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ABSTRACT

An important part of ocean state estimation is the design of an observing system that allows for the efficient
study of climate related questions in the ocean. A solution to the design problem is presented here in terms of
optimal observations that emerge as singular vectors of the modified data resolution matrix. The actual com-
putation is feasible only for scalar quantities and in the limit of large observational errors. Identical twin
experiments performed in the framework of a 18 North Atlantic primitive equation model demonstrate that such
optimal observations, when applied to determining the heat transport across the Greenland–Scotland ridge,
perform significantly better than traditional section data. On seasonal to interannual time scales, optimal ob-
servations are located primarily along the continental shelf and information about heat transport, wind stress,
and stratification is being communicated through boundary waves and advective processes. On time scales of
about 1 month, sea surface height observations appear to be more efficient in reconstructing the cross-ridge heat
transport than hydrographic observations. Optimal observations also provide a tool for understanding changes
of ocean state associated with anomalies of integral quantities such as meridional heat transport.

1. Introduction

Through spaceborne measurements and through glob-
al programs such as the World Ocean Circulation Ex-
periment (WOCE) and Tropical Ocean and Global At-
mosphere (TOGA), we now have a data-rich environ-
ment that is unprecedented in the history of ocean re-
search and includes altimetry (Fu and Cazenave 2001)
and a global profiling float program (ARGO; see Roem-
mich and Owens 2000) as the backbone of a climate
ocean observing system. However, to answer many sci-
entific questions, our database will remain insufficient
(in time and space) and many quantitative climate stud-
ies must rely on a model–data synthesis (data assimi-
lation) as a basis to compute observable and unobserv-
able climate aspects. Required for climate studies are
assimilation methods that are rigorous in a mathematical
sense and take into account errors in data and the model
alike without violating trustworthy dynamical princi-
ples. Among these approaches is that of the Pontryagin
principle, usually known as variational data assimila-
tion, or the adjoint method. Only then can we compute
important characteristics such as the variability of oce-
anic transport properties, of transport convergences, and
other aspects of the large-scale circulation, such as
changes of the meridional overturning circulation and
its impact on climate.
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The traditional use of the adjoint procedure in ocean-
ography is that of data synthesis. However, an important
question with respect to a global synthesis is that of the
design of an optimal observing system, that is, the de-
termination of the combination of various different ob-
servations and their geographical distribution that con-
strain ocean circulation models in the most effective
way. Assessing an observing system in the context of
the adjoint method is equivalent to assessing the impact
of specific data types and their location on the conver-
gence rate of the optimization and to evaluating the
sensitivity of the converged solution to additional data.
Although any such observing system design will criti-
cally depend on the specific scientific question that leads
to the formulation of the cost function, many features
of the ocean’s flow field are large scale, influencing
climate through integral quantities. It is therefore hoped
that any single basis for a climate observing system will
impact many different climate aspects through the com-
bination (in space and time) of ocean observations with
model dynamics.

To date only a few studies exist that have approached
the design of an observing system in a systematic way.
Among those are Barth and Wunsch (1990), who em-
ployed a simulated annealing method for the configu-
ration of an acoustic tomography array, and Schröter
and Wunsch (1986), who used inequality constraints as
a cost function for which the sensitivity of the cost
function to data is represented by adjoint sensitivities.
This approach describes the framework within which
the following recent works of Marotzke et al. (1999)
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and Lee et al. (2002) can be interpreted. Both publi-
cations suggest that the adjoint sensitivities of the heat
transport to model state variables (e.g., temperature, sa-
linity or velocity) may be used to identify regions in
which hydrographic measurements or the knowledge of
surface forcing are key for determining changes in the
heat transport itself. Adjoint sensitivities determine the
relative importance of specific control variables (e.g.,
initial conditions or forcing) on a specified scalar quan-
tity, such as meridional heat transport. For instance,
anomalous heat transport could be caused by either ki-
nematic or dynamic anomalies of the ocean state (Mar-
otzke et al. 1999) or can originate from anomalous forc-
ing conditions (Lee et al. 2002).

The value of adjoint sensitivities comes from the abil-
ity to predict the future evolution of the ocean state or,
more specifically, a certain aspect of the circulation,
from observations collected in the past. Generally it is
of interest to infer integrative quantities such as trans-
ports and it is often much easier to deduce anomalies
of these quantities from their effects on the ocean state.
This classical hindcast situation is of general importance
for oceanographic applications and design methods need
to be developed in this framework. Adjoint sensitivities
are helpful for observing system designs only as far as
the controls can be identified directly with data [e.g.,
Marotzke et al. (1999) identifies sensitivities to the tem-
perature initial condition with preferred locations for
temperature observations]. Moreover, those sensitivities
do not take into account uncertainties in the observa-
tions or the model. For this reason a fundamental dif-
ference exists in how data are used in state estimations
and how the link to sensitivities is established.

In contrast to ocean applications, the recent interest
in observing system design in atmospheric science is
mainly driven by the goal of improving short-term
weather forecasts, and in general, existing methods at-
tempting to reduce the variance of the error. The concept
of adaptive observations was first introduced by Snyder
(1996). Various techniques exist including singular vec-
tors (Palmer 1998), adjoint sensitivities (Baker and Dal-
ey 2000), Kalman filter methods, and others (Berliner
et al. 1999).

The purpose of this paper is to discuss an ocean ob-
serving system design that determines the observations
that are most influential to the estimation of specific
circulation aspects using the variational estimation ap-
proach. Although the method presented is derived in
general and therefore universally applicable, we focus
in a first application on the determination of observa-
tions that in a model simulation allow us to monitor in
a most effective way the heat transport across the Green-
land–Scotland ridge.

Exchange processes across the Greenland–Scotland
ridge (Hansen and Østerhus 2000) are important for the
determination of hydrographic conditions south and
north of the sills and more generally the maintenance
of the meridional overturning circulation (MOC). The

Denmark Strait Overflow Water (DSOW) and Iceland–
Scotland Overflow Water (ISOW) contribute to the for-
mation of North Atlantic Deep Water (NADW) that
moves equatorward at depth and affects the thermo-
haline structure of the global ocean. Although the role
of the Greenland–Iceland–Scotland (GIN) Seas in
NADW formation and in determining our present and
future climate seems to be widely accepted (Dickson
and Brown 1994), a detailed understanding of 1) the
degree of transport variations and 2) adjustment pro-
cesses of the flow over the Greenland–Scotland ridge
(GSR) to changing forcing conditions over the GIN Seas
has not yet been established. However, several indica-
tions exist for longterm changes of the overflow char-
acteristics and of the hydrography in the adjacent re-
gions (Dickson et al. 2002; Bacon 1998; Hansen et al.
2001). Biastoch et al. (2003, hereinafter BKS) discuss
the sensitivity of that transport to changes in wind forc-
ing over the subpolar gyre and to cross-ridge density
gradients. We here determine in a model simulation the
observational data base required to monitor changes of
transports across Greenland–Scotland ridge.

The structure of the paper is as follows: section 2
explains the concept of optimal observations; the model
framework in which the concept will be applied is sum-
marized in section 3. In section 4 we discuss the inter-
annual to decadal variability of the cross-ridge trans-
ports as they follow from a 50-yr-long model simulation.
In section 5 a set of observations is then constructed
that are required to determine those changes in the best
possible way. In section 6 the efficiency of optimal data
distribution is finally tested in an assimilation experi-
ment, and the relative importance of different obser-
vational variables is discussed in section 7.

2. The concept of optimal observations

To introduce the notation we will start with a brief
summary of variational data assimilation and then pro-
vide a compact description of optimal observations, that
is, observations that constrain a model in an optimal
way. For a detailed account on inverse modeling in
oceanography see Wunsch (1996), Fukumori (2001),
and Bennett (2002).

Define an ocean general circulation model (OGCM) as

]x
5 f (x, a), (1)

]t

where x is the model state, and a is a vector of control
parameters. Observations are related to the model state
through the observational matrix E as

y 5 Ex 1 n, (2)

where n is the noise in the observations. In essence, the
estimation procedure finds control parameters (a) that
are required to bring the model trajectory into consis-
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tency with noisy observations and with an imperfect
model. Those control parameters usually include un-
certain quantities such as the model initial conditions,
surface and lateral boundary conditions, or model mix-
ing parameters.

To proceed, we linearize the model (1) around an a
priori set of control parameters, a o, which might be a
result of an already performed data assimilation or pa-
rameters from an existing simulation. Since we are
working in a linearized framework, it is crucial that the
parameter and the corresponding trajectory are already
skillful. The dependency of changes of the trajectory
dx to changes da may then be represented as

dx 5 Fda. (3)

Kleeman and Moore (1997), in their introduction to the
derivation of stochastic optimals, show how one can go
from a classical form (1) to this notation. Here da 5
a 2 ao, dx 5 x 2 xo, and xo is the model trajectory
for the set of control parameters ao. Changes in da, dx,
and dy are assumed here to be small. Similar to a linear
propagator, F is not just a local (in time and space)
operator, but involves a convolution of da in space and
time. For almost any application of ocean state esti-
mation which involves a full nonlinear OGCM, this re-
lation is too complex to be provided in a complete form.
However, an approximation of F was explicitly calcu-
lated by Stammer and Wunsch (1996).

The parameter improvement da might in principle be
written in terms of the observations y or, equivalently,
the initial model data difference

ody 5 y 2 Ex . (4)

The relation

da 5 Bdy, (5)

is the solution of the optimization problem which min-
imizes the norm of dy upon adding further constraints
and which is given in a more explicit form below. By
combining (5) with (3), a linear mapping from the ob-
servational space onto the space of model trajectories,

dx 5 FBdy 5 Ady, (6)

is obtained. The modified data resolution matrix A (EA
would be the true data resolution matrix) maps obser-
vations, expressed as model–data differences, onto tra-
jectory improvements of the model. It projects the in-
formation that is contained in the observations onto the
state or changes of the state to the extent to which they
are included in the model dynamics. Menke (1989) al-
ready proposed the resolution matrix as a useful tool
for experimental design.

Optimal observation locations are then described by
the singular vectors of the matrix W21/2 A, where W is
the inverse of the error covariance of the data and where
the square root is defined as the matrix, which has the
same eigenvectors as W and has the square root of the
eigenvalues of W as eigenvalues. The term ‘‘optimal’’

in this respect means that these observations would im-
pose maximal changes on the trajectory dx when assim-
ilated in a variational assimilation system. The matrix
W21/2 takes measurement errors for different data types
into account.

Calculating singular vectors of A 5 FB in the gen-
erality of the last paragraph is in general too expensive
in the context of a full nonlinear OGCM. We now restrict
applications to cases where the model state is projected
onto a single scalar quantity, h(x), such as meridional
heat transport in the ocean. Then the dependency of h
on the data y can be described by the gradient ]h/]y
itself, which corresponds to the resolution matrix A in
(6) since only one aspect of the trajectory x is evaluated.
Because the gradient is a vector, the calculation of sin-
gular vectors are not necessary. It can be written as the
product of two terms,

]h ]h ]a
5 ; (7)

]y ]a ]y

both will be treated separately in the following.
In the same way as the adjoint operator FT is used in

the adjoint model to calculate gradients of the cost func-
tion with respect to the parameter a, the first term

T T T
]h ]h ]x ]h

T5 5 F (8)1 2 1 2 1 2]a ]x ]a ]x

can be calculated by replacing the cost function with h.
Note that ]h/]x is in general a simple relation which
does not involve the integration of any dynamical mod-
el.

In order to approximate the second part, a more ex-
plicit expression for the inverse relation (5) is required.
With W and V describing the weight (i.e., inverse of the
error covariance of the data and the parameter), the cost
function can be written as

1 1
T TJ 5 (da) Vda 1 (y 2 Ex) W(y 2 Ex) (9)

2 2

and the Lagrangian follows as

L 5 J 1 l(dx 2 Fda), (10)

where we made use of the linearized version (3) of the
model.

A general solution that minimizes (9) can be written as

2121 T T 21 21 T Tda 5 V F E (W 1 EFV F E ) dy. (11)

(see Menke 1989). In this notation, no explicit model
error term is provided and model adjustments are only
obtained through the adjustment of the controls. The
actual measurement error part in W21 is, in general, far
smaller than acceptable model adjustments—
EFV21FTET could be neglected in comparison to W21

(note that W is the inverse observational error covari-
ance). For most applications, however, W21 is mainly
determined by representation and model errors which
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cannot be represented by the adjustment of the controls.
The latter can be, especially for coarse-resolution mod-
els, in the same order or even larger than the anticipated
model adjustments.

To proceed, we postulate that EFV21FTET can even
be neglected in comparison to W21. The relation (11)
is thus evaluated for the limit of large observational
errors (this includes the model error), which is in accord
with our initial assumption that the new state is close
to the first guess xo. While this assumption is made here
to allow a considerable simplification, it is justified be-
low by determining and testing the optimal observations
in identical twin experiments. With the latter approxi-
mation, (11) reduces to

21 T Tda 5 V F E Wdy. (12)

We note that (12) does not involve a full inversion of
the model, but only the calculation of weighted forcing
anomalies from one backward calculation of the adjoint
model FT that is driven by the weighted model–data
differences Wdy.

Combining (12) with (8) yields the final result

T T
]h ]h

21 T5 WEFV F . (13)1 2 1 2]y ]x

This relation involves the adjoint FT and a linearized
version F of the forward model. The construction of the
linearized model F is a similar effort as the construction
of an adjoint.

However, starting from a full nonlinear model we seek
to avoid this step by a finite difference approach. The
procedure starts with a forward run and the application
of one optimization step employing the gradient FT]h/
]x calculated by the adjoint to reduce h. The optimi-
zation step requires a normalization that involves the
weight V of the control parameter. The step size of the
parameter innovation da should be small enough to keep
the trajectory of the second forward run with the new
parameter set in the vicinity of the trajectory of the
initial forward run. This is easy to achieve since the
optimization algorithm estimates a step size. The dif-
ference of the resulting trajectories then approximates
the trajectory of the linearized model F. After projecting
onto the observations (matrix E) and scaling with the
weight W1/2, this difference is proportional to W21/2]h/
]y. In summary, the calculation of optimal observations
involves in principle a single iteration of the variational
assimilation procedure completed by a projection and
weighting step. It is a necessary condition that the cost
function h is actually reduced during this step, which
is, in general, guaranteed for small enough a step size.
Preferred data locations are identified by the extreme
values of the gradient W1/2]h/]y and observations at
those locations will reduce the difference of the quantity
of interest h maximally when used in a variational data
assimilation system. In addition to the choice of h and
y, optimal observations also depend on the configuration

of the data assimilation system. This primarily includes
the model configuration (e.g., resolution, domain, and
parameterizations), the choice of the weights, the set of
control variables, and the integration period. The rela-
tive error of data types (e.g., temperature vs salinity) or
of certain parameters (e.g., wind stress vs heat flux) is
of profound importance as it directly affects the im-
portance of certain data types.

The use of optimal observations does not necessarily
imply that the quantity of interest is estimated with the
greatest precision, which would certainly be the ultimate
goal for selecting observations. Optimal observations
defined by the maximum gradient criterion are, by def-
inition, preferable in cases where measurement errors
(including representation and model error) are large and
where only sparse data sampling, either in time or space,
is available. We finally note that the validity of this
method is limited by the linearization approach, which
implies an upper limit for the integration time when
applied with chaotic models (Li 1991; Stensrud and Bao
1992)—for example, eddy-resolving models.

3. Model framework

The design of optimal observations and their evalu-
ation of the performance in reconstructing a scalar quan-
tity requires all components necessary for ocean state
estimate—that is, the forward model, its adjoint, the
model–data interface, and an optimization procedure.
The numerical model was developed at the Massachu-
setts Institute of Technology (MIT) and is described by
Marshall et al. (1997). It is based on the primitive equa-
tions in a z-coordinate formulation and is operated here
in a hydrostatic mode with an implicit free surface and
partial bottom cells implemented [see Adcroft et al.
(1997) for details]. The model code is designed to allow
the construction of the adjoint using the automatic dif-
ferentiation tool TAMC (Giering and Kaminski 1998).
Marotzke et al. (1999) describe in detail the adjoint
model generation. Stammer et al. (2002, 2003; 2004,
manuscript submitted to J. Geophys. Res.) describe a
first global state estimation attempt with this model. The
quasi-Newton optimization algorithm used to calculate
the control vector change for each iteration is described
by Gilbert and Lemaréchal (1989).

The model used in this study covers the North At-
lantic Ocean from 208S to 768N and has a realistic bot-
tom topography based on the ETOPO5 (1988) dataset.
The spatial resolution is 18 in longitude and 18 cosf in
latitude. The thickness of the 37 vertical levels increases
smoothly from 11 m at the surface to 250 m below 1000
m. Closed northern and southern boundaries as well as
the Strait of Gibraltar have a 58 restoring zone attached
in which potential temperature and salinity are relaxed
toward monthly mean values of Levitus and Boyer
(1994) and Levitus et al. (1994). Horizontal and vertical
viscosity is parameterized by Laplacian mixing with val-
ues of 104 and 1023 m2 s21, respectively. The horizontal
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FIG. 1. Model bathymetry for the region around Iceland (contour interval 5 250 m) with the
main passages: Denmark Strait (DS), Iceland–Faore Ridge (IFR), and Faroe–Shetland Channel
(FSC). The section across which the heat and volume transports are calculated is marked.

diffusivity is set to 103 m2 s21; in the vertical a Laplacian
diffusivity of 1023 m2 s21 was prescribed in combination
with a convective adjustment scheme.

The model was forced with once per day surface heat
and virtual salt fluxes as provided by the National Cen-
ters for Environmental Prediction (NCEP)–National
Center for Atmospheric Research (NCAR) reanalysis
project (Kalnay et al. 1996). Daily shortwave heat flux
is prescribed separately from turbulent heat flux con-
tributions; its vertical profile of absorption is modeled
by the analytical formula of Paulson and Simpson
(1977) for prescribed time-dependent ocean water types
after Jerlov (1968). An additional relaxation term is in-
troduced to relax surface temperature and surface sa-
linity toward the monthly mean values of the climatol-
ogy with a 30-day time scale. Wind stress fields are
twice per day.

Equation (9) requires prior information about data and
model errors. The weights W and V are approximated
by the error profiles for temperature and salinity taken
from Levitus and Boyer (1994) and Levitus et al. (1994).
They smoothly decrease from about 18C and 0.27 psu
at the surface to 0.18C and 0.02 psu in depth. Error
values for the surface forcing fields were assumed to be
constant in space and time and were given values of
100 W m22, 1 3 1027 m s21 and 0.05 N m22 for the
heat flux, salinity flux, and the wind stress components,
respectively.

The model was started in January 1948 from rest with
initial conditions for temperature and salinity taken from

Levitus and Boyer (1994) and Levitus et al. (1994) and
integrated for 50 yr, driven by NCEP–NCAR reanalysis
fluxes at the surface. Years with specifically high or low
transport values were selected from this reference run
to serve as data in identical twin experiments. The set
of control parameters in all our experiments comprises
initial conditions for temperature and salinity and
monthly mean corrections for the forcing fields. All sub-
sequent experiments as well as the calculation of optimal
observations were carried out over the period of the
year 1990.

4. Greenland–Scotland ridge transports
simulations

In the next sections we will analyze observations that
are required to optimally determine variations of GSR
transport variations. But before we do so, we will first
provide a description of transport variations as they oc-
cur in the 50-yr-long model simulation and discuss un-
derlying physical mechanisms. The model bathymetry
for the area around Iceland depicted in Fig. 1 shows the
three main passages of the GSR, which are the Denmark
Strait (DS) east of Iceland, the Iceland–Faore Ridge
(IFR), and the Faroe–Shetland Channel (FSC) on the
west side. The sections across which the heat transport
is calculated are indicated by the bold lines in the figure.

The flow through DS and the subsequent down slope
flow along the topography depend on processes that are
not sufficiently resolved in most models and are essen-
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FIG. 2. Anomalies with respect to the 50-yr mean of GSR heat
transport (solid; 10 TW), southward volume transport through Den-
mark Strait channel (dashed; Sv [ 106 m3 s21), and 0.5 3 NAO
index (bold). All three curves were smoothed with a 5-yr running
mean to filter high-frequency fluctuations. The remaining signal ac-
counts for about 10% of the total variability. The mean heat transport
is 0.10 PW and the mean southward volume transport is 6.5 Sv.

FIG. 3. Anomalies of potential temperature u (8C) averaged ver-
tically over the water column and over the model domain for 608–
66.758N, 508–108W (dashed) and 66.758–708N, 508–108W (solid).
Both curves were smoothed with a 5-yr running-mean filter to remove
high-frequency fluctuations.

tially absent in our 18 version of the MIT model. Spe-
cifically, the z-coordinate formulation of the MIT model
represents the downward flow by consecutive convec-
tive adjustment steps which entails substantial mixing.
Water masses are therefore not conserved downstream
of the sill and a realistic hydraulic control overflow
mechanism is absent. However, the simulated transport
values may still be in a realistic range. For the present
model an estimated time-mean barotropic transport of
cold and fresh water through DS strait at 65.48N of 4.4
Sv (1 Sv [ 106 m3 s21) agrees well with results from
Käse and Oschlies (2000) of 4 Sv. At 65.58N it consists
of 1.9 Sv inflow (Irminger Current) and 6.3 Sv outflow
(East Greenland Current and overflow) of which 2.1 Sv
is below 2.28C. The net outflow through the DS is bal-
anced by inflow of the warm and saline North Atlantic
Current, which separates east of Iceland into the Faroe
Current (4.8 Sv) and the Shetland Current (2.2 Sv). The
eastern overflow follows two paths across the IFR and
through the FSC. From our model, the estimated total
across 648N below sQ 5 27.8 is with 0.8 Sv too low
[about 3 Sv; cf. with Hansen and Østerhus (2000)].

Given that details of the overflow and exchange pro-
cesses across the ridges are not simulated entirely re-
alistically by the model, the question arises as to what
extent optimal observations calculated with this config-
uration are of any practical value. To the first order the
study serves as a demonstration of the approach. Since
the main processes are present, the main patterns are
expected to be present, but details may be different.

Figure 2 shows that the GSR ridge heat transport
variability (northward heat transport is positive) is
closely linked to the atmospheric variability as described

by the North Atlantic Oscillation (NAO) index [i.e., the
difference of normalized sea level pressures (SLP) be-
tween Ponta Delgada, Azores, and Stykkisholmur/Rey-
kjavik, Iceland; see Hurell and van Loon (1997) for
details]. A high NAO index is associated with stronger-
than-average westerlies over the mid latitudes. It thus
leads to an enhancement of the negative wind stress curl
over the subpolar North Atlantic that in turn drives an
anomalous barotropic circulation around Iceland (BKS),
and thus determines the southward transport variability
through DS.

Net southward volume transport through the DS is
compensated by the northward volume flux of warm
water over the ridges east of the strait. Anomalies of
the southward volume transport through DS and the net
heat transport over the GSR are thus strongly correlated.
The maximum correlation between the NAO index and
the GSR heat transport as displayed in Fig. 2 is 0.80
with 0 time lag, whereas the correlation with DS volume
transport is lower (0.70) with a slight positive lag of
about 5 months.

Figure 2 indicates that NAO variability has spectral
power in the decadal band as well as in the interdecadal
band on periods longer than 50 yr. The transport curves
show less interdecadal variability but are noticeably af-
fected by the decadal-scale atmospheric variations. In
contrast, an interdecadal signal clearly dominates the
time-series of temperatures that are being advected
across the GSR. They are shown in Fig. 3 and represent
basin-averaged temperature anomalies north and south
of the sills. While a decadal signal is visible in the
northern time series, the southern basin varies primarily
on inter decadal periods. We note that both curves show
distinct time lags with respect to the NAO index, with
the temperature south and north of the sill leading and
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FIG. 4. Sensitivity of Feb meridional heat transport across the GSR with respect to the (left) 1 Jan temperature and (right) salinity initial
conditions. The section, across which the heat transport is calculated, is marked in yellow and blue. Regions with small sensitivities are
excluded from the graph. The red and green (positive and negative, respectively) isosurfaces are at 0.67 TW 8C21 and 2.0 TW psu21 for
temperature and salinity, respectively.

lagging the NAO index by approximately 4 yr, respec-
tively.

The basin-averaged temperature is affected by surface
heat fluxes. The figure suggests, however, that the basin-
averaged temperature anomalies to some extent are ac-
tually also an integrative consequence of anomalous
cross-ridge heat transports, even on interdecadal time
scales. Changes of the heat transport variability can be
caused by volume transport anomalies or by changes in
the advected temperature. It appears that on the decadal
period heat transport changes are mainly due to volume
transport anomalies, while the interdecadal variability
is mostly due to changes in the advected temperature
north and south of the sills. The latter are also affected
by the transport anomalies. Persistently lower northward
heat transports leads to decreasing temperatures north
of the ridge, the temperature anomalies averaged over
region north of the sills can (in our model, which has
closed boundaries) in fact be explained solely by the
diagnosed heat transport anomalies. Temperature anom-
alies south of the sill are probably more affected by
overturning and heat transport anomalies farther south.
Döscher et al. (1994) found a 3–4-yr time lag between
temperature changes imposed south at the boundary just
south of the sill and overturning anomalies at 488N. A
detailed interpretation of the processes involved in mod-
ifying the heat transport across the GSR is beyond the
scope of the present work. However, their interpretation
is important for an observing system design: anomalous
cross-ridge heat transports create water mass anomalies
that are subsequently carried around advectively in in-
dividual basins by the circulation. Observation points
located remote from the ridge have thus the potential
to record the history of the heat transport across the
ridge, which enables the hindcast from observations tak-
en afterward. The involved time scales probably enable
reconstruction of at least a part of the signal from ob-
servation taken even a few years afterward. However,

this will not be attempted in the following, which will
consider only shorter time scales.

5. Optimal observations for the February GSR
heat transport

What needs to be measured in the ocean to reconstruct
the previously described heat transport variations across
the GSR ridge that was described in the previous sec-
tion? To answer this question we use the concept of
optimal observations with the scalar h representing the
February 1990 heat transport across the GSR. Optimal
observations are equally suitable for forecast and hind-
cast situations, in fact their temporal distribution gives
insight into which mode will perform best. From the
discussion in the last section, it can be expected that
future downstream observations may play a role for the
determination of the heat transport.

In previous publications only adjoint sensitivities
were used to obtain insight into an observing system
design (e.g., Marotzke et al. 1999; Lee et al. 2002;
Schröter and Wunsch 1986). Sensitivities of the Feb-
ruary cross-ridge heat transport with respect to the 1
January temperature and salinity initial conditions are
shown in Fig. 4. The figure shows a positive–negative
sensitivity pattern for temperature and salinity between
Iceland and Scotland which leads to consistent dynamic
density anomalies. Both anomalies support an enhanced
northward volume flux into the Norwegian Sea and thus
an enhanced cross-ridge heat transport. In contrast, the
pattern of negative sensitivity north of Iceland is only
visible in temperature, which is passively advected
through the DS.

Figure 5 shows optimal observations as the gradient
of the GSR ridge heat transport with respect to monthly
mean temperature observations for selected months of
a 1-yr period. At the beginning of the assimilation period
the distribution of optimal observations is similar to the
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FIG. 5. Location of hydrographic observations that are optimal for inferring Feb meridional heat transport across the GSR. Red and green
surfaces are isosurfaces (positive and negative, respectively) of the gradient of the heat transport with respect to temperature observations
for the illustrated months. The gradient was multiplied with the square root of temperature error weight. The threshold for the isosurfaces
is at 63.5 TW. Regions without optimal observations, i.e., without any noticeable impact on the cost function, are not shown in the figure.
The section is marked in yellow and blue. The threshold value for the gradient ]h/]y was adjusted in order to have the same number of
hydrographic data at optimal locations as the number of data sampled in a monthly section. The total number of data points in the 12 months
is 7764 for temperature.
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sensitivities shown in the previous figure. However, in
February the signal of cold overflow emerges in the DS
and begins to descend south of it in later months. The
vertical mixing process and the descent to its final depth
is also visible for the following month as a negative
gradient gradually approaching deeper layers. In accord
with the enhancement of a barotropic cyclonic gyre
around Iceland that was discussed above, the cold DS
signal is associated with an enhanced cross-ridge heat
transport. The same is true for less southward IS over-
flow water which is documented by the positive gradient
south of Iceland. The fact that the patterns are south
and not north of the sill documents that there is no net
northward flow through this strait. Negative gradients
close to Scotland are due to a local wind-driven over-
turning cell east of Iceland. Because of the weighting
with the temperature error profile, the distribution in
Fig. 5 also gives information about size of the signal
one could detect with these observations. The threshold
value of 3.5 TW was selected to obtain the same number
of optimal observation as on a monthly section for the
performance comparison in section 6. Observations
within the isosurfaces are thus likely to detect a signal
smaller than 3.5 TW.

If one were to compute the December heat transport,
sensitivities could then be calculated for all months of
the year similar to Schröter and Wunsch (1986). How-
ever, they would still differ from optimal observations
since the latter reflects only the influence of possible
changes in the forcing fields and in the January initial
conditions. Adjoint sensitivities describe the influence
of many arbitrary changes of the hydrography that may
not be represented by changes in forcing fields and Jan-
uary initial conditions.

Optimal observations are related to adjoint sensitiv-
ities as given by (13): the adjoint sensitivities are
weighted by error matrices and propagated by the lin-
earized forward model. Therefore, adjoint sensitivities
describe only the causes of anomalies, whereas opti-
mized observations blend causes and effects. For Jan-
uary, the month where the integration starts, both fields
show similar patterns along the eastern boundary; how-
ever, optimal observations emphasize the deeper layers
due to the additional weighting with the error matrices.

The distributions of optimal observations for the pe-
riod after February are determined by the cross-ridge
heat transport anomalies and subsequent advective pro-
cesses. Optimal observation sites are very rare in Jan-
uary but accumulate toward the end of the year. This is
because hydrographic measurements taken in December
are influenced by the flow field throughout the entire
year and thus provide maximum information about wind
stress anomalies that, in turn, influence the cross-ridge
heat and volume transports in February. January tem-
perature anomalies influence the February cross-ridge
heat transport kinematically and provide only little (or
no) information about the wind stress forcing field. Jan-
uary density anomalies are of dynamical importance,

for they enhance the inflow into the Norwegian Sea, but
the effect of the enhanced exchange on the hydrography
carries more important information about the cross-
ridge transports. Because of the dominant control by
wind stress conditions, the GSR heat transport has a
large component that is not predictable from kinematics
alone [in contrast to the suggestion of Marotzke et al.
(1999) for the heat transport at 298N].

6. Reconstruction of the GSR heat transport

In the previous section we discussed the distribution
of optimal observations and their relation to physical
mechanisms in the ocean. Here we will now provide a
‘‘proof of concept’’ by demonstrating in a twin exper-
iment setup that optimal observations are indeed most
efficient in reconstructing the GSR heat transport. To
that end, hydrographic model fields taken from year
1990 serve as simulated data. The cost function is pro-
portional to the quadratic model–data misfit of temper-
ature and salinity at the respective positions where ob-
servations exist and will be minimized with the adjoint
method. The assimilation period for all experiments is
1 yr. The control parameter set for the variational as-
similation system comprises initial hydrographic con-
ditions and monthly mean corrections for the surface
flux fields. The first guess for the forcing and initial
conditions were taken from model year 1965. The goal
of the experiments is to reconstruct the heat transport
across the GSR in 1990. The years 1965 and 1990 were
selected since they represent extreme conditions of
anomalous low and high GSR heat transport values (cf.
Fig. 2).

We will discuss in this section the success of recon-
structing the GSR heat transport based on three different
data distributions: 1) temperature (T) and salinity (S)
over the ridge only as would be the case for a hydro-
graphic section; 2) optimal observations of T and S,
which in most cases are located away from the location
where the heat transport is being estimated; 3) T and S
on the full model grid (only for the case of reconstruct-
ing February heat transport). To enable a quantitative
comparison, the number of hydrographic data at optimal
locations was chosen to be the same as the number of
data in the monthly section; that is, the threshold for
the gradient ]h/]y was adjusted to meet this condition.

In Fig. 6 we plot the difference between the true 1990
model heat transport and the reconstructed 1990 annual
mean heat transport against the quadratic model–data
misfit of the hydrographic observations. Results are pro-
vided for the two data distributions listed above: 1 and
2. Optimal locations were computed specifically for the
annual mean GSR heat transport. The resulting distri-
bution now includes the region south of the DS for most
of the months with a yet smaller extent. This is in agree-
ment with the view that the distribution is composed of
an average of 12 distributions for each of the 12 months
in the year, where each distribution is similar to the
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FIG. 6. Annual mean heat transport difference DJheattr in dependence
of the cost function decrease Jhydro. DJheattr is calculated with respect
to the annual mean value of the simulation of year 1990. First-guess
initial condition and daily–twice daily forcing correspond to 1965.
The use of monthly mean temperature and salinity along the section,
across which the heat transport is defined, is denoted by ‘‘*.’’ The
curve denoted by ‘‘1’’ corresponds to using same number of data
points at optimal locations. The number of data points in the cost
function is 15 526. Both optimizations were stopped after iteration
16.

FIG. 7. Feb heat transport difference DJheattr (1990 2 1965) in de-
pendence of the cost function decrease Jhydro; Jhydro composes optimal
salinity and temperature data. The curves denoted with 1, *, and V
correspond respectively to experiments using optimal (same number
as on the GSR section) and all available monthly mean data for the
standard setup and an experiment without convective adjustment. The
cost function values Jhydro were multiplied by a factor of 100 for
display reasons.

distribution for the February heat transport shifted ac-
cording to the specific month. Since each symbol rep-
resents individual iterations of the optimizations, the
convergence rate of the optimization towards the true
heat transport can be inferred from the curves as well.
Both data distributions have skill in reconstructing 1990
annual mean heat transport. The significantly larger ini-
tial model–data misfit in case (2) indicates the associated
larger sensitivity of the optimal observations to heat
transport changes, which is expected, since simulated
data and the first guess correspond by construction to
low and high heat transport values, respectively. After
normalizing the cost functions with the number of ob-
servations, its initial values of 1 and 0.2 are being re-
duced to values of about 0.05 and 0.005 after the op-
timization, respectively. The reconstruction of the an-
nual-mean heat transport is almost perfect for the op-
timal data distribution after only about 10 iterations.
Considering the prespecified error profiles for temper-
ature and salinity, the minimum data accuracy required
for the cost function to stay above the noise level is at
0.118C and 0.022 psu for section data (iteration 10) and
0.338C and 0.066 psu for optimal data (iteration 11).
The estimates correspond to the surface error values,
higher accuracy (smaller error values) are required for
deeper layers. The values are well above CTD standards,
but already quite challenging in terms of data assimi-
lations where the error includes model and represen-
tation errors.

Analyzing the temporal evolution of the reconstructed
1990 heat transport (not shown) it becomes clear that

the temporal heat transport fluctuations are not con-
strained at all by both previous data distributions, but
still reflect the 1965 conditions. The largest discrepancy
actually occurs during February, despite the fact that
the annual mean heat transport was recovered success-
fully. To understand this puzzle, we investigate next
whether a data distribution can be found that allows us
to reconstruct the heat transport for an individual
month—taken here to be February 1990—or if some
systematic difficulty prevents the reconstruction of the
circulation on shorter time scales.

Figure 7 shows the heat transport error as a function
of the cost function value for the two different exper-
iments corresponding to 1) an optimal data distribution
(cf. Fig. 5) and 2) monthly mean temperature and sa-
linity data available on the full model grid available for
the 12-month period. Several findings are noteworthy
from the figure. First, an optimal data distribution per-
forms better than a complete temperature and salinity
distribution. Moreover, in both cases the cross-ridge heat
transport cannot be reconstructed successfully, in strik-
ing contrast to the previous annual-mean case. The heat
transport error is reduced by more than 50% after as-
similating optimal data. However, since the target value
of year 1990 was anomalously high and the value cor-
responding to the first guess was anomalously low, the
actual skill for the reconstructing of monthly mean heat
transport is still quite low. The surprising degradation
of the result upon the usage of basin-wide data coverage
is likely due to the fact that most of the additional data
do not contain any extra information about the heat
transport. The lower overall sensitivity of the heat trans-
port upon the convergence to the data leads to a slower
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FIG. 8. Feb heat transport difference DJheattr (1990 2 1965) in
dependence of the cost function decrease JSSH; JSSH includes daily
SSH data.

heat transport convergence. Further improvement might
be possible with additional iterations.

To understand the failure of reconstructing the heat
transport, we performed an experiment that did not use
convective adjustment. For this latter case, all compar-
ison data and heat transport values are taken from a
1990 experiment without convective adjustment. Opti-
mal locations were specifically calculated for a setup
without adjustment. As Fig. 7 indicates, the remaining
error of the heat transport is reduced to less than 40%
and the simultaneous reduction of the cost function sug-
gests a now closer link between hydrographic data and
cross-ridge transports than was previously obvious with
an active convective adjustment scheme.

Convective adjustment plays an important role in the
forward model where it transports the overflow signal
toward depth. The corresponding convection process of
the adjoint model transports the model data misfit in-
formation of the overflow signal back to shallow depth
and enables the estimation of surface wind stress cor-
rections. However, this is only true if overflow and con-
vection takes place in the forward run around which the
adjoint is linearized. The first-guess simulation uses
1965 forcing, which leads to low February heat transport
and is characterized by almost no overflow and thus no
convection in February. Because of the lack of the pro-
cess that transports the information to the surface, the
signal about the February 1990 overflow remains hidden
at depth. This is a general problem of the linearization
approach of the adjoint method. Nevertheless, optimal
observations shown in Fig. 5 still give the correct lo-
cations since the construction uses a finite difference
approximation instead of the linearized forward model.
This problem has less influence on the estimation on
longer time scales (as with the annual mean). High heat
transport variability ensures the existence of convection
events. Convectively driven mixing may render hydro-

graphic observations less effective if convective ad-
justment processes are not the same in the simulation
and in the real ocean. This is the case for the estimation
of the cross-ridge heat transport and might also be true
for state estimations in general.

7. SSH versus hydrographic data

The close relation between GSR heat transport var-
iability and the wind stress curl variability (BKS) around
Iceland suggests that the success of transport estimations
mainly depend on the ability to estimate this wind stress.
In this section we will expand the previous discussion
by comparing the impact of hydrographic data with that
of sea surface height data on reconstructing the cross-
ridge heat transports and wind forcing.

As indicated from the distribution of optimal obser-
vations in Fig. 4, February GSR heat transport anom-
alies leave a distinct downstream trace in the temper-
ature field. In principle, the adjoint method transforms
this information into wind stress improvements. How-
ever, results from the previous section demonstrate that
the monthly transport cannot be fully recovered when
missing convective adjustment prevents the transfer of
information from the deep ocean to the surface. In con-
trast, sea surface height (SSH) observations represent a
surface signature of the underlying circulation and do
not suffer from this restriction.

In the following we use daily SSH data to reconstruct
the February 1990 heat transport. The result of the op-
timization is shown in Fig. 8, again as heat transport
differences versus cost function values. The figure
shows that the heat transport can be reconstructed almost
perfectly with a relation between heat transport error
and cost function misfit that is almost linear. Note that
only a small reduction of the SSH misfit is associated
with an almost correct estimation of the heat transport.
Only monthly mean corrections of the surface fluxes are
estimated so that only the monthly mean part of the
SSH variability can be expected to be matched.

SSH observations that are optimal for reconstructing
the February cross-ridge heat transport are shown in Fig.
9. The overflow temperature signal visible in Fig. 5
emerging from the DS and the IFR is now clearly visible
as a sea level depression pulse that travels around the
Cape Farewell and the Rikjanes Ridge (cf. also discus-
sion in BKS). Equally important is the positive signal
along the eastern boundary, especially in the first month,
where it reflects the density anomalies brought in by
changes of the initial condition as shown in Fig. 4. The
positive anomaly subsequently propagates northward
and reaches across the GIN sea as a consequence of the
anticyclonic barotropic circulation in that part of the
basin. Obviously physical processes which are repre-
sented by hydrographic data have a corresponding sig-
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FIG. 9. Gradient of the Feb meridional heat transport with respect to SSH observations. Black and gray patterns correspond to negative and
positive response of the sea surface, respectively. The contours are at 62.1 TW cm21 for a spatially uniform SSH error of 5 cm.

nature in the SSH data. However, SSH fields have a
closer link to wind stress data than hydrographic ob-
servations and constrain the estimation of the wind
stress with the adjoint method much more efficiently.
By multiplying the gradient in Fig. 5 with the SSH error,
one obtains a value for heat transport variations that are
detectable with the data. That means for Fig. 5 that
variations smaller than 10 TW are detectable with data
inside the patterns.

In our model world, ‘‘observations’’ of true daily or
monthly means are feasible, whereas real measurements
are often made at a specific date and may not be rep-
resentative for more than a few days. In our model con-
figuration the heat transport varies on a daily time scale
but SSH periods in the region of the East Greenland
current are typically 1–2 weeks. SSH observations in-
tegrate and thus filter the heat transport variability. Ob-
serving SSH fields at a rate of about every few days

would be sufficient to determine the transport variabil-
ity. This is close to what the current multisatellite con-
figuration provides. For hydrographic measurements,
chances for a sufficient coverage are lower. The trav-
eling SSH anomaly in Fig. 9 corresponds to a heat trans-
port anomaly of a specific month and the spatial dis-
tribution of multiple SSH pulses taken from a single
snapshot may record a whole time series of heat trans-
port variations. Given that the successful reconstruction
of the transport is based on perfect data and a perfect
model (identical twin framework), perspectives are low-
er for the performance in reality. On the other hand, we
only used data that contribute mostly to the reconstruc-
tion of the heat transport. In practice, more data sources
and better forcing (especially inadequate forcing and
initial conditions were chosen in our experiments) are
available and even plain simulations would have some
skill, wherefore the appropriate question is not whether
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a reconstruction is possible from the chosen data but
whether an already skillful estimation can be improved.

8. Conclusions

The design of a climate observing system is an im-
portant element of ocean state estimation. In contrast to
existing design approaches that use adjoint sensitivities,
the design problem was discussed here in the context
of optimal observations that emerge as singular vectors
from the data resolution matrix. It was shown that in
the limit of large observational errors, an approximation
of optimal observations for scalar quantities can be cal-
culated essentially by one run of the adjoint and one
additional forward run of the linearized forward model.
Although the limits of large observational errors rarely
apply, the observations calculated for this limit were
shown to apply equally well beyond the limit.

An important result, obtained here for the example
of reconstructing the heat transport across the GSR, is
that optimal observations are most efficient in con-
straining the optimization problem and in particular per-
form significantly better than can be achieved by using
section data or even basin-wide data. This is counter-
intuitive but can be understood in that those additional
data, while not carrying more information about the
GSR heat transport, do complicate the shape of the cost
function and thus degrade the performance of the pro-
cedure. For understanding the sampling problem of the
ocean this is an important result: well-selected obser-
vations seem significantly more valuable than random
coverage or even full coverage. However, while inter-
preting this result we have to recall that the distribution
depends not only on the quantity of interest (GSR heat
transport in our example) but also on the model and the
assimilation framework (e.g., the choice of the weights,
the controls and the length of the assimilation interval).

Another important result is that in our context of the
GSR heat transport estimates, SSH data provide more
robust information than hydrographic data, at least on
shorter time scales. The reason is that different dynam-
ical regimes may be represented in the data than in the
model first guess, which in turn may reduce the value
of hydrographic data for the estimation of surface flux
fields required to reconstruct the GSR heat transport.
This was shown to hold for convective adjustment, but
can be expected to be the case also for many other
processes. Therefore optimal observations have to be
used with care since they describe only local properties
and do not guaranty skill for the estimation of the quan-
tity they are designed for, even though they may rep-
resent the associated physical processes well.

We note that optimal observations describe causes
and effects of anomalies of a scalar quantity. In case of
the GSR heat transport, the pathways of the overflow
water through the DS and FSC is clearly emphasized
in the position of optimal observations. Those hydro-
graphic conditions are also reflected in the sea level

fields as negative gradient signal which is related to a
SSH depression pulse that travels around Cape Farewell.
Their value is apart from identifying key regions in
providing a new tool for studying the causes and effects
of anomalies of integral quantities.

The distribution of optimal observations is generally
quite complex and problematic to sample by standard
in situ observational tools. Optimal observations are
probably of limited help, in terms of seeding strategies
for floats and drifters, because the floats are expected
to leave the key regions rapidly. Embedding float tra-
jectories into the assimilation, which is not yet addressed
could lead to optimal float seeding distributions which
is likely to also result in a very stringent seeding strat-
egy. However, not all details of the structures may nec-
essarily be resolved in a survey and spatial coherence
of optimal observations enable a less dense sampling
than indicated by the distribution. The value will be
more in providing guidelines than an exact distribution.
For the GSR heat transport, we could learn that transport
variations are better recorded downstream (e.g., by
moorings at the center of the optimal observation sites)
than on a section.

Moreover, since optimal observations are defined as
the gradient of a specific scalar quantity with respect to
a data distribution, they enable us to make a priory
decisions as to whether a specific signal can be detected
from data. Yet, the method for calculating optimal ob-
servation is limited by the validity of the linearization
and cannot be applied with models obeying chaotic dy-
namics for periods longer than the predictability of the
model. However, the same limitation applies to the use-
fulness of adjoint models for finding the minimum of
the cost function in the adjoint method (Li 1991; Stens-
rud and Bao 1992). The applicability of our method for
observing system design is therefore well imbedded in
the limitations of the state estimation procedure where
time scales of many years are feasible (Stammer et al.
2002).

Little may have been learned here regarding optimal
observations for the GSR heat transport since mainly
expected features of the circulation were revealed and
because we limited our experiments to only one year.
However, we consider the value of the present work to
be in providing confidence that the structures are quasi-
optimal, as well as confidence in the physical signal
they carry associated with anomalies of certain scalar
quantities.
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