

Hukseflux Thermal Sensors B.V.

www.hukseflux.com info@hukseflux.com

Product certificate

Pages:

Release date:

15 MAR, 2019

Product code

Product identification

Product type

Measurand

IR20-T2

serial number 4064

pyrgeometer

longwave radiation

Calibration result

Sensitivity Calibration uncertainty $S_0 = 11.42 \times 10^{-6} \text{ V/(W/m}^2)$ $\pm 0.51 \times 10^{-6} \text{ V/(W/m}^2)$

the number following the ± symbol is the expanded uncertainty with a coverage factor k = 2, and defines an interval estimated to have a level of confidence of

95 percent

Temperature coefficients

 $a = -16.0541 \times 10^{-6} \circ C^{-2}$ $b = 25.6578 \times 10^{-4} \, \text{°C}^{-1}$

c = 0.9551

Measurement function

 $E = U/(S_0 \cdot (a \cdot T^2 + b \cdot T + c)) + \sigma \cdot (T + 273.15)^4$

with E irradiance in $[W/m^2]$, U voltage output in [V], σ the Stefan-Boltzmann constant in [W/m²/K4], T the instrument body temperature

in [°C]

Product specifications

resistance

2:

insulation resistance 3:

cut-on wavelength (5 % transmission point)* spectral range (50 % transmission points)*

10.1 Ω $> 100 \times 10^6 \Omega$

 $4.5 \times 10^{-6} \text{ m}$

 $4.7 \text{ to } 40.0 \times 10^{-6} \text{ m}$

*values valid for this instrument, complete transmission curve available on request via info@hukseflux.com

Table 0.1 connections

PIN	WIRE	
2	Red	10 kΩ thermistor [+]
3	Pink	10 kΩ thermistor [+]
6	Blue	10 kΩ thermistor [$-$]
8	Grey	10 kΩ thermistor [$-$]
1	Brown	heater
4	Yellow	heater
9	Black	ground
7	White	signal [+]
5	Green	signal [-]

The 10 $k\Omega$ thermistor is a single four-wire thermistor measuring instrument body temperature.

Calibration procedure according to Hukseflux IR20C. Traceability of calibration is to the WISG (World Infrared Standard Group) operated at the Infrared Radiometry Section of the World Radiation Center in Davos, Switzerland.

Please consult the user manual for information on measurement uncertainty during actual use and for product set up, operation and maintenance instructions.

Person authorising acceptance and release of product:

Date:

H.E. Brouwer

15 MAR, 2019

Hukseflux Thermal Sensors B.V.

www.hukseflux.com info@hukseflux.com

Calibration certificate

Pages

4

Release date:

15 MAR, 2019

Product code

IR20-T2

Product identification

serial number 4064

Product type

pyrgeometer

Measurand

longwave radiation

Calibration result

Sensitivity

 $S_0 = 11.42 \times 10^{-6} \text{ V/(W/m}^2)$

Calibration uncertainty

 $\pm 0.51 \times 10^{-6} \text{ V/(W/m}^2)$

the number following the \pm symbol is the expanded uncertainty with a coverage factor k=2, and defines an interval estimated to have a level of confidence of

95 percent

Reference conditions

horizontal mounting, downward longwave irradiance, clear sky nights,

20°C

Measurement process

Metrological characteristic

 S_0 in $[V/(W/m^2)]$; sensitivity to downward longwave irradiance, with

180° field of view angle, valid for reference conditions

Calibration method

outdoor comparison to a reference pyrgeometer $F = 11/(S_1/(3.72 + h.T + c)) + c_1/(T + 273.15)^4$

Measurement function

 $E = U/(S_0 \cdot (a \cdot T^2 + b \cdot T + c)) + \sigma \cdot (T + 273.15)^4$

with E irradiance in $[W/m^2]$, U voltage output in [V], σ the Stefan-Boltzmann constant in $[W/m^2/K^4]$, T the instrument body temperature

in [°C] and a, b, c temperature coefficients¹

Measurement equipment

Hukseflux Outdoor Test Facility

Calibration conditions

6 clear sky night(s) between 07 MAR, 2019 and 14 MAR, 2019.

Temperature between 2.8 °C and 8.7 °C.

Net radiation between -94.2 W/m² and -70.0 W/m²

Metrological traceability

Calibration traceability Working standard Calibration institute to WISG (World Infrared Standard Group)
pyrgeometer type IR20, serial number 4038
PMOD World Radiation Center, Davos, Switzerland

Standard sensitivity²

 $C = 7.90 \times 10^{-6} \text{ V/(W/m}^2)$

Evaluation of the uncertainty of the calibration result

Uncertainty calculation

the calibration uncertainty calculated as the square root of the sum of the squares of the calibration uncertainty of the working standard, the uncertainty of the method and the uncertainty due to deviations from

the reference conditions is \pm 4.5 %.

Person performing calibration:

Date:

M. Rietveld

14 MAR, 2019

a, b and c are determined in the Hukseflux Temperature Response Characterisation, see separate page

 $^{^2}$ C was derived using pyrgeometer coefficients k_1 = -0.10 and k_2 = 1.0048

Hukseflux Thermal Sensors B.V.

www.hukseflux.com info@hukseflux.com

Temperature response

Pages:

4

Release date:

15 MAR, 2019

Product code

IR20-T2

Product identification

serial number 4064

Product type Measurand pyrgeometer

longwave radiation

Characterisation result

Temperature coefficients

 $a = -16.0541 \times 10^{-6} \, {}^{\circ}\text{C}^{-2}$

 $b = 25.6578 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$

c = 0.9551

Measurement process

Characterised parameter Measurement function dependence of sensitivity to temperature

 $S(T) = S_0 \cdot (a \cdot T^2 + b \cdot T + c)$

with S(T) sensitivity in $[V/(W/m^2)]$ at an instrument body temperature T, S_0 sensitivity in $[V/(W/m^2)]$ at 20 °C instrument body temperature,

T the instrument body temperature in [°C]

Measurement equipment

Hukseflux Temperature Response Characterisation

Table 0.2 temperature dependence test result

TEMPERATURE DEPENDENCE TEST											
T [°C]	-30	-20	-10	0	10	20	30	40	50		
$\frac{S(T) - S_0}{S_0}$	-13.6 %	-10.3 %	-7.2 %	-4.5 %	-2.1 %	+0.0 %	+1.8 %	+3.2 %	+4.3 %		

Person performing characterisation:

Date:

R. van den Dool

04 MAR, 2019