The latter expression shows that the adjoint forcing associated with the climatological
innovationd = y◦ − 1

N+1

∑N
i=0 xb(ti) is a constant fraction of the weighted innovation.

Note that the observational constraint requires the TL approximation to be valid over
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an assimilation window as large as three months, the validity of which will be justified
later.

(ii) Optimization of air-sea fluxes.
So as to estimate the climatological seasonal air-sea net heat fluxQ, the freshwater

flux E − P , and the wind stressτ = (τx, τy), we added them to the control variables.
For the heat flux estimation problem, one may wish to distinguish solar and nonsolar
components in the estimation procedure. However, the evolution of the mixed layer
thermal content is driven by the net heat flux, so that inverting both components from
mixed layer data would lead to an ill-posed problem Roquetet al. (1993).

A three-month assimilation window, as discussed above, requires four monthly
forcing fields for linear interpolation. We therefore definean extended control vector:

δz = (δx⊤, δq⊤)⊤ (3a)

with: δq = (δq⊤
1 , δq⊤

2 , δq⊤
3 , δq⊤

4 )⊤ (3b)

and: δqk = (δQk
⊤, δ(E − P )k

⊤, δτx
k

⊤, δτ y
k

⊤)⊤, k = 1, ..., 4 (3c)

The new incremental cost function reads:

J inc(δz) =
1

2
δz⊤B−1

(z)δz + J inc
o (δz) (4)

whereJ inc
o (δz) has the same expression as before with an additional dependance on

δq. Its gradient makes use of the adjoint fields of the input forcings. The extended
background error covariance matrixB(z) is taken to be block diagonal, and its forcing
partB(q) is purely diagonal in the current implementation. Note however that the linear
interpolation formulation may be interpreted as a time correlation constraint for the heat
flux.

(d) Formulation of the estimation problem.
An estimation problem is well-posed if (i) it possesses a solution, (ii) this solution

is unique, (iii) this solution is stable,i.e.depends continuously on the observations. The
concept of parameter identifiability refers to points (i) and (ii), and can be formulated
as the one-to-one property of mapping from observation space to parameter space
(Kitamura and Nakarigi 1977, Goodson and Polis 1979, Chavent 1979; see Navon
1997 for a review). In our situation, the relationship between parameters to estimate
and observations is defined by a combination of the ocean model and the seasonal-mean
observation operator. If we denote byG the generalized observation operator (parameter-
to-observations mapping), the problem is actually to invert the equationG(q) = y◦,
whereq are the required unknown parameters. As our focus will be on air-sea fluxes,
q will denote in turn heat flux, freshwater flux, windstress, and combinations of them.
However, asG includes an OGCM integration, it cannot be inverted analytically, and
we have to design a numerical strategy to try to obtain some insight into the question of
identifiability.

From now on, the control vector is taken to be onlyδq, i.e. we ignore errors in the
initial conditions,δx = 0 . The assimilation problem then has O(105) forcing degrees
of freedom to be estimated fromp =O(5.105) hydrological observations. Denoting by
G the TL of G about the backgroundqb, the problem readsG δq = d within the first
outer loop, whered = y◦ − G(qb) is the innovation vector. The incremental 4D-Var cost
function takes the form:

J inc(δq) =
1

2
δq⊤ B−1

(q)
δq +

1

2
(G δq − d)⊤R−1 (G δq − d). (5)
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The minimizing solutionqa exists and is uniquely defined because ofJb, even ifq is
not identifiable by the data,i.e. wheneverG is not invertible. On the contrary, were
identifiability ensured, both the true physical solutionqt and the 4D-Var analysisqa

would coincide within observational error.
A straightforward way to investigate sensitivity and thus identifiability is to explore

the way the model equivalent to the observations is modified in response to a change
in parameter space. In this paper, we will qualitatively explore this sensitivity with
the assumption that noa priori information about the fluxes is available. To introduce
this inside the assimilation system, we set minimisation starting points and background
values to zero. The background uncertainties will be chosenlarge enough so as to
downplay the role of the background term (B−1 is close to zero in some sense). If
the fluxes are indeed identifiable by the data, this choice should not be critical to the
solution. The sensitivity study to any given flux then consists of assessing the latter’s
impact on the ocean trajectory by turning if off in a “free” simulation (forced and free
simulations are hereafter denoted by(+) and(−), respectively).

3. IDENTIFIABILITY OF THERMOHALINE FLUXES BY HYDROLOGICAL DATA

(a) Experimental strategy.
The austral summer season of the ninth year of the spin-up is considered as thetrue

ocean state. No noise is added to the observations, since we are interested in determining
the information contained in the data in the most favorable situation. No relaxation to
observed SST and sea surface salinity (SSS) is used in the assimilation system. Were
they activated, model-data misfits due to flux misspecification would be substantially
reduced without the need to improve input fluxes. In this section, we shall investigate
the separate and then the joint identifiability of heat and freshwater fluxes.

Let us describe in detail the heat flux experimentq ≡ Q (analogous for the freshwa-
ter experiment). The background heat flux is set to zeroQb ≡ 0, which physically means
that air and sea do not exchange any heat in the background integration. The associated
background error covariance matrixB(Q) is diagonal with constant varianceσ2

Q. In order
to be large enough,σQ is arbitrarily defined as four times the standard deviation of the
true flux σQ = 4 × 80 = 320W/m2. Strictly speaking, such a situation is beyond the
validity of estimation theory Lorenc (1986) because the true summer flux has a nonzero
meanQt = 50W/m2, while no bias is theoretically allowed. The observationalerror co-
variance matrixR is defined to be 1/10-th of a realistic mean vertical T ans S error profile
deduced from Reyanudet al. (1998). This corresponds to an observational uncertainty
of about 0.03◦C (resp. 5.10−3 p.s.u.) in the upper 100m ocean depth, decreasing down
to 0.02◦C (resp. 2.10−3 p.s.u.) at 500m depth, and then to 5.10−3 ◦C (resp. 10−3 p.s.u.)
below 1000m.

(b) Model sensitivity to heat flux.
The surface boundary condition for potential temperatureθ leads to a heating rate

given by∂θ/∂t = Q/(ρ Cp∆z) for a water column of height∆z, whereρ andCp are
the density and specific heat of seawater. Over the summer, the ocean mainly gains
heat from the atmosphere. A constant50W/m2 flux over∆z =50 meters increases sea
temperature by 2◦C in three months. Theθ+ − θ− surface temperature map (Fig. 2a)
shows indeed variations ranging on the order of 2◦C mainly confined to 50m depth (not
shown). Note that this behaviour cannot be representative of winter convection, which
makes the impact of strongly negative heat flux patterns penetrate much deeper into the
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ocean. In contrast, surface salinity and mean horizontal velocity are much less sensitive
to heating, with variations of the order of 10−2 p.s.u. and 5 mm/s respectively.

The temperature sensitivity map shows qualitative agreement with the correspond-
ing heat forcing field (Fig. 2a,b). To first order, this may indicate that the heat flux
acts upon the ocean surface in a local linear way by modifyingits thermal content,
other physical processes like horizontal advection or diffusion being negligible. How-
ever, there are noticeable sensitivity patterns that seem to contradict this suggestion.
One striking feature is that the sensitivity clearly vanishes along the austral open
boundaries. Close to the Drake Passage, the incoming ACC advects prescribed water
masses, and thus diminishes any physical sensitivity to surface exchanges with the
atmosphere. Moreover, neither the Brazil/Falklands Confluence region (55◦W,45◦S)
nor the Benguela upwelling (12◦E,25◦S) area seem to agree with this local heating
interpretation. These surface considerations thus suggest that ocean dynamics may play
an important role in those regions. This can be further assessed by means of the lo-
cal one-dimensional evolution equation for the water column thermal content, which
makes it possible to calculate an equivalent seasonal mean heat flux QEQ. Denot-
ing by h the water depth impacted by the heating, this instantaneousequivalent flux
can be expressed as the difference of thermal content between (+) and (−); it takes
the formQEQ(t) = ρ Cp

∂
∂t

∫ 0
−h[θ+ − θ−] dz. AssumingQEQ(t) to be linear in time

over the season, it can be conveniently writtenQEQ(t) = QEQ + ∆Q
Ta

(t − Ta

2 ), where
∆Q = Q4 − Q1 is the heat flux variation over the seasonal assimilation window Ta.
Integrating from time0 to t and taking the seasonal average yields the desired mean
equivalent flux:

QEQ =
2 ρ Cp

Ta

∫ 0

−h
(θ+ − θ−) dz +

∆Q

6
. (6)

In the above expression∆Q/6 is O(−30W/m2), so thatQEQ(t) could not have been
taken constant in time. Note thath should best correspond to the oceanic mixed layer
depth to retrieve heat fluxes by thermal content estimation Gasparet al. (1990). Our
resulting flux (Fig. 2c) with constanth is however well correlated with truth, with
a maximum correlation of0.82 being reached forh = 42m (4-th model level). Still,
local discrepancies over strong dynamical regions are similar to the sensitivity patterns
discussed in the sensitivity map (Fig. 2a). This supports the previous suggestion that
nonlinear dynamics can play a significant role in the way the heat flux impacts the water
column.

An additional advantage of this simpleQEQ computation is that it shows in a very
simple, yet physical, way that the mean heat flux is actually identifiable by our mean
hydrological data, since (6) is a linear inverse of theG operator. Furthermore, a small
ocean depth and no salinity data were used to achieve this result. However, an important
limitation of the conclusions in this section is that they are configuration dependent,
and may not be entirely approporiate in more nonlinear models. Keeping this in mind
however, one can now be optimistic about the variational heat flux retrieval discussed in
the next section.

(c) Seasonal heat flux identifiability.

(i) Convergence of the minimization.
The normalized cost function2pJ

inc reaches a minimum value of 0.75 (Fig. 3a),
which is less than its statistical expectation of 1 (Bryson and Ho 1975). This corresponds
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to a reduction by 171 of the background cost value, after 18 iterations. However, the
minimal state seems to be reached within a few inner iterations since the first outer
update (iteration 6) yields a cost already close to the minimum value. When estimating
heat flux from SST data, Yuan and Rienecker (2003) also reportthat most of their
optimization takes place in the first 5 iterations, after which further decrease is difficult
to obtain. The efficiency of this convergence is closely related to the existence of a
direct linear relationship between the observed thermal content evolution and the surface
heating expressed in (6). The surface temperature residuals have a slightly negative mean
value -0.03◦C, with a standard deviation 0.07◦C almost twice as large as the prescribed
observational error 0.04◦C. This is probably due to the strong biases in our background
setting Talagrand (1998), but the residuals match fairly well the assumed Gaussian error
distribution (Fig. 3b).

(ii) The optimal mean heat flux.
The mean of the heat flux analysis incrementδQa is shown in Fig. 2d. Its correlation

with the true forcing fields reaches0.92. Compared to the thermal content method (Eq.
6), the estimated fluxes are enhanced in the strongly dynamical regions, and now look
similar to truth. This demonstrates the superiority of the 4D-Var method, which takes
dynamics into account in reconstructing the heat flux.

This good agreement is modulated by a relatively large r.m.s. error of17W/m2. As
suggested by residual satistics, the latter may be due to thestrong bias imposed in the
background state. Using a 4D-Var method in identical twin data experiments, Zhuet
al. (2002) tried to recover the nonsolar heat flux over a few days from a background
obtained by shifting the truth with a bias of90W/m2. They assimilated simulated
temperature observations every 30min at high vertical resolution. Their r.m.s. estimation
error is as large as ours, which they attribute to the ill-posed nature of the inverse heat
flux problem.

Some noise also occurs in the dynamically sensitive regionsdiscussed above, with
geographical scales close to the model resolution. This maybe due to the effects of
nonlinearities, which may violate the TL approximation over the three month integration
window used here, and lead to isolated poor values of the incremental gradient. This
may also indicate a stability issue, a common feature associated with ill-posed inverse
problems (Tichonov 1963, Navon 1997, Zhuet al.2002). In other terms, large analysis
error can be attributed to locally noisy estimates of the unknown fields. However, this
problem does not appear critical in our situation, and couldbe efficiently solved by
smoothing the increment by introducing non diagonal terms (correlations) inB(q). If
not fundamental in the current study, the introduction of correlations within the flux
background error specification would be needed for more realistic studies, as is typically
done when controlling initial conditions (seee.g.WVA and Weaver and Courtier (2001).

We conclude that the seasonal mean heat flux is identifiable byseasonal mean
hydrological data. Even if this conclusion may be conditioned by the above limitations,
there is no doubt that such data contain pieces of information appropriate to constrain
the mean air-sea heat flux within the inverse system.

(d) Intraseasonal heat flux retrieval.
No subseasonal information is contained in our twin data. However, fluxes are

controlled monthly, and one could thus hope to retrieve intraseasonal variability fea-
tures by combining constraints from data and model dynamics. Some features of this
reconstructed history are indeed encouraging. The monthlyincrements are reasonably
well correlated with truth (0.69, 0.93, and0.65), as illustrated in their zonal means
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(Fig. 4). Amplitudes are poorly retrieved mainly since theyare biased, and this may be
related to the poor background state in our experiment. We can therefore conclude that
some part of the intraseasonal variability has been retrieved. This result is necessarily
achieved using the model dynamical constraints, which highlights a strength of the 4D-
Var framework.

A noticeable feature is that the fourth field hardly deviatesfrom its background
value. This can be explained by its short impact on the ocean trajectory (one month),
while memory from previous heat flux fields are kept at least two months by the system.
As a consequence, the last field’s contribution must be redistributed over the previous
ones, which can not be expected to be highly reliable.

(e) Freshwater flux and joint thermohaline fluxes identifiability.
In our rigid lid model, the freshwater flux is introduced as a virtual salt flux

SSS × (E − P ) which immediately impacts the ocean surface salinity in a linear
local way similar to the influence of heat flux on temperature discussed in section
(b). Therefore, the freshwater flux is expected to have a weak impact on temperature,
which indeed is the case (not shown). The identifiability of seasonal and intraseasonal
freshwater fluxes (Fig. 5) turns out to be similar to thoses obtained for the heat flux in
the previous sections.

Moreover, joint estimation of heat and freshwater fluxes leads to increments that
are similar to those obtained when the fluxes were estimated separately (not shown).
We conclude that mean thermohaline fluxes are jointly identifiable by our data. The
explanation for this result is given by the absence of cross sensitivity of both controls
upon observed quantities in the present situation;i.e., to first order, the heat flux only
influences temperature, and the freshwater flux only influences salinity. The assimilation
system thus does not have any other choice to fit the observations than to adjust the fluxes
as it did in the separate estimation experiments. This meansthat the heat flux is only
constrained by temperature observations and that the freshwater flux is only constrained
by salinity observations in our configuration. Although temperature and salinity data
were both assimilated, only the temperature information was actually used to optimize
the heat flux, and only the salinity information was used to optimize the freshwater flux.
This was further confirmed by the failure of an additional experiment (not shown) where
we tried to estimate heat flux retaining salinity data only.

( f ) Discussion.
We could probably have obtained the same results with less data. It is likely that

mixed layer temperature observations or maybe even only SSTdata would be sufficient
to properly constrain the heat flux, as suggested by our thermal content computation or
by mixed layer models Zhuet al. (2002). Our results suggest that upper ocean salinity
data probably constrain the freshwater flux in a similar way.Furthermore, it is presum-
ably not necessary to estimate these fluxes with high horizontal resolution for climate
studies since relevant patterns have large horizontal scales. Therefore horizontal data
density could be relaxed, even if dynamically sensitive areas still probably need to re-
main better sampled. Yet the observing network structure would then be reflected on the
resulting increments, unless theB(q) matrix is improved by introducing autocorrelations
in both the background heat and freshwater errors.

In contrast, recovering intraseasonal history obviously requires better observational
time sampling than provided by a seasonal climatological dataset. SST data and ARGO
profiles sample the water column thermal content and its variability at high frequency,
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and look therefore to be a most promising dataset to estimateheat flux. Freshwater
flux estimation would also benefit from the use of future global SSS data;e.g. from
the satellite SMOS mission (Fontet al.2000). However, the choice of zero background
fluxes is probably critical to our results, and it is likely that a reduced background bias
would improve the estimations. Note that in real data experiments, background heat
fluxes are better known, and only corrections to them are sought. This may reduce the
problem of estimating the fluxes in the last month of the assimilation window.

However, the results obtained in this section demonstrate that our data can effec-
tively constrain the thermohaline fluxes, and that it is worth moving to real data appli-
cations (see Deltel (2002)).

4. CAN HYDROLOGICAL DATA LEAD TO WIND IDENTIFIABILITY ?

(a) Wind stress identifiability.
In our assimilation system, to estimate the wind stress(τx, τy) is a priori a more

difficult problem than to estimate heat and freshwater fluxes. While the number of
data remains unchanged, there are twice as many unknowns as when each of the
thermohaline fluxes was estimated. Moreover, wind stress acts upon ocean currents
through a boundary condition so that their effects upon hydrological fields results from
nonlinear heat and freshwater advection by Ekman transportor pumping. It is thus not
obvious that indirect data of this kind can allow for wind stress identifiability, a question
we now investigate.

As before, we begin by exploring ocean sensitivity to wind stress fields. Com-
parison of (+) and (−) trajectories shows that the wind stress generates currents
over the uppermost three grid levels (figure not shown), indicating a model Ekman
layer depth of aboutδEk = 35m. As expected, the associated transport perturbation
∆M =

∫ 0
−δEk

(u+ − u−) dz is oriented to the left of, and nearly perpendicular to the

wind direction (Fig. 6a). In addition, the zonal integral
∫ east
west ∆M(x, y) dx correlates

with the theoretical transport
∫ east
west

−τx(x,y)
ρ0f(y) dx given by Ekman theory by more than

0.99 (Fig. 6c). The numerical ocean response to wind stress forcing is thus fully ex-
plained by Ekman theory, which in turn suggests how assimilation will be able to work
to bring the model nearer to observations.

South of40◦S, heat advection is principally due to horizontal Ekman transport.
Westerly winds give rise to strong northward Ekman transport, cooling down the Ekman
layer δEk up to 3◦C (Fig. 6b). This cooling is in agreement with the northward SST
gradient in(−) and an advective 3◦ latitude meridional scale, roughly computed from
maximal Ekman velocities (4cm/s at50◦S). Moreover, upward Ekman pumpingwEk =
curlz τ

ρ0f = O(10−6m/s) over one season gives an estimated10m advective vertical scale
(close to one model level), which explains the cooling observed beneath the surface
cold tongue anomaly (green in Fig. 6b). Finally, noticeablewater downwelling occurs
(Fig. 6a,b) along the south-eastern coast of the basin, caused by local easterly wind
patterns.

The ACC barotropic flow is prescribed by the OBC algorithm andis thus inde-
pendant of the wind stress. This is not realistic however, since the ACC properties are
substantially determined by the wind forcing. Note that theSverdrup balance is unlikely
to be valid in the Southern Ocean: the ACC characteristics are set by a complex inter-
play between wind forcing, eddy forcing, and topographic effects (Tansley and Marshall
2001, Gentet al. 2001), which makes them strongly dependent on wind forcing,with
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a time scale possibly as short as 9 days (Clarke 1982). Yet we need OBCs to realisti-
cally simulate a basin like the South Atlantic. No simple alternative to this obstacle is
available, as the problem is mathematically ill-posed (Bennett and Kloeden 1981). It is
therefore important to keep in mind that a significant part ofocean sensitivity may be
inhibited in regional models like this one.

North of 40◦S, permanent anticyclonic winds sustain the oceanic subtropical gyre
along with downward Ekman pumping. On a seasonal mean time scale, the latter in-
creases temperature at most by0.2-0.7◦C below the Ekman layer (5-th model level, yel-
low in Fig. 6b), but still by about0.05-0.1◦C at400m depth, which remains significant
as compared to our idealized observation error0.02◦C at the same depth. On the other
hand, subtropical regions are weakly influenced by OBCs, andthus the gyre barotropic
flow becomes sensitive to wind forcing. On the seasonal mean time scale, the western
boundary current’s (WBC) transport is indeed changed by 7.5Sv between(+) and(−)
trajectories. Lastly, coastal upwelling occur along the Benguela and Brazil coasts.

The above discussion indicates that hydrological sensitivity to wind stress can be
strong enough to be depicted by signals exceeding observational errors in our idealized
context. There are thus good indications that our data mightbe appropriate to identify, at
least partially, wind stress patterns by 4D-Var. The assimilation set-up is similar to the
one for thermohaline flux experiments, with large constant background errors defined
as four times the standard deviation of the true fluxes (σb

τx
= 4 × 0.08 = 0.32N.m−2,

σb
τy

= 4 × 0.03 = 0.12N.m−2). Interestingly, we find that the seasonal mean wind stress
is poorly retrieved by the assimilation system (Fig. 7a,b).The convergence was slow
and required twice as many iterations as needed for estimating thermohaline fluxes to
achieve an acceptable level of convergence. Most remarkably, the meridional stressτy

hardly deviates from its zero background value. The absenceof a significant sensitivity
of the mean hydrological fields with respect to meridional stressτy alone (compared
to observational error) might explain this failure. On the other hand, zonal wind stress
τx is unequally reconstructed over the basin. North of45◦S, an excellent correlation
of 0.96 is found with truth, thus demonstrating the ability of our system to extract
Ekman pumping information from the data. This partial identifiability of the wind
stress may be related to the Sverdrup equilibrium, which etablishes at mid latitudes
a linear balance between the wind stress field and the meridional transport of water
columns. The latter is indeed observed in our hydrographic data, via geostrophy.
Consequently, the barotropic WBC is properly reconstructed. Furthermore, westward
zonal wind stress patterns associated with upwellings in the Benguela and Brazil coastal
regions have been correctly reconstructed as well (not shown). Reconstructed wind
stress at latitudes higher than66◦S also correlate well with truth (0.92), showing that the
southern downwelling mechanism was properly captured by the system. By contrast,
this correlation drops down to0.53 within latitudes40-55◦S, because of erroneous
estimated eastward wind stress. On the seasonal mean, the latter is incorrectly positioned
as well as underestimated in strength and meridional extent.

From these results we conclude that the seasonal mean wind stress can not be
fully identified by mean hydrological data, and that this problem is strongly ill-posed
in our configuration. Recalling the sensitivity issue related to the OBC specification,
one can argue that part of our conclusions are restricted to the scope of regional models
like ours. This is not relevant to theτy estimation problem however. In addition, it is
likely that better background information might help to findthe correct solution, which
would be the case in realistic data assimilation experiments. However, it seems risky to
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trust wind stress estimation by 4D-Var in our configuration,and this warning is largely
corroborated by the results in the next section.

(b) Simultaneous estimation of wind stress and thermohaline fluxes.
By controlling all air-sea fluxes together, we can at best expect to reproduce

the results from the separate identification experiments inthe previous section. Joint
estimation can thusa priori not give satisfactory results regarding wind stress forcing.
The experiment (not shown) actually degrades the positive results acquired when only
thermohaline fluxes were simultaneously identified, and none of the fields can be
properly recovered. The large increase in the number of control parameters in the
estimation problem thus leads to an ill-posed, physically underdetermined problem
unless more appropriate information is given.

We have just shown that badly constrained degrees of freedomcan prevent well
constrained ones from being improved. We now illustrate howa perfectly known
control variable, which is weakly constrained by the data, can be substantially de-
graded. In this experiment, wind stress along with heat fluxes (Q, τx, τy) are esti-
mated. Background winds stresses are chosen to be perfect, whereas heat fluxes are
defined by austral autumn fields, introducing a seasonal shift in heat flux forcing with
respect to the true fluxes which are defined by summer fields. Inaddition, the back-
ground error standard deviations are now smaller (σb

Q = 80W/m2, σb
τx

= 0.08N.m−2

andσb
τy

= 0.03 =N.m−2), which brings us closer to a realistic 4D-Var data assimilation
experiment set-up. The estimated seasonal mean heat flux increment qualitatively agrees
with truth (Fig. 8b), but is significantly underestimated byabout10 to 30W/m2 (on
zonal mean). At the same time, it is found that the wind stressis modified by a relative
perturbation of14% r.m.s., a noticeable degradation of the originally perfect field. The
wind stress amplitude is reduced, and its maximum is shiftedto the south (Fig. 8a).
Thus, to warm up ocean surface temperatures, a reduction of northward Ekman heat
advection takes place instead of enhanced positive heat fluxinto ocean. In other words,
a heat flux estimation error is balanced by an unrealistic wind stress increment.

(c) Discussion.
In this section, we showed that coastal upwelling observations allow us to recover

the generating wind stress. This could be partly expected since the associated hydrolog-
ical perturbations are large, and since no other wind mechanisms are likely to generate
them. An apparently stronger result is that the weak Ekman pumping signal observed
in hydrology can also be converted into a zonal anticyclonicwind pattern. As in the
thermohaline flux experiments, improved wind stresses should be obtained using a better
background state and time-distributed data to introduce wind evolution information into
the system. Howeverer, it is not obvious that our Ekman pumping result can apply to real
data experiments. In the latter framework, observation (instrumental and representative-
ness) errors could make the upward pumping oceanic signal hardly discernable from the
observations.

On the other hand, we demonstrated above the strong sensitivity of ocean surface
currents to wind stress, which can be explained by analogy with the hydrology sensitiv-
ity to thermohaline fluxes. This suggests that surface current observations may therefore
be more appropriate than hydrological data to identify windstress forcing. Note that
altimeter data would provide a constraint on the surface geostrophic currents. The latter
is already implicitly used in hydrological data like ours, whereas wind induced Ekman
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currents are ageostrophic. Hence altimeter derived surface current data are probably not
appropriate to the wind stress inverse estimation problem.

We recommend therefore to take extra care when controlling wind stress forcing,
unless available data have explicitly been shown appropriate for this task. Note how-
ever that improving the wind stress is probably not as crucial to ocean modelling as
improving the thermohaline fluxes, since satellite scatterometers provide wind fields of
relatively high quality while heat and freshwater fluxes areeither calculated by help of
bulk formulae with large uncertainties or taken from atmospheric models where they are
generally known to be poorly reliable.

5. SUMMARY AND CONCLUDING REMARKS

(a) Summary
In this paper, we have investigated a method for estimating air-sea fluxes from

ocean data, which does not require the use of bulk formulae and can take observation
and background errors into account. More precisely, we havebeen concerned with the
identifiability of climatological forcing fluxes using seasonal hydrological data, in an
idealized framework where data are perfect with respect to the ocean model and where
all estimated fields have a known true value. The estimation procedure relied on a 4D-
Var algorithm, which makes use of the adjoint of a primitive equation ocean model
to minimize a cost function measuring the distance between observational and model
information. Monthly mean forcings were taken as control variables, and the ability of
the assimilation system to retrieve them at different time scales (seasonal, monthly) by
use of our data was discussed. A stringent framework was chosen, where no usefula
priori information about fluxes was assumed available. At the same time, data were
perfect with respect to the model dynamics, and no simulatedobservational noise was
added to them. Other model parameters, such as initial conditions and open boundary
forcings, were also assumed perfectly known.

The ocean sensitivity of the model equivalent to the observations with respect
to the surface fluxes was first explored. The stronger this sensitivity, the better the
identifiability of the fluxes from the data. It was found that the seasonal mean heat and
freshwater fluxes could be identifiable by such data, regardless of whether they were
estimated separately or jointly. The associated intraseasonal variability was partially
recovered. This was particularly surprising since the datawere seasonally averaged,
and was attributed to the dynamical evolution constraints enforced by the OGCM
within the cost function. Data with higher temporal sampling would be necessary to
improve the intraseasonal retrieval. These results demonstrate nonetheless that it would
be meaningful to control the thermohaline fluxes when movingto real data experiments.

By contrast, the wind stress was poorly estimated from hydrographic data. Seasonal
mean zonal stress could be properly recovered in the subtropical gyre and in coastal
upwelling areas, whereas the westerly winds were erroneously reconstructed. Further-
more, meridional stress could not be recovered, even partially. It was suggested that the
failure to estimate westerly winds might be an artifact of the open boundary specifica-
tion, which artificially removes any barotropic sensitivity to wind forcing in the ACC
area. This points out that regional models, though necessary for many applications, may
give rise to a number of critical issues that we must be aware of. In addition, it was
suggested that upper ocean current observations might be more appropriate to wind
stress estimation than hydrological data.
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Whenever wind stress was estimated, the assimilation system was unable to recover
the true solution, and convergence was difficult to achieve.A perfectly known back-
ground wind stress field was even shown to be significantly degraded in order to balance
a heat flux estimation error. This showed that in our setting,the inverse wind stress
estimation problem is physically ill-posed, even though byintroducing a background
term it always possesses a mathematical answer. In other words, different forcing fields
can drive the ocean model close to the observations (in the sense of Eq. 5), because
of the nullspace of the linearized operatorG which inhibits identifiability. Not enough
information is given to the system to allow it to distinguishbetween possible solutions,
and further examination of optimal cost values (not shown) reveals that a minimal norm
solution can be picked out, as enforced by the background term.

(b) Concluding remarks
Some of our conclusions related to OBCs suggest that it wouldbe worth estimating

open boundary parameters. Optimizing hydrological fields along open boundaries can
indeed prove beneficial in real data experiments if the prescribed fields are not fully com-
patible with interior observations (Deltel 2002). In our configuration, improved fields of
this kind only have a local impact restricted to the neighboorhood of OBCs, since the
advective scale due to ACC over one season does not exceed a few hundred kilometers.
On the other hand, one may be tempted to also optimize prescribed barotropic fields, like
the ACC transport. Such corrections can again improve consistency with interior data,
and would impact the whole basin. However, the results of Zhang and Marotzke (1999)
and Ferron and Marotzke (2001) suggest, in a similar framework, that hydrographic data
badly constrain boundary velocities. Moreover, estimating these fields can not be helpful
in the wind stress identification process, unless they become prognostic variables instead
of being introduced as forcings.

On the other hand, when estimated in this study, all background forcing errors were
assumed to be mutually uncorrelated, which is a crude approximation to reality. Actual
correlations result from a complex balance, and are difficult to specify. The ocean was
also considered to be purely forced by the atmosphere, so that no coupling processes
between the two fluids were involved. Relaxing these assumptions was beyond the scope
of this paper.

Another limitation of this study is that we have been investigating only the austral
summer season, restricted to the South Atlantic basin. Therefore, our findings cannot
probably be extended to strong winter cooling events with associated oceanic convec-
tion, or to very different dynamical regimes like those in the equatorial area, which both
deserve specific investigation.

An important issue raised by simultaneous estimation of initial conditions and
forcings is that the number of control parameters would be significantly increased.
One can wonder whether the assimilation system could then discriminate, within the
data, relevant contributions to both substantially different control sets. Our results
demonstrate that the system might erroneously attribute, for example, the Ekman
pumping signal to an initial condition misspecification instead of wind stress error,
because of relative sensitivity reasons. Note that a long enough assimilation window
could help separate out these contributions, since only theinitial ocean trajectory
is probably most sensitive to initial conditions whereas forcings control the model
trajectory at later times (Bonekampet al. 2001). However, in their 1D twin data 4D-
Var experiments, Zhuet al. (2002) successfully estimate initial conditions along with
heat flux (over 7 days), which provides an indication that this procedure might work in
a more general OGCM context, at least whenever oceanic advection remains weak.
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To conclude, we recall that our OGCM was applied as a strong constraint, and
that neither observational noise nor representativeness error were added to the data. A
weakness when extrapolating our estimation approach to real data experiments is that
the model strong constraint hypothesis would be violated. In addition, the observation
error covariance matrixR would need to be revisited. Observational errors would
be significantly larger, and the complicated error correlation structures introduced by
objective mapping to construct a climatological hydrographic database could need to
be accounted for, to avoid overweighting individual observations (Daley 1991). A
weak constraint approach would make it possible to explicitly take model error into
account within the variational framework (Bennett and Thorburn 1992, Courtier 1997,
Bennettet al. 1998, Bennettet al. 2000). However this would largely increase the
underdeterminacy of the problem, which is obviously not affordable with a dataset like
ours, and may also be impractical with currently available oceanic observations.
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Figure 1. Mean stream function of the spin-up simulation (Unit: Sverdrup, contouring interval:
10 Sv)
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Figure 2. The surface mean SST impact (a) (denoted byθ+ − θ− in the text) of the ERA15 heat
flux forcing (b). The mean heat flux inverse estimation by (c) thermal content and (d)
4D-Var methods.
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Figure 3. Convergence and residuals: The cost function (a) is scaled by2/p to have the unity
mathematical expectation. Large circles indicate outer loops. The surface temperature
residuals are illustrated in (b). The squares show the distribution of residuals after
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Gaussian shape shows the observation error probability density function.
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Figure 5. Seasonal freshwater fluxE − P (zonal mean): the dashed line shows the 4D-Var estimation; the solid
line illustrates the true field. The background state(E − P )b is zero.
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