
CLIMSAT “SCAN DATA” FORMAT
June 2000

I. Data Format

1. Data stored in this format are stored by scanline swath. The data files begin with 5000 bytes of
header information describing the file contents. The header is followed by records (one for each pixel)
storing a time, a latitude, a longitude, and a series of values (e.g. brightness temperatures or estimated
integrated water vapor) for each of N channels.

The header data (first 5000 bytes) at the top of each datafile have the following format:

bytes start byte description

char*80 0 name of file
char*20 80 name of satellite
char*20 100 name of sensor
int*2 120 satellite ID
int*2 122 number of data fields per (low-resolution) pixel
int*2 124 number of (low-resolution) pixels per scanline
int*2 126 number of high-resolution data fields per pixel (0 if N/A)
int*2 128 number of high-resolution pixels per scanline (0 if N/A)
int*2 130 missing value (e.g. -9999)
float*4 132 etc. scaling factor for each field |
float*4 136 etc. offset value for each field |-- Repeated for N fields
char*40 140 etc. units for each field |
char*80 180 etc. description for each field |
N bytes Remaining bytes are filler, up to the 5000th byte

Note: when extracting data, scale and offset should be applied as follows:
1. First, divide the resulting value by the scale factor;
2. Second, subtract the offset value from the data.

The observational data (e.g., brightness temperatures) begin at the 5001st byte of the file, with one
record of data for each pixel. Each record has this format:

int*4 integer time in seconds from 1-1-1970
int*2 latitude in decimal degrees, scaled by 100
int*2 longitude in decimal degrees, scaled by 100
int*2 TB data value, Field 1 (scaled, offset, and described as indicated in header)
int*2 TB data value, Field 2 (scaled, offset, and described as indicated in header)
 ...

int*2 TB data value, Field N (scaled, offset, and described as indicated in header)

The end-of-file is marked by a bogus data record whose integer time is set equal to the missing value
(the value is specified in the header).

2. DMSP datasets may store a single resolution of data (e.g. 19 and 37 Ghz) or may store low- and
high-resolution data together in a single file (e.g. 19 and 37 Ghz (low-res) with hi-res 85 Ghz). The
spatial configuration of data from low- and high-resolution scanlines is illustrated in the following figure:

Figure: Spatial configuration of low- and high-resolution DMSP SSM/I data.

When both high-resolution and low-resolution data are stored in the same data file, the format of
the TB data is as follows:

Record 0 through Record N store sequential data for scanline A, where:
C even records record itime, lat, lon, and all coincident low-resolution and high-resolution

data fields
C odd records record itime, lat, lon, and all intermediate high-resolution data fields

Record N+1 through N+N store sequential data for the scanline B, where:
C all records record itime, lat, lon, and all high-resolution data fields

This sequence is continued through the end of the file, alternating records of dual-resolution and
single-resolution scanline data in the order that the data were originally scanned.

II. Code for Reading Data (look under /home/climsat/src/grid_data)

CDC has written data processing code in C to assist users in reading and extracting data stored in the
above format. An attempt has been made to document this code as clearly as possible. The following
functions are available (and an example of their use is provided as read_dmsp.c):

1. read_hdr.c

Fills the passed std_hdr structure with header data read from the first 5000 bytes of the specified file.
Allocates the memory required to store the header data. Returns 0 if successful, <0 if an error.

The std_hdr structure is defined as follows:

struct std_hdr
 {
 char filename [80] ; /* Name of file */

 char satellite [20] ; /* Name of satellite */
 char sensor[20] ; /* Name of sensor */
 short satid ; /* Satellite ID */
 short fields ; /* Number of (low-resolution) fields */
 short pixperscan ; /* Pixels per (low-resolution) scanline */
 short hifields ; /* Number of high-resolution fields */
 short hipixperscan ; /* Pixels per high-resolution scanline */
 short missing_val ; /* Value for missing data */
 float *scale ; /* Scaling factor for each field */
 float *offset ; /* Offset for each field */
 struct units_text *units ; /* Units for each field */
 struct describe_text *description /* Description for each field */
 }

struct describe_text
 {
 char text[80] ; /* Description of data field */
 }

struct units_text
 {
 char text[40] ; /* Units of data field */
 }

2. read_scan.c

Fills the passed std_data structures for low-resolution, high-resolution scan A, and high-resolution scan
B data with the next scanline of data. Memory must be allocated for each required structure before
calling this function (see allocdata below). Returns 0 if successful, 999 if the end-of-file record is read,
<0 if an error.

The std_data structure is as follows:

struct std_data
 {
 long *itime ; /* Seconds since 1-1-1970 */
 float *lat ; /* Decimal degrees latitude * 100 */
 float *lng ; /* Decimal degrees longitude * 100 */

 float **fielddata ; /* Data. Dimensions: [fields][pixels] */
}

3. allocdata.c

Allocates the necessary memory for the passed std_data structure to hold one scanline of data. The
necessary arguments for number of pixels per scan and number of fields can be derived from the filled
std_hdr structure. Returns 0 if successful, <0 if an error.

III. Executables

1. view_header

Prints out the header information for a given file including the filename, sensor ID, and data fields along
with scale, offset, and description. Also prints out the start and end times and the number of scans in
the file. This is basically for querying the file to determine its contents. Usage: view_header filename.

2. read_swath

Prints out swath data for the specified file and specified swaths including the latitude, longitude, and
corresponding data values for each field. Useful for verifying the data contents of a file in swath format.
Usage: type read_swath, and the program prompts for user-supplied information.

3. convert_time

Converts from time in seconds starting Jan 1 of a user specified baseline year (1970 for the SSM/I and
SSM/T2 files) to a readable date and time string.

4. swapscans

Performs a byte-swap on a Climsat scan data formatted file, such that a scan file created on a little-
endian machine can be read on a big-endian machine, and vice-versa.

IV. Use of the Data Reading Functions

The functions read_hdr, read_scan, and allocdata should be used to read and write data. Essentially,
the steps for using these functions are as follows:

1. Open input datafile.

2. Read the header data into the structure std_hdr using the function read_hdr.

3. Allocate the memory required to hold one scanline of data in the structure std_data using the
function allocdata. One structure is required to hold single-resolution data; two additional std_data
structures are required if dual-resolution data are being read: one for high-resolution data from scanline
A, and one for high-resolution data from scanline B.

4. Read the first scanline of data using the function read_scan beginning at byte 5000.

5. Do whatever needs to be done with the scanline of data loaded into the std_data structure(s).

6. Continue calling read_scan to read scanlines until read_scan returns 999 (end-of-file).

The code called read_dmsp.c is an example of how to read and write scanline data in this format.

