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Abstract.
A multi-sensor microwave retrieval of near-surface specific humidity (Qa) using satellite observations from the Advanced Microwave Sounding Unit-A (AMSU-A), Special Sensor Temperature Sounder-2 (SSM/T-2) and the Special Sensor Microwave Imager (SSM/I) is improved upon in this study.  Refinements to the regression formula, training data set, satellite/ship matching procedure, and height adjustment to 10m were used to improve two multi-sensor retrievals.  Independent validation with the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) indicates lower overall bias of ~0.3 g/kg and smaller RMS difference of ~0.4 g/kg than with several previously published single-sensor Qa retrievals.   A significant regional Qa wet bias of ~3 g/kg in the summer over the North Pacific was found for all satellite retrievals, and a correction was developed using an inversion index defined using sea surface temperature and AMSU-A lower tropospheric temperature observations.  Assessment of ICOADS ship and buoy validation data indicated uncertainties in height adjustments of these in situ observations to be 0.3-0.5 g/kg while hygrometer differences and solar heating effects had smaller uncertainties of less than 0.05 g/kg.  Validation of the updated multi-sensor retrievals with ICOADS over an 8-year period from 1999 to 2006 was found to reduce the magnitude of the regional biases when compared to previously published retrievals.  Regional Qa differences, particularly in the subtropical high regions, are shown to play a significant role in determination of surface latent heat flux.

1.  Introduction

Observations of near-surface humidity play a key role in determination of latent heat flux at the surface of the Earth.  Determination of latent heat fluxes are commonly performed using bulk aerodynamic formulas where the differences in the surface and near-surface humidity are used to parameterize the heat flux exchange at the surface.  Curry et al. [2004] indicated the need for high-resolution spatial and temporal Qa observations is vital for improvement of satellite-derived heat fluxes.  This study seeks to improve the accuracy and the resolution of satellite-derived Qa observations.
An initial study by Jackson et al. [2006] introduced multi-sensor satellite methods for retrieving Qa and near-surface temperature.  In that study, microwave temperature and moisture sounders are combined with microwave imager observations to improve the accuracy of Qa retrievals.  Traditionally satellite Qa retrievals, such as those presented in Schlüssel et al. [1995], Schulz et al. [1993], and Bentamy et al. [2003], use only SSM/I observations for retrieval of Qa.  These single-sensor methods utilize the correlation of precipitable water measured by the SSM/I to Qa that was first identified in Liu [1986].  The multi-sensor approach in Jackson et al. [2006] shows satellite microwave sounders improving the retrieval of Qa by incorporate additional information about the humidity profile and lower tropospheric temperature.  This study updates the retrievals introduced in Jackson et al. [2006] by attempting to reduce RMS differences and regional biases that are inherent to all of the current Qa retrievals.
Recent developments of multi-year data sets of satellite-derived turbulent heat fluxes such as the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) (Grassl et al. [2000]), the Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) (Kubota et al. [2002]), and the Goddard Satellite-based Surface Turbulent Fluxes version 2 (GSSTF2) (Chou et al. [2003]) demonstrate the capability of satellite-derived observations for developing multi-year global heat flux observations.  All of these products require multi-year global Qa retrievals that are both accurate and high-resolution to provide latent heat products.  Satellite-derived Qa products could extend over 20 years since the first SSM/I instrument began collecting observations in July of 1987.  The multi-sensor retrievals discussed in this study use additional microwave sounder data that became available in 1993 (SSM/T-2) and 1998 (AMSU-A).  With spatial resolution with current sensor capabilities at ~50 km and near global oceanic coverage daily, there is great potential for a using satellite-derived latent heat flux data for improving observation and prediction of weather and climate.
This study begins in Section 2 by describing the various data sets, and then describes the updates to the retrieval method in section 3.  Validation of the satellite-derived products with ICOADS observations are discussed in section 4.  Seasonal cycles and a multi-year comparison of these products with ICOADS are described in section 5 along with the implications these results could have on satellite-derived latent heat fluxes.  Section 6 presents conclusions to this study.
2. Data
Ship, buoy, and satellite observations were used in this study to derive the satellite retrievals and validate the results. The training data set for the Qa regression formula used 10-minute averaged cruise ship observations and native fields of view from the satellite observations to establish the matched data sets.  All satellite data and ICOADS data were averaged into 0.5 degree and 3-hourly grid resolution to perform the Qa retrievals derived using the regression formula.  Satellite Qa retrievals for some analyses were further time averaged into daily and monthly data.  This section describes these data in detail.
2.1 Cruise Ship Data
The training data set used to derive the Qa regression formula came from a combination of cruise ship observations from the former Environmental Technology Laboratory (ETL) which is now the Earth System Research Laboratory (ESRL) and high-resolution research vessel (R/V) data from the Ron H. Brown and Ka’Imimoana.  ETL cruises used the aspirated Vaisala HMP-235 to obtain humidity observations taken at a 15 m height above the ocean surface.  Fairall et al. [1997] indicates errors from the humidity sensor are 1%.  R/V data from the Ron H. Brown used a platinum resistor thermometer for temperature observations and the Rotronic MP-100F instrument for humidity observations and collected observations at 13 m.  R/V data from the Ka’Imimoana used R.M. Young temperature and humidity instruments and collected observations at 20 m.  Table 1 gives the complete list of the ETL cruises and R/V data observations obtained for this study.  Bold font cruise names indicate the additional cruise ship data used for developing the retrieval equation that were not used in Jackson et al. [2006].  Figure 1 presents cruise ship tracks for all of the data used in the training data.  The density of samples is greatest in the tropical regions; however, subtropical samples from three Eastern Pacific cruises and mid-latitude samples from cruises in the North Pacific and North Atlantic help diversify the range of Qa observations.
2.2 Satellite Data
Satellite observations from the AMSU-A temperature and SSM/T-2 moisture sounders and the SSM/I were utilized for this study. AMSU-A is primarily a temperature sounder that collects observations at several narrow band channels in 50-55 GHz oxygen absorption band.  The AMSU-A is a cross-track scanner with nadir resolution of ~ 50 km, so limb observations require correction which was done using a multi-channel regression method developed by the NESDIS operational products group [Reale et al., 2000].  SSM/T-2 is a moisture sounder that takes observations at the 183 GHz water vapor absorption band.  This instrument also is a cross-track scanner with nadir resolution of ~ 50 km, and limb corrections were performed by accumulating statistical information on brightness temperatures as a function of channel, scan angle, and latitude over 5-day periods.  Microwave imager observations from the SSM/I at 19, 22, and 37 GHz were used to derive Qa.  The weak water vapor band at 22 GHz provides the most relevant information for retrieving Qa using SSM/I.  The conical shaped scan geometry eliminates a need for limb corrections since the scan geometry provides a constant local zenith angle for all observations and provides spatial resolution of ~ 40 km.  Jackson et al. [2006] indicates that global oceanic coverage is feasible in one day even when combining AMSU-A and SSM/I observations.
The satellite-derived Qa data presented in this study involved combining observations from many satellite platforms.  SSM/I instruments have flown on the Defense Meteorological Satellite Program (DMSP) satellites since the launch of F08 in July 1987. SSM/I data for this study were taken from the four DMSP satellites F11, F13, F14, and F15.  SSM/T-2 observations were taken from DMSP satellites F12, F14, and F15.  AMSU-A instruments have flown on both NOAA operational and NASA research satellites since December 1998.  AMSU-A observations for this study were taken from NOAA-15.  NOAA-16 was not used because its local time of observation does not match well with SSM/I, and NOAA-17 was not used because an AMSU-A instrument failure limited the number of useable observations.
2.3 ICOADS data
ICOADS International Maritime Meteorological Archive (IMMA) v2.4 data are a combination of observations from voluntary observing ships (VOS), buoys, and other observations from Ocean Data Acquisition Systems.  This study used only the VOS and buoy observations.  Major shipping routes are mainly found in the Northern Hemisphere, so observations in the Southern Hemisphere are relatively sparse.  Qa was computed from relative humidity and near-surface air temperature observations using the saturation vapor pressure formula from Alduchov and Eskridge [1996].  Quality control measures included removing derived Qa values below 0 g/kg and above 30 g/kg and utilizing National Climatic Data Center (NCDC) trimming flags to remove observations exceeding 2.8σ from climatology.  Trimming flags were used despite issues of bias.  Wolter [1997] found excessive trimming of the data using these trimming flags, thus resulting in removing valid data.  Comparisons between satellite and ICOADS Qa for 1999 showed less than 0.03 g/kg difference between the satellite and ICOADS Qa biases for the trimmed and untrimmed data, but a reduction of RMS difference of ~ 0.1 g/kg when using the trimmed data.  Differences between satellite and in situ observations were also investigated in the context of in situ bias due to measurement height differences, solar heating effects, and hygrometer instrument differences and are discussed Section 4.1.
3. Retrieval Method
This section provides changes made to the multi-sensor Qa retrieval method first described in Jackson et al. [2006].  Section 3.1 describes the new training data set, the updated matching procedure, and the modified functional form of the regression equations.  This new retrieval includes a separate correction for a large regional bias described in Section 3.2.
3.1 Retrieval Updates
The training data set used in the regression was expanded to include more cruise ship observations as is discussed in Section 2.1 and shown in Table 1.  Including more cruise data provided much needed data above 18 g/kg and provided more data from 8-15 g/kg which was underrepresented in the training data used in Jackson et al. [2006].  

The quality of the training data was improved by allowing only one 10-minute cruise observation to be matched to a single satellite field-of-view (FOV).  Jackson et al. [2006] matched a single satellite observation with potentially multiple 10-minute cruise observations within the 3 hour time window.  When comparing matches that minimize the time difference and minimize the spatial differences between the center of the satellite observation and the ship observations, it was found minimizing the time difference provided a set of training data with lower regression RMS difference.  Averaging multiple 10-minute ship observations to a single satellite observation was also found to give inferior results to those matches that minimize time differences.
Qa observations from ship data were adjusted to a standard height of 10m so that the humidity observations could be used directly in bulk formula for heat flux calculations.  The COARE 3.0 bulk flux model was used to adjust the Qa data to this standard height.  Most inputs for this model, such as SST, near-surface wind speed, temperature and humidity, and instrument heights were extracted from the ship and buoy observations. All solar and longwave inputs were set to 0 and 375 Wm-2 to simulate nighttime conditions since Ron Brown and Ka’ Imimoana ship data did not have these observations.  Sensitivity of the computed 10m Qa data when varying the solar and longwave inputs was found to be small.
Two other changes in the quality control of the matched data included removing all observations containing precipitation and changing the land mask requirement.  Land masking is now applied to all observations within 40 km of land and applied to observations within 80 km of land for far limb observations of AMSU-A (scan spots 1-5, 26-30) and SSM/T-2 (scan spots 1-3, 26-28) observations.
The Qa retrieval algorithms were updated using the new matched data and the multi-linear regression technique described in Jackson et al. [2006].   The updated AMSU-A and SSM/I (AMMI) retrieval uses a quadratic term for 52.8 Ghz and SSM/I and SSM/T-2 (MIT2) retrieval uses a logarithmic transformation of the brightness temperatures because these transformations create a more linear relationship between observed brightness temperatures and the Qa observations.    The current Qa retrieval using the AMMI is
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The RMS of the fit was 1.38 g/kg for the 842 matched data points.  The updated MIT2 Qa retrieval is
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with a RMS of 1.48 g/kg for the 824 matched data points.  The lowest and highest values of retrieved Qa data were much improved for both retrievals when including the quadratic term for the AMMI Qa and the logarithmic transformation for MIT2 Qa.  RMS differences using the channels selected in Jackson et al. [2006] gave a RMS difference of 1.45 g/kg. This difference was higher than found in (1) and the Jackson et al. 2006 Qa had a dry bias for Qa < 5 g/kg and a wet bias for the 10 g/kg < Qa < 15 g/kg range.  A SSM/I-only Qa retrieval using the 19V, 19H, 22V, 37V, and 37H GHz channels first used in Schlüssel et al. [1995] yielded an RMS of 1.76 g/kg using MIT2 matched data which is 0.28 g/kg higher than the multi-sensor retrievals using SSM/T-2 sounder data.  The Schlüssel-like retrieval developed from the current training data gave wetter retrievals for the 10 g/kg < Qa < 15 g/kg range. This result indicates how differences in the training data set can have significant impacts on the derived Qa retrieval. 
The AMMI and MIT2 algorithms were used to derive multi-year data sets of Qa at a 0.5 degree and 3 hourly grid resolutions.  3 hour time resolution does not provide global coverage, but global coverage is nearly achieved over one day.  The AMMI Qa retrieval was generated for 1999-2006 and the MIT2 retrieval generated for 1993-2006.  The results presented in this paper span only the AMMI time period.
3.2 Inversion Correction
Validation of the Qa retrievals using ICOADS data resulted in the discovery of significant regional biases in the North Pacific and North Atlantic region during the boreal summer.  Figure 2 shows the difference between AMMI Qa retrieval and ICOADS Qa for July 1999 with mean bias for the North Pacific 30oN-60oN region of 1.03 g/kg.  Positive bias indicates regions where the satellite retrieval exceeds the ICOADS Qa.  These results also exist for the SSM/I-only retrieval methods with a Schlüssel et al. [1995] (hereafter Schlüssel) Qa bias of 0.98 g/kg, a Schulz et al. [1993] (hereafter Schulz) Qa bias of 0.67 g/kg, and a Bentamy et al. [2003] (hereafter Bentamy) Qa bias of 1.30 g/kg.  The Northwestern Pacific, subtropical high region off the coast of California, and Northwestern Atlantic (not shown) show the greatest bias, and this bias was found to exist only during summer months (May-August) for every year from 1999 to 2006.   
Temperature and water vapor profile data from the National Centers for Environmental Prediction (NCEP) Reanalysis (Kalnay et al. [1996]) provided insight for the cause of this bias.  A seven-day period of data from July 1-7 was stratified into profiles with and without temperature inversions for the 30oN-60oN domain.  Figures 3a and 3b gives the mean temperature and humidity profiles for 788 profiles.  Associated with the temperature inversion cases are inversions in the humidity profile and a more elevated humidity level in the middle troposphere.  Klein and Hartmann [1993] indicate this summer inversion layer is a result of monsoon-like flow with rising air over the warm Asian and North American continents and sinking air over the western Pacific Ocean inducing an inversion layer that is often associated with marine stratus cloud cover.  The mean difference in Qa between the inversion and no inversion cases for ICOADS and NCEP was 2.56 g/kg and 2.65 g/kg respectively; however, the AMMI Qa retrieval had a much smaller difference of -0.16 g/kg.  These inverted profiles expose a weakness in the satellite Qa retrieval.  Both temperature and humidity channels have broad vertical weighting functions that prevent detection of shallow inversion layers, and the anomalous humidity profiles are more moist in the middle troposphere as is shown in Figure 3a.
An inversion correction was developed to adjust the Qa retrieval methods that use AMSU-A data.  This index uses the Reynolds et al. [2007] AVHRR-only daily averaged 0.25 degree sea surface temperature (SST) data.  The inversion index is defined as the difference between the SST and AMSU-A 52.8 GHz brightness temperature (Tb52.8) which can be considered an index for temperature in the lower troposphere.  Figures 4a and 4b show the relationship between the inversion index and mean temperature inversion height for July 1999.  The SST- Tb52.8 temperature difference pattern correlates well with regions identified with temperature inversions from the NCEP Reanalysis profiles and correlates well with the Qa biases shown in Figure 2.  Regions where SST-Tb52.8  < 30 K identify regions with inversions and regions with the lowest SST- Tb52.8 difference are generally associated with the highest temperature inversions.
Identification of the temperature inversions for the 30oN-60oN domain was done by applying threshold values of SST- Tb52.8 < 30 K and Qa < 15 g/kg.  Table 2 gives bias mean and standard deviation statistics for four cases using these criteria for inversion and non-inversion cases for two summer months (July 1999 and July 2000).  This table determines if these criteria successfully identify grid boxes with inversions.  The summer months of July 1999 and 2000 indicate that 81% of the observations with inversions were successfully identified using these criteria.  For the inversion cases identified using thresholds (Case 1), Qa biases are ~3 g/kg for these two months indicating the satellite Qa retrieval to be more moist than ICOADS.  Even though the threshold test for the non-inversion cases (Case 3) incorrectly identified 27% of the profiles with inversions in 1999 and 17% in 2001, there is still a Qa bias exceeding 1 g/kg for both months.  The Case 3 bias differs from the non-inversion cases not identified by the thresholds (Case 4) where the bias is near zero.  Therefore, the threshold technique identifies regions where Qa bias exists even though NCEP temperature profiles do not identify a temperature inversion.  

The inversion correction was derived by using predictors SST-Tb52.8 and AMMI Qa in a regression that predicts the difference between AMMI Qa and ICOADS Qa.  AMMI Qa was added as predictor because the satellite moist bias was generally less at low Qa values.  Daily mean observations and products for the 30oN-60oN domain were matched and temperature inversion threshold criteria of SST- Tb52.8 < 30 K and Qa < 15 g/kg were used to determine regression coefficients.  Regional biases south of 30oN did not show improvement using this correction because regional biases were caused by different atmospheric and oceanic conditions. For instance, regions along the equatorial eastern coast of South America likely exhibit Qa bias due to local upwelling effects rather than changes in atmospheric profiles due to large scale subsidence observed in the North Pacific. Such regional biases would need a different method of correction.  Using 10653 matches from 1999 for the 30oN-60oN region, the regression formula used to correct the temperature inversion bias is
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And the inversion-corrected Qa (AMMIc) is
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where SST is the daily mean sea surface temperature, Tb52.8 is AMSU-A brightness temperature at 52.8 GHz, ∆QaAMMI is the correction in g/kg, and QaAMMIc is the corrected Qa retrieval.  Regression RMS difference from equation (3) is 1.06 g/kg.  When the AMMIc Qa retrieval is applied to brightness temperature grid data from an independent time period in 2001, 13.5 % of the retrievals in the 30oN-60oN domain were corrected and the mean Qa difference (QaAMMI – QaAMMIc) was 0.95 g/kg.  Comparing these updated retrievals with ICOADS resulted in an improvement in the bias with ICOADS from 1.28 to 0.08 g/kg.
4. Validation
ICOADS data were used for validation of the AMMIc, MIT2, Schlüssel, Schulz and Bentamy Qa retrievals.  Section 4.1 assesses the uncertainties of the ICOADS based on known errors described in previous studies.  Section 4.2 presents the validation results of the update Qa retrievals along with a comparison with the single-sensor Qa retrievals.  Section 4.3 compares the seasonal cycle and regional differences between ICOADS and the satellite Qa retrievals, and Section 4.4 discusses the implications of these differences on the surface latent heat flux.
4.1 Investigation of ICOADS Biases
Validation of the Qa retrieval methods were conducted using near surface humidity buoy and ship observations from the ICOADS data.  Even though these data have served as a standard for validation of oceanic and atmospheric surface observations, there are known biases in the data that are assessed here.   The ICOADS data were evaluated for the following sources of bias: (1) uncertainties due to differences in measurement height, (2) bias due to hygrometer type, and (3) bias due to solar radiation contamination.  Differences in measurement height in the VOS observations and their implications to climate trends were discussed in Kent et al. [2007].  Kent et al. [1993] and Berry et al. [2004] discuss solar radiation effects on the air temperature observations, and Kent and Taylor [1995] identify humidity bias due to differences in hygrometer types.  While most of these studies evaluate bias to air temperature, this study examined how correction to both temperature and humidity would affect Qa since computation of Qa uses both observations.
One major source of uncertainty for ICOADS Qa data is differing measurement height between various ship platforms and buoy data.  In the context of using Qa for computing latent heat flux, the reference height is 10m; however, buoy temperature and humidity data are most typically measured at 3-4m while ship observation heights can vary widely from 5m to 50m. Kent et al. [2007] indicates that the average ship platform height has increased over the past 40 years and that the platform height is spatially dependent since large ships typically follow common shipping routes while smaller vessels are more likely to provide the greatest percentage of data outside of these routes.  Therefore, the COARE Bulk Flux algorithm version 3.0 (Fairall et al., 2003]) was used to adjust Qa observations from ship and buoy observations to 10m since the AMMIc regression retrievals Qa at that height.  About one-third of the ICOADS ship data in 1999 does not have any height information.  When height data is provided, the height information can be given for the temperature sensor, the barometer, or the platform.  This order of priority was used to estimate the temperature and humidity instrument height, and a height of 20m was assigned if no height information was provided.  Buoy temperature and humidity data were all assumed to be 3m except the National Data Buoy Center (NDBC) buoys which were assigned 4m heights.
Figure 5a shows mean Qa difference between various Qa retrievals and ICOADS original and 10m-corrected data for 2001.  Separate ship and buoy matches, using 0.5 degree/3-hourly grid data, were made with satellite Qa retrievals.  Corrections of ship data on average moistened the ICOADS data by 0.2 g/kg since most Qa measurements exceeded 10m and lowering the humidity observation typically increases humidity.  This correction gave Schlüssel better agreement with ICOADS while the other retrievals showed more bias since the uncorrected ICOADS was already wetter.  Ship RMS differences in Figure 5b are lowest for the AMMIc and MIT2 Qa retrievals and negligible differences between height-corrected and non-corrected ICOADS data are shown.  Correction of the buoy data show more significant changes with large positive bias differences for AMMIc, MIT2, and Schlüssel but improvement in bias for Bentamy and Schulz.  Buoy RMS differences are smallest for the AMMIc and MIT2 Qa retrievals but become larger when using the corrected ICOADS buoy data.  These results do not show an improvement in reducing bias for any of the retrievals using height-corrected ICOADS data.  Interestingly, the uncorrected ship and buoy comparisons gave nearly same bias for all retrievals except Bentamy and the height-corrected ICOADS bias data diverge with buoys becoming more moist than ship observations.  
Further analyses of the height-correct ICOADS data were made by directly comparing coincident buoy and ship observations for 1999.  Matches were conducted by averaging all available ship and buoy data onto a 0.5 degree/3-hour grid just as was done with satellite Qa comparison.  Table 3 gives the mean bias of the non-corrected, height-corrected and night-only matches.  Surprisingly, non-corrected Qa biases are less than 0.1 g/kg even though buoy observations were measured closer to ocean surface and would be expected to have higher humidity.  Application of height corrections to buoy and ship data causes the bias to increase 0.5 g/kg since the average correction reduces buoy Qa and increases ship Qa.    The regional Qa differences shown in Figure 6a indicate most of the expected negative biases (buoys more wet) to occur in the Tropical Atmosphere Ocean (TAO) buoy array while most of the unexpected positive biases occur in the midlatitude with buoys in the Gulf of Mexico.  The TAO buoy array also shows significant variability from positive to negative bias.  Figure 6b shows that height correcting these observations generally causes ship Qa to be moister at all but few TAO buoy locations.  Note that height corrected comparison does not reduce the variability in the Qa bias for the TAO buoy array, thus height corrections alone can not explain the Qa variance between ICOADS ship and buoy data.
The uncertainty of different hygrometers on Qa bias was investigated to determine sensitivity of ICOADS observations to hygrometer type.  Kent and Taylor (1995) derived a correction based on differences found between psychrometer-measured and screen-measured dewpoints.  Therefore, a three month comparison for June-August 1999 between non-ventilated screen and sling psychrometer humidity ICOADS observations with AMMIc Qa retrievals resulted in small differences in the bias.  These two exposure types constituted 94% of all the humidity observations during this time period.  Bias between AMMIc and ICOADS sling psychrometer observations was -0.06 g/kg and bias for AMMIc and ICOADS non-ventilated screen data was -0.01 g/kg.  These differences are an order of magnitude less than those found for height correction.  

Solar heating effects on temperature sensors are known to cause detectable bias, so its effect on computing Qa was explored.  A three month comparison for June-August 1999 between satellite and ICOADS observations matches were compared.  A match was defined as a single grid cell having both a day and night match for a single day.   Grid cells with only one night or day match were not considered so that the spatial sampling for comparing night and day bias were the same.  The mean bias of the day observations was found to 0.00 g/kg for the day data and -0.02 g/kg for the night data for 663 matches.  Alternatively, Table 3 shows the bias between ICOADS ship and buoy data for all matches and night-only matches.  Night-only biases change less than 0.05 g/kg from those that use all observations.  Therefore, the solar heating effects on the humidity were of the same magnitude as the hygrometer uncertainties and smaller than correction need for height correction.
The results of the ICOADS bias study only served to identify the uncertainty in the ICOADS in this study.  Height correction of ICOADS data had a significantly larger uncertainty (~0.3 g/kg) than biases caused by differing hygrometer types (~0.05 g/kg) or solar heat effects (~0.02 g/kg).  Due to the increased error when applying height corrections to ICOADS data, these data were not height-corrected for the ICOADS validation in sections 4.2 and 4.3.

4.2 ICOADS validation
The updated AMMI, AMMIc, and MIT2 Qa retrievals in Section 3 were compared to the AMMI_06 and MIT2_06 retrievals reported in Jackson et al. [2006] and the single sensor approaches of Schlüssel, Schulz, and Bentamy.  Figure 7a shows a scatter diagram comparing AMMI_06 and the updated AMMIc retrieval using 2001 matched data and figure 7b shows the MIT2_06 and MIT2 scatter diagram.  Bias relative to ICOADS is reduced for both low and high values of Qa for the AMMIc retrieval, and MIT2 improvements are made for Qa > 15 g/kg where the original algorithm had a dry bias. However, a wet bias for MIT2 Qa < 15 g/kg remained the same for both the original and updated retrieval methods.  Table 4 gives the bias and RMS for eight Qa retrievals for matched ICOADS and satellite retrieved Qa for 1999 and 2001.  Validation with 2001 data was considered since it was independent from the 1999 data period used to develop the inversion correction for AMMIc.  Since SSM/I observations are sensitive to rainfall and cloud liquid water, the Ferriday and Avery [1994] SSM/I rain rate (RR) and the Weng and Grody [1994] cloud liquid water (CLW) retrievals were used to filter retrievals with rain rate > 0 mm/hr and CLW > 1 mm.  Retrievals with rainfall comprised 12.1% of the observations and retrievals with CLW > 1mm in regions of no rainfall were an additional 8.0% of the observations for 1999.  Overall bias after filtering the data between AMMIc Qa and ICOADS for 1999 and 2001 was -0.05 g/kg and the RMS was 1.55 g/kg and 1.60 g/kg respectively. Bias and RMS was smaller than the AMMI_06 retrieval for both years; however, the overall bias for the uncorrected AMMI retrievals was less for both years even though the North Pacific summer bias is significantly larger for the uncorrected retrieval. MIT2 bias difference for the 2006 retrieval and the present retrieval who the increased Qa values in Figure 7b resulted in changing the sign of the bias from negative to positive but did not reduce the magnitude of the bias.  However, RMS difference was reduced with the updated MIT2 retrieval by 0.28 g/kg.  Generally, the MIT2 Qa retrieval is wetter than ICOADS while the Schulz and Bentamy are drier than ICOADS.  The statistics for the unfiltered 1999 data show higher RMS differences for all retrievals.  Schlüssel Qa was most affected by including retrievals with rainfall or high cloud liquid water content with an increase in Qa of 0.32 g/kg in 1999.  The multi-sensor retrievals have lower RMS differences by approximately 0.35 g/kg.  Jackson et al. [2006] showed that including channels sensitive to lower tropospheric temperature data and vertical water vapor profile information helped reduce the RMS difference in satellite Qa retrieval.

Qa validation was further examined by comparing matched satellite/ICOADS data for 1999 as a function of Qa.  Figure 8a shows the Qa bias for the AMMIc, MIT2, Schlüssel, Schulz, and Bentamy Qa retrievals.  Bias is greatest for Qa < 3 g/kg and Qa > 20 g/kg where the satellite radiances have little sensitivity to Qa.  For the 3 g/kg < Qa < 15 g/kg range, Schulz is generally drier than ICOADS while the remaining retrievals are more moist.  MIT2 has the largest positive Qa bias for this range, while AMMIc gives the best agreement with ICOADS.  MIT2 improves at the higher values of Qa but shows moist bias for the lower values of Qa.  For the 15 g/kg < Qa < 20 g/kg range, Bentamy has dry bias relative to ICOADS while the other retrievals show small bias.  RMS differences in Figure 8b are lowest for MIT2 and AMMIc for all levels of Qa while the single sensor retrievals have greater RMS difference.  This reduction in RMS is due to increased atmospheric information provided by the microwave sounders.  RMS is particularly larger at the 15-18 g/kg range where Schulz and Schlüssel has ~0.8 g/kg higher RMS than the multi-sensor retrievals.

4.3 Seasonal and Regional Analysis

A seasonal and multi-year analysis of the AMMIc, MIT2, Schlüssel, Schulz, and Bentamy Qa retrievals was conducted to examine the seasonal cycle and annual variability and to investigate regional biases exhibited by each retrieval.  Examination of regional differences between these retrievals highlighted regions where greater uncertainty may reside with retrievals of Qa.
The seasonal cycles for five latitude domains are presented in figure 9.  Seasonal cycles were averaged over 8 years from 1999-2006 with the exception of MIT2 which had time averaging from 1999-2004.  Maximum Qa for 60oN-30oN and 30oN-10oN occur in August, while 60oS-30oS and 30oS-10oS occur in February. A double maximum in the seasonal time series for 10oN-10oS is due to the combined effects of the annual north/south migration of the ITCZ and associated drying that occurs in the Eastern Pacific and Atlantic during the summer.  Differences between the retrievals remain nearly constant through the seasonal cycle for the subtropical domains at 10oN-30oN and 10oS-30oS and the multi-sensor retrievals of AMMIc and MIT2 are wetter than the single sensor retrievals for these domains.  The midlatitude domains at 60oN-30oN and 60oS-30oS show better agreement between the retrievals during the summer season and significant differences in the winter season.  Schulz is notably drier than the other retrievals and MIT2 is notably wetter than the other retrievals which agreed with validation in Figure 8.  The tropical domain at 10oN-10oS shows Bentamy as driest retrieval and Schuessel as the wettest retrieval.  The multi-sensor retrievals of AMMIc and MIT2 show good agreement in the tropical and subtropical domains, but MIT2 is wetter than AMMIc in the midlatitude domains.
The season cycle differences between the satellite retrievals and ICOADS are shown in Figure 10.  The satellite retrievals are drier than ICOADS in the midlatitude regions with the exception of MIT2.  The largest differences between satellites and ICOADS are during the winter seasons with Schulz giving the largest differences.  AMMIc and MIT2 agree well with ICOADS in the subtropical domains while the single sensor retrievals are drier than ICOADS in these regions.  AMMIc, MIT2 and Schulz agree well with ICOADS in the tropical domain while Schlüssel is wetter and Bentamy is drier than ICOADS.   Biases between satellite Qa and ICOADS do have seasonal tendencies.  Both Schlüssel and Schulz have larger bias with ICOADS in the winter seasons in the midlatitude and subtropical regions than during the summer months.  This agrees with Figure 8 that shows largest differences when Qa is low.  Bentamy shows less seasonal dependency with the exception in the 60oN-30oN domain where the bias transitions negative to positive during the spring season.  Seasonal variations occur between AMMIc and ICOADS in the midlatitude regions AMMIc has good agreement with ICOADS in the summer season and a negative (dry) bias with ICOADS during the winter season.  MIT2 has the least amount of seasonal dependencies with ICOADS.
Further investigation of regional differences with ICOADS were performed by deriving difference maps at 0.5 degree resolution for the AMMIc, Schlüssel, Schulz and Bentamy retrievals over the 8-year period from 1999 to 2006 and for MIT2 over the 6-year period from 1999 to 2004.  Figure 11 shows each retrieval has distinct regional bias with the ICOADS data.  AMMIc has a tendency to be drier than ICOADS in midlatitude regions which is a result of a winter season dry bias shown in Figure 10.  Schlüssel has both dry and moist bias with moist regions occurring over Indonesia, the eastern tropical Pacific, and the tropical Atlantic and dry regions over subtropical high regions of the Pacific and Atlantic and in regions surrounding the Arabia peninsula.   Schulz is similar to Schlüssel in the tropical and subtropical regions, but has large dry bias in midlatitude regions.  Bentamy has large dry biases in the subtropical regions but good agreement in the midlatitude and regions around Indonesia and tropical Atlantic.  All satellite retrievals are drier than ICOADS in Arabian and Mediterranean Seas and moister than ICOADS in the Eastern Tropical Pacific along the equator.  The Arabian and Mediterranean Seas are influenced by the neighboring land regions which are typically very dry.  Local upwelling effects causing a relatively cold SST and lower near-surface air temperature in the East Pacific region is likely not captured by the satellite retrievals. Figure 11 shows that new multi-sensor retrievals tend to reduce the magnitude of the regional biases found more prominently in the older algorithms.
4.4 Latent Heat Flux
Bias in Qa retrieval between satellite retrievals can play a significant role in bias of latent heat flux products.  Differences in monthly-averaged latent heat flux between satellite-derived products from HOAPS and GSSTF2 data can exceed 50 Wm-2.  The HOAPS product uses the Bentamy Qa retrieval and the GSSTF2 uses the Schulz Qa retrieval.  Errors in wind speed and Qa retrievals in the bulk formula used to derive latent heat flux are the primary cause of latent heat flux errors.  Figure 12 gives the difference between HOAPS and GSSTF2 latent heat flux and corresponding Qa retrievals for July 1999.  Regional differences in latent heat flux and Qa are coherent between the two products indicating that regional Qa biases between the products explain much of the difference in latent heat flux between these products.  This result clearly identifies the need to minimize regional Qa bias that is inherent to all regression-based retrievals in order to better estimate the latent heat flux.  For example, the AMMIc Qa in Pacific subtropical high regions is generally wetter than Bentamy and Schulz Qa and in closer agreement with ICOADS.  Using AMMI Qa would result in a significant reduction of latent heat flux in these regions.  Figure 13 shows monthly mean latent heat flux difference using the COARE 3.0 bulk flux model with AMMIc and Bentamy Qa data.  Significant reduction in latent heat flux in the tropical Pacific and Indian Ocean regions occurs for the latent heat fluxes derived from AMMIc due to the Qa differences between the retrievals.  Midlatitude differences north of 40N can be attributed to the AMMIc Qa correction applied in that region.  This result demonstrates the large monthly-mean uncertainties in latent heat flux due to differences in satellite Qa algorithms and the importance of reducing regional biases and achieving accurate Qa retrievals for deriving latent heat flux.
5. Conclusions
Two updated multi-sensor Qa retrievals first introduced in Jackson et al. [2006] using AMSU-A, SSM/T-2, and SSM/I were found to improve the Qa retrievals in the 16-20 g/kg range and reduce regional biases when validated with ICOADS observations.  The updated multi-sensor Qa retrievals use a more diverse training set with matched satellite/ship observations that contain a greater number of subtropical and moist Qa observations in the training data set.  The AMMI regression formula now include a quadratic term for the 52.8 GHz channel to better capture the non-linear relationship between lower tropospheric temperature and water vapor.  The MIT2 regression was improved by transforming brightness temperatures with a logarithmic transformation.  While the AMMI and MIT2 regression RMS difference are higher than reported with original retrievals in Jackson et al. [2006], the regression was developed over a wider range of conditions and validation with ICOADS indicates a reduction in bias for dry and moist Qa retrievals.
A significant regional bias in the North Pacific and Atlantic during the boreal summer was identified by comparison of Qa retrievals and ICOADS observations for 1999 and 2000.  A moist bias was found to be caused by both temperature and moisture inversions during the summer months in this region.  Microwave sounders and imagers are unable to detect these inversions due to limitations in the vertical resolution of sensors.  A correction was derived using the daily mean SST differences with the AMSU 52.8 GHz lower temperature channel.  This difference was found to identify over 80% of the inversion cases for July 1999 and July 2000.  The correction formula used a simple linear regression with matched ICOADS and satellite observations to eliminate the bias for all regions north of 30oN.
Investigation of uncertainties caused by instrument height differences, solar heating effects, and hygrometer-type was conducted on the ICOADS validation data.  Results indicated that height corrections gave the largest uncertainty to these data (0.2-0.5 g/kg).  Solar heating effects and hygrometer differences had much smaller uncertainties of 0.02 g/kg and 0.05 g/kg respectively.  Uncertainties in height corrections were further complicated when matched ICOADS ship and buoy observations gave less bias before correction than after correction.  Regional differences in the matched ICOADS ship and buoy data appear to play a role in this issue with a high percentage of matched data points near the United States coast showing ship data to be wetter than buoy data.  Height correction of data still resulted in significant variance in the biases at several buoy locations and raised the mean difference between ICOADS ship and buoy from 0.06 to 0.51 g/kg.  The result of this analysis was to prevent using height corrected ICOADS data for validation of the satellite Qa retrievals.
Validation of the AMMIc and MIT2 Qa retrievals with ICOADS indicated good agreement with AMMIc bias of -0.05 g/kg and RMS differences of 1.60 g/kg and with MIT2 bias of 0.43 g/kg and RMS difference of 1.53 g/kg for all matched data in 2001. MIT2 had largest bias for dry ICOADS Qa data but agreed well value Qa > 10 g/kg.  The single-sensor Qa retrievals had larger RMS differences between 1.9 and 2.1 g/kg.  Schulz Qa was found to be drier than ICOADS for ICOADS Qa < 15 g/kg and Bentamy was drier than ICOADS for ICOADS Qa > 15 g/kg.  Schlüssel Qa global bias was small but regional biases were greatest in tropical regions and this retrieval had the highest sensitivity to rainfall and cloud liquid water.  
An eight-year comparison (1999-2006) of satellite Qa with ICOADS data indicated seasonal and latitudinal sensitivity in the Qa differences.  In the mid-latitudes, generally all satellite Qa retrievals tended to be drier than ICOADS in the winter except for MIT2.  In the tropics, sensitivity to the seasonal cycle was small but a dry bias with ICOADS was evident for Bentamy and a wet bias occurred for Schlüssel and Schulz in the Indonesian and Atlantic regions.  The subtropics showed AMMIc and MIT2 to agree well with ICOADS, while the single sensor retrievals were generally drier than ICOADS in these regions.  These lower Qa values led to relatively high latent heat flux in these regions for products using these single-sensor Qa retrievals such as HOAPS and GSSTF2.  Qa bias is one of the most important errors introduced to the bulk formula used to derive latent heat flux in these regions.  The reduction of RMS and regional biases of the multi-sensor Qa retrievals will better addres the errors in satellite-derived latent heat flux retrievals.

Future work in satellite-derived Qa retrievals should investigate combining other sensors to improve the retrieval and conducting direct validation of the derived latent heat fluxes derived from the satellite Qa observations.  More investigation into errors and correction of bias within the ICOADS data, particularly those found with coincident ship and buoy observations, could provide improved validation of satellite-derived retrievals.  Accurate height information on the in situ sensors used for validation is needed since observation height affects Qa bias more than hygrometer type and solar heating. And finally, other regions of Qa bias caused by seasonally changes to atmospheric temperature and humidity profiles, such as was found in the North Pacific region in this study, could be identified and adjusted to remove regional Qa bias.
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Figure Captions

Figure 1: Cruise ship trajectories for cruise ship observations used for training data set of Qa regression.

Figure 2: Qa differences (AMMI – ICOADS) for July 1999.

Figure 3: NCEP Reanalysis temperature (a) and humidity (b) profiles averaged over 7-day period (July  1-7, 1999) for 30oN-60oN domain.  Solid curve indicates profiles without temperature inversions and dotted curve indicates profiles with temperature inversion.

Figure 4: (a) SST – Tb52.8 difference for July 1999 used as inversion index and (b) the mean temperature inversion height determined from NCEP Reanalysis data.

Figure 5: Satellite – ICOADS Qa differences (a) and RMS differences (b) for five different Qa retrievals for all matched data in 1999.  Ship indicates ICOADS ship-only data, Buoy indicates ICOADS buoy-only data, and HC indicates ICOADS height-corrected data.

Figure 6:  ICOADS ship – buoy Qa differences with (a) no height corrections and (b) height corrections applied to both ship and buoy data for 1999.

Figure 7:  Scatter diagram comparing ICOADS and satellite Qa data for 1999 from the (a) AMMIc and the Jackson et al. [2006] AMMI retrievals and (b) MIT2 and the Jackson et al. [2006] MIT2 retrievals.

Figure 8:  Satellite – ICOADS Qa differences (a) and RMS difference (b) as a function of ICOADS Qa for 1999.  

Figure 9: Qa mean time series from January 1999 to December 2006 for five Qa retrievals averaged over five different latitude domains.  MIT2 Qa time series only extends from January 1999 to December 2004. 

Figure 10: Same as Figure 9 except giving the satellite – ICOADS Qa difference.

Figure 11:  Satellite – ICOADS Qa difference maps for time period January 1999 to December 2006 except for MIT2 which has time period January 1999 to December 2004.  Red indicates ICOADS is drier than satellite Qa and blue indicates ICOAD is wetter than satellite Qa.

Figure 12:  HOAPS – GSSTF2 Qa differences (a) and latent heat flux differences (b) for July 1999.
Figure 13:  COARE 3.0 latent heat flux difference between AMMIc and Bentamy for July 1999.
Tables
Table 1: Cruise ship observations containing observations of near-surface temperature and humidity used for satellite retrieval and validation.  KWAJEX: TRMM Kwajalein Experiment, FRAMZY: Fram Strait Cyclone Experiment, JASMINE: Joint Air-Sea Interaction Experiment, PACS: Pan-American Climate Study, EPIC: Eastern Pacific Investigations of Climate Processes, GASEX: Gas Exchange Experiment, STRATUS: Research cruises in southeastern Pacific as part of the Pan American Climate Studies program, Ka’Imimoana: NOAA Research vessel used for servicing TAO buoy array, Ron Brown: NOAA oceanic and atmospheric research vessel.  Bold cruise names indicates data not used for regression training data in Jackson et al. [2006] study.
	Cruises
	Period
	Longitude range
	Latitude range

	FRAMZY
	Apr. 8 – Apr. 24, 1999
	10W – 5E
	62N – 71N

	JASMINE
	May 4 – May 31, 1999
	88E – 96E
	5S – 11N

	NAURU
	Jun. 17 – Jul. 18, 1999
	145E – 167E
	10S – 9N

	KWAJEX
	Jul. 28 – Sep. 12, 1999
	167E
	8N

	MOORINGS
	Sep. 14 – Oct. 15, 1999
	167E – 148W
	8N – 50N

	PACS
	Nov. 2 – Dec. 2, 1999
	95W – 122W
	8S – 47N

	GASEX
	Feb. 14 – Mar. 1, 2001
	125E – 131E
	2N – 3N

	EPIC
	Sep.10 – Oct. 24, 2001
	101W – 71W
	EQ – 20N

	STRATUS
	Nov. 13 – Nov. 23, 2003

Dec. 5 – Dec. 22, 2004  
	85W – 72W
90W – 70W
	20S – 1S
32S – 18S

	Ka’ Imimoana
	Jan. 23 – Dec. 13, 1999
Feb 1 – Dec. 12, 2000
	165E–90W
165E – 90W
	10S – 20N
10S – 20N

	Ron Brown
	Feb. 22 – Apr. 18, 1999

 Jul. 28 – Oct. 23, 1999
Nov. 2 – Dec. 16, 1999
	57E – 88E
167E – 124W
125W – 94W
	8S – 7N
8N – 56N

8S – 47N


Table 2:  Statistics of four cases used to discriminate Qa bias for temperature inversion cases in North Pacific.  Case 1:  NCEP inversion, qa 0-15 g/kg, sst-Tb52.8 0-30 K, Case 2: NCEP inversion, either Qa > 15 g/kg or sst- Tb52.8 > 30K, Case 3: no NCEP inversion, Qa 0-15 g/kg, sst- Tb52.8 0-30K, Case 4: no NCEP inversion, either Qa > 15g/kg or sst-Tb52.8 >30K. 
	
	Mean (g/kg)
	Standard Deviation (g/kg)
	Number of Observations

	July 1999, Case 1
	3.03
	1.83
	1202

	July 1999, Case 2
	3.14
	2.55
	281

	July 1999, Case 3
	1.21
	1.59
	1143

	July 1999, Case 4
	0.48
	1.99
	3011

	July 2000, Case 1
	2.81
	1.76
	1462

	July 2000, Case 2
	2.77
	2.34
	342

	July 2000, Case 3
	1.12
	1.38
	790

	July 2000, Case 4
	0.22
	1.81
	3761


Table 3:  ICOADS Qa statistics for matched ship and buoy data for 1999.   All units are g/kg
	
	No Corrections
	Height Corrected
	Night-only
	Night-only + height corrected

	Ship-Buoy
	0.06
	0.46
	0.10
	0.48

	RMS
	0.98
	1.06
	0.90
	0.95

	# Matches
	1317
	1294
	548
	539


Table 4:  Bias (Satellite-ICOADS) and RMS difference for 1999 and 2001 matched observations.  Filtered data indicate matches where CLW < 1.0 mm and RR = 0 mm/hr.  27215 matches for all 1999 data, 21334 matches for rain and CLW filtered 1999 data, and 22505 matches for 2001. All units are g/kg.
	
	
	AMMI_06
	MIT2_06
	AMMI
	MIT2
	AMMIc
	Schlüssel
	Schulz
	Bentamy

	1999
	Bias
	-0.09
	-0.31
	0.15
	0.46
	0.08
	0.47
	-0.30
	-0.34

	All
	RMS
	1.76
	1.89
	1.69
	1.66
	1.62
	2.02
	2.04
	1.97

	1999
	Bias
	-0.19
	-0.33
	0.00
	0.35
	-0.05
	0.15
	-0.39
	-0.19

	filtered
	RMS
	1.67
	1.77
	1.56
	1.49
	1.55
	1.90
	2.05
	1.85

	2001
	Bias
	-0.32
	-0.35
	0.00
	0.43
	-0.05
	-0.02
	-0.63
	-0.37

	fitered
	RMS
	1.72
	1.81
	1.60
	1.53
	1.60
	1.91
	2.09
	1.91
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