def read_analysis_spline_info (clead_use, master_directory_panal_spline,\ cmonth): """ read netCDF file here for inverse spline parameters for the combined CCPA/MSWEP precip analysis CDFs on the Lambert-conformal NDFD 2.5 km grid surrounding the CONUS. **** Note that if we are applying to cycles other than forecasts with 00UTC init, we'll need adjust the dates of the spline files that we use to sync up. """ from netCDF4 import Dataset import numpy as np ndays = int(clead_use) // 24 ilead = int(clead_use)-ndays*24 if ilead == 0: cleada = '00' elif ilead == 6: cleada = '06' elif ilead == 12: cleada = '12' elif ilead == 18: cleada = '18' infile = master_directory_panal_spline + cmonth + \ '_conus_CCPA_spline_info_h' + cleada + 'UTC.nc' print ('reading from ', infile) nc = Dataset(infile) spline_info_inv = nc.variables['spline_info_inv'][:,:,:,:] fraction_zero_ndfd = nc.variables['fzero'][:,:] usegamma_ndfd = nc.variables['usegamma'][:,:] number_knots_ndfd = nc.variables['number_knots'][:,:] lons_ndfd = nc.variables['lons'][:,:] lons_ndfd = lons_ndfd lats_ndfd = nc.variables['lats'][:,:] ny_ndfd, nx_ndfd = np.shape(lons_ndfd) nc.close() return spline_info_inv, fraction_zero_ndfd, usegamma_ndfd, \ number_knots_ndfd, lons_ndfd, lats_ndfd, ny_ndfd, nx_ndfd