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NOMENCLATURE

3 Wind speed
D Wind direction
U,V W Longitudinal, lateral, and vertical wind components
z Héight above ground
n Cyclic frequency (Hz)
S{n) Spectral estimate
A Wavelength (::ﬁ/n)
Ki Lower limit of inertial subrange
AM Wavelength at spectral peak
Ty Lowpass filter time
Ty Highpass filter time
{ &; Differencing interval
% AX Differenced variable X where X = S or D
% L Integral length scale
% [ }F Filtered time series
i a{X) Standard deviation of X
2 GrmS(X) Root-mean-square of X
% +AO, -AO GUST O amplitudes
i +TO, —TG GUST ¢ times
+A1, —A1 GUST 1 amplitudes
+T1, -Tl GUST 1 times.
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ABSTRACT

Characteristics of moments and probability dist
for two high-wind episodes observed at the Boulde
Observatory are examined in depth. The two episo
entirely different stability conditions. Statistic
GUST 0 and GUST 1 models for different heights and b
filters are the main focus.
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1.0 INTRCDUCTION

A great deal of attention has been directed in recent years to the
development of energy technologies that depend on sources not as easily
depleted as the fossil fuels in use today. The main focus of such atten-
tion has been on such sources as the wind, the sun, and vegetation. As
a source of energy, the wind offers a clean, virtually inexhaustible,
though not always predictable, supply that can be harnessed; with each
increase in price of fossil fuel, its conversion to electrical power be-

comes more cost-effective.

Wind Energy Conversion Systems (WECS) under development cover a
range of sizes and output capacities, from small systems suitable for
farm and rural use to large megawatt systems designed for use in exist-
ing utility grids. Not surprisingly, the costs of fabrication and

maintenance rise sharply with size, so operating efficiency and fatigue

]

life become matters of primary concern in the design of the larger WEC
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systems. Of fundamental importance is an understanding of a system's

response to spatial and temporal fluctuations in the wind.



A WECS is typically a wind turbine generator with rotor blades
mounted either vertically or horizontally. Larger systems tend to be
conventional propeller types with horizontal axes. They operate in a
region of the atmosphere's boundary layer where wind shears and tur-
bulence intensities can be very large. Spatial and temporal fluctua-
tions in the velocity field cause bending moments and vibrations that
affect machine performance and reliability. Furthermore, as the blades
rotate through air moving at different speeds and directions they are
subjected to varying loads. All of these factors have to be considered
in any description of the wind field to which the wind turbine is ex-
posed (See, e.g., Connell, 1979; a detailed discussion of all the

factors can be found in the same proceedings volume. )

Development of gust models to characterize the wind field has

proceeded along two distinct lines. One approach uses statistics that
" can be derived from accepted turbulence definitions. The frequency of
an event such as exceedance of the velocity fluctuation or velocity
change with time (Cliff and Fichtl, 1978; Huang and Fichtl, 1979) beyond
a prescribed limit is estimated indirectly from turbulence spectra and
length scales. The other approach uses the statistics of discrete
events defined on the basis of arbitrary criteria such as the time
interval between zero crossings or successive positive and negative
peaks (Ramsdell, 1975; Powell, 1979). The most promising of these
models, GUST 0 and GUST 1, proposed by Powell (1979) involve a velocity
amplitude and a corresponding time scale. A detailed comparison of

various gust models is given by Powell and Connell (1980).

The Boulder Atmospheric Observatory (BAO) with its ability to
collect and process turbulence data over a depth of 300 m for long
observation periods has been useful for verifying the statistics used in
some of the proposed gust models. In this report we examine in depth
the characteristics of moments and probability distributions for two

highwind episodes observed at the BAO.



Figure 2.l1--Instrumented 300-m tower at the Boulder Atmospheric Observatory.

2.0 THE BOULDER ATMOSPHERIC OBSERVATORY

The BAO is located on gently rolling terrain 25 km east of the
foothills of the Colorado Rocky Mountains. This research facility
operated by the Wave Propagation Laboratory of NOAA is designed to
provide high-quality measurements of atmospheric turbulence for boundary
layer studies and for calibration and comparison of atmospheric sensors.
Installations at the site include a 300-m instrumented tower (Fig. 2.1),
a variety of remote sensors, and a computer system that controls the
acquisition and processing of data. The contour map of the immediate
surroundings (Fig. 2.2) reveals small-scale undulations. superimposed on
a mean slope downward from south to north. The rolling nature of the
terrain is highlighted by the exaggerated vertical scale in the three-

dimensional terrain profile of Fig. 2.3.
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Figure 2.4--View of instruments on the SSE boom during the September
1978 "PHOENIX'" experiment. The three-axis sonic anemometer is shown
with the fast-response temperature probe mounted in the vertical array.
The propeller-vane anemometer and the slow-response quartz thermometer
(in the aspirated radiation shield) are mounted farther back on the
boom.

The BAO tower is a guyed open-lattice structure of galvanized
steel. It has a constant triangular cross section with 3-m spacing
between the legs. The eight fixed levels of instrumentation on the
tower are at heights 10, 22, 50, 100, 150, 200, 250, and 300 m. Sensors
are mounted on two retractable 4-m booms at each level. Each boom is
attached to a large hinged support with fine adjustments for precise

leveling.

The eight levels are instrumented identically. A three-axis sonic
anemometer mounted at the end of the SSE boom (Fig. 2.4) measures the
mean and turbulent fluctuations of the wind along three orthogonal axes.
A fine platinum wire probe attached to the sonic vertical array measures
fluctuations in temperature. Mean temperature is measured by a quartz
thermometer housed in an aspirated glass shield. The propeller-vane
anemometer shown on the SSE boom in Fig. 2.4 was moved to the NNW boom
between the first and second high-wind episodes discussed here. A

cooled-mirror hygrometer (not shown) is mounted on the NNW boom for



measuring dew point temperatures. Further details of the instrumenta-

tion can be found in Kaimal (1978a).

The tower sensors of particular significance to this study are the
sonic and the propeller-vane anemometers. The sonic anemometers include
a mix of EG&G Model 198-2 two-axis probes and Ball Brothers?! Model 125-
198 two-axis and Model 125-197 single-axis probes. The sonic anemom-
eter probes have a path length of 25 cm; their outputs are sampled at a
10-Hz rate. The propeller-vane anemometer is the "ruggedized" R.M.
Young? Propvane Model 8002. Its polystyrene propeller has a distance
constant of 2.5 m and a working range from 1 to 54 m/s. The speed and

direction outputs from this sensor are sampled once per second.

The sonic anemometers on the tower use a fixed orthogonal array.
Tts two horizontal axes are aligned along and perpendicular to the boom
(see Fig. 2.4); the vertical axis is mounted on the outer end of the
array pointing away from the tower. Since the orientation of the
anemometer axes is fixed with respect to the tower, the horizontal wind

measurements are affected when the wind blows parallel to one of the axes.

An approximate functional form for the underestimation caused by
the transducers is given by Kaimal (1980). Only the horizontal wind
components are corrected for this error, since vertical wind inclination
angles are seldom large enough to justify correcting the w component.
Each data point sampled is corrected in real time using an algorithm
that determines the magnitude of the correction from the ratio of the
wind components measured along the two horizontal axes. The maximum
correction for the winds along either axis is 13%, decreasing linearly

with angle to zero at 75 deg.® The net effect of this correction is a

TThe three-axis version of this array and associated electronics are now
available commercially from Applied Technology, Inc., Boulder, Colorado.

2R. M. Young Company, 2801 Aeropark Drive, Traverse City, Michigan.

3This correction is a function of the transducer diameter-to-path-length
ratio and may vary with probe design. The ratio in this probe is 1:25.



7% to 8% increase in variance spread uniformly over the entire spec-

tral bandwidth.

Acquisition of data from the sensors is controlled by a PDP 11/34
computer at the BAO site. Real-time computations of means, variances,
covariances, and Obukhov lengths are made for each consecutive 20-min
period and recorded both on a line printer and a digital magnetic tape
unit. The raw data from the sensors are also recorded on tape. To
minimize tape storage only 10-s averages and 10-s grab samples (last
sample in each 10-s period) are transmitted to Boulder for archiving.
The high-frequency information lost by not saving the entire time series
is preserved, however, in the form of smoothed spectral estimates,
block-averaged to yield approximately seven logarithmically spaced
estimates per decade. This spectral information is also transmitted
along with other data for use in reconstructing the high-frequency end

of spectra computed later from the 10-s averaged data points.

The information transmitted through phone lines feeds into a larger
multiuser computer system centered on a PDP 11/70 in Boulder, where it
is stored temporarily on disk for immediate use and later (a few days to

a week) archived on magnetic tape.

The archiving scheme is designed for easy and rapid retrieval of
data. Standard programs are available for inspection of the data. Some
print numerical summaries, and others produce graphs. The search pro-
cedure for archived data is facilitated by a descriptor file in the
computer. The descriptor, which consists of low-resolution (20-min
averaged summary) data from all channels, with accompanying defect codes
indicating the quality of information in each channel, is stored per-
manently in the computer. Details of the interactive access to the BAO

data are given by Lawrence and Ackley (1979).

The data sets used in this report were prepared from the raw data
tapes where the full time resolution of the system is retained. All the
analyses described were performed on the PDP 11/70 computer using pro-

grams and subroutines specially developed for this project.
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3.0 DESCRIPTION OF DATA

The two cases chosen for this study are fairly typical of the
downslope wind storms observed along the Front Rangelof the Rocky
Mountains. Several such high-wind episodes occur throughout the year,
although they tend to be more frequent during the winter months. The
two cases designated A and B in this report were associated with widely
different static stabilities. The mean profiles of wind speed, wind
direction, and temperature in Fig. 3.1 show how different conditions

were for the two cases.

Case A occurred on 11 September 1979 during the PHOENIX Experiment
conducted at the BAO. High winds persisted for over 24 h starting at
about 1000 MST. TFour hours of this episode were selected for analysis.
Figure 3.2 shows the 20-min averaged speeds and directions for two
heights for the entire period. (Data points represent averages for the
following 20 min.) The temperature lapse rate stayed near-neutral during

this period.

Case B, which occurred during the early hours of 5 December 1979,
was a much shorter wind storm than the one observed in September. The
wind speeds were higher, and, despite the strong mixing that the winds
produced, a strong inversion persisted below 100 m (see Fig. 3.1). The
speed and direction plots in Fig. 3.3 reveal a highly nonstationary

1

period which includes a 20-deg shift in wind direction and a near-

sinusoidal rise and fall in wind speed.

The synoptic conditions associated with the two wind storms were
not unusual for the time of year they occurred. Case A represents a
typical chinook produced by an intensification of east-west pressure
gradient over the mountains, which often accompanies the passage of a

cold front. Upper-air flow was from the southwest. The pressure

TThe direction shift occurred gradually over the 20-min period, so the
shift reflected in Fig. 3.2 is a fair representation of the actual rate
of change in direction.
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Figure 3.1--Mean wind speed, wind direction, and temperature profiles
for two high-wind episodes observed at the BAO. Cases A and B represent
different but fairly typical conditions associated with high winds along
the Front Range of the Rocky Mountains. (Case A duration: 1600-2020
MST; Case B duration: 0040-0400 MST.)
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pattern moved very slowly westward, causing the storm to persist for a
long period. By contrast, Case B was more typical of a bora, which is a
cold downslope wind of short duration. The winds in this case were caused
by an upper air jet dipping down as it crossed the mountains. A surface
low had formed in eastern Colorado, and the jet was drifting southward
rapidly. Upper air winds were predominantly from the northwest, and ac-

count for the cold temperatures and stable stratification near the ground.

The data set for Case A consists of sonic anemometer outputs sam-
pled 10 times a second from the four lowest levels: 10, 22, 50, and
150 m. (The 100-m measurements were not used because of suspected noise
contamination in one of the axes.) For Case B, only the propeller-vane
data are used since the combination of cold temperatures and high winds
introduced noise spikes in the sonic anemometer data. Compatibility
between the propeller-vane and sonic anemometer statistics was establish-
ed by comparing results from both types of instruments. When subjected
to the same filtering, the variances, skewness, and kurtosis from the
two instruments showed very little difference. The compatibility was
further enhanced by subjecting the sonic anemometer measurements to a
1-s nonoverlapping average to produce a time series similar to that

obtained from the propeller-vane anemometer.

Sonic anemometers and propeller-vanes provide different types of in-
formation. The former yield wind components, and the latter yield wind
speed and direction. Since the wind turbine generators are designed to
face the mean wind, speed and direction are obviously the wind parameters
they respond to. We therefore converted the sonic anemometer horizontal
wind components to speed and direction for all the analysis described
here. It is generally recognized that the spectral characteristics of
speed and direction very closely approximate those of the longitudinal
(u) and lateral (v) wind components. Powell and Connell (1980) report
wind speeds to be only 3% greater than the u-component variance and the
direction variance to be within 0.5% of that obtained by dividing the

v-component variance by the square of the mean horizontal wind speed.

12



The spectra of speed and direction measured at 10 m and 150 m are
shown in Fig. 3.4 (Case A) and Fig. 3.5 (Case B). Because of the higher
sampling rate in the sonic anemometers, the spectra extend a decade
higher in Case A than in Case B. The spectral behaviér in this region
is fairly predictable, so the high-frequency end in Case B may be
approximated with reasonable certainty. The dashed lines in Fig. 3.5
follow the -5/3 power law predicted by Kolmogorov for the inertial sub-
range. (In our spectral representation, this power law appears as a
-2/3 slope.) Included in Fig. 3.4 are the vertical velocity (w) spectra
for 10 m and 150 m; this information is available from the sonic anemom-

eters for Case A but not for Case B.

The inertial subrange represents the region of the spectfum where
turbulent energy is neither produced nor destroyed, but handed down
from the larger to the smaller eddies. In this region, all three com-
ponents of velocity follow the -5/3 power law. Also, the turbulent
field is locally isotropic (i.e., no preferred direction for eddies on
that scale) with vanishing covariance between the different velocity
components. The limiting wavelength on the low-frequency side is con-
trolled by stability and the height above ground. The spectral maximum,
farther down on the frequency scale, represents the region where energy
is being produced by mechanical and buoyant forces, while farther up
the scale, beyond the range of our spectral computations, energy is dis-
sipated in the form of heat. Where turbulent energy is being produced,
the spectrum slope tends to be shallower than in the inertial subrange,
whereas in the region where energy is being dissipated, the slope tends
to be steeper. The higher spectral energy in the w component, compared
with the speed spectrum within the inertial subrange, is a conseguence of
isotropy. In our one-dimensional spectral representation (i.e., spatial
cut of the turbulent field along the streamwise direction), the inertial
subrange energy in the crosswind components (w and v) will appear 4/3
as high as the energy in the streamwise component (u). To the extent
that the speed spectrum approximates the u spectrum, this condition is
satisfied with respect to w in Fig. 3.4 at wavelengths A < 0.5z, where A

is the wavelength (~u/n) and z is the height above ground.

13
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The limiting wavelength hi for the inertial subrange normally ap-
proaches 0.5z only in an unstable boundary layer (Kaimal et al., 1972).
As the atmosphere becomes stably stratified, Ai becomes a function of
stability as well (Kaimal, 1973). Another feature of the spectra in
Fig. 3.4 that suggests a slightly unstable lapse rate is the constancy
in the speed spectralApeak with height. The wavelength at the spectral
maximum, Am’ remains constant at about 1.8 km between 10 and 150 m. 1In
a convectively unstable boundary layer, hm for u and v scales with the
height of the boundary layer (Kaimal, 1978b), but in the absence of a
conventional boundary layer in Case A it is difficult to verify that
relationship. The wavelength of the peaks observed here is typical for

a daytime boundary layer roughly one 1 km deep.

Tn contrast to the indications provided by the speed spectrum, the
peaks of the w and direction spéctra in Fig. 3.4 behave as if the atmo-
sphere is slightly stable (almost neutral). Here, Am for w is smaller
than the usual value of 5.9z observed in an unstable atmosphere, and
hm for direction varies with height as in a slightly stable layer. We

find Am ~ 2z and 5z, respectively, for w and direction.

An interesting point to note in Fig. 3.4 is the presence of a spec-
tral gap centered around 1073 Hz in both speed and direction. This gap
indicates a separation between the scales associated with boundary layer
turbulence. and the larger mesoscale features of the wind field. The
upward swing in the spectra below 1073 Hz is produced by the downward

trend in the time series (Fig. 3.2).

The trends are even more pronounced in Case B (Fig. 3.3), and their
effect on the spectra extend to 1072 Hz in Fig. 3.5. Consequently, the
spectral gap is not as obvious as in Case A. However, the spectral
peaks for at least the 10-m level can be identified and the relationship
between Am and z examined. We find Am = 10z and 3z respectively for
speed and direction, corresponding to values one might expect in moder-
ately stable layers (z/L ~ 0.2) under quieter conditions. Actual values

of z/L ranged from 0.05 to 0.2 during the period.

16



No particular signific
at the low-frequency end of the spectra in Fig. 3.5. These features
are reproduced almost identically at 211 levels between 10 and 150 m.
They reflect the finer details of the spectral content in the trends

and cannot be attributed to computational uncertainties in the spectrum

analysis.

For the reader interested in relating spectral behavior to the ap-
pearance of the actual time series, we present the first 20 min of the
speed and direction fluctuations (deviations from the 20-min mean) in
Figs. 3.6 and 3.7. In Case B, the amplitudes of the speed fluctuations
are distinctly smaller than in Case A even though the direction ampli-
tudes are larger, not an unusual occurrence in stable layers. However,
the amplitudes of the speed fluctuations do increase with mean wind

speed and approach their maximum values an hour later.

These descriptions of the two cases are intended to serve as back-
ground for interpreting the distributions and moments presented in this
report. The spectral properties of the wind field, by themselves, ap-
pear to be of limited value in WECS design, although idealized spectral
forms have been used for calculating the frequency of occurrence of gust
events through Rice's equation (Powell and Connell, 1980). Bandpass
filtering appropriate to the response characteristics of the device is
the key to deriving parameters needed for the design of wind turbine
generators. Our analysis therefore includes results for a range of

filter options. These ranges can be identified in the spectral plots.

Not included in this report are the effects of wind shear on the
propeller blades. Direction shears do not appear to be very signifi-
cant, but the vertical speed gradients (5 m/s per 100 m for Case A and
7 m/s per 100 m for Case B) must seriously alter the spectral content of
the wind field sensed by each propeller blade as it rotates. This pro-
blem is being addressed by Connell (1980) and Doran and Powell (1980).

17
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4.0 OUTLINE OF ANALYSIS

The data set prepared for this study consists of wind speed and wind
direction measurements from three heights (10, 50, and iSO m) in the form
of discrete data points spaced 1 s apart. In Case A the original 10-Hz
samples were block-averaged (see Chapter 3 for details) to achieve high-
frequency smoothing comparable with the smoothing inherent in the 1-Hz
propeller-vane data used in Case B. With the three heights chosen, we
cover the wind field near the ground, at hub level, and near the top of

the surface shear layer.

From these data several more time series were generated. The first
set of operations performed involves bandpass filtering to simulate the
response of the WECS to fluctuations in the wind speed and direction.
Three passbands, each a decade wide, simulate the response of systems
with slightly different characteristics. In Fig. 4.1 these filters are
represented by designations 30/3, 50/5, and 100/10, where the first
number in each group represents the half-power point on the highpass
side of the filter and the second number the half-power point on the
lowpass side. The numbers are the widths, in seconds, of the running
means used in the highpass and lowpass filters, respectively. First,
the original time series are averaged with a moving average filter of
width Ty to remove frequencies higher than 1/12 Hz (where T, = 3, 5, or
10 s). The new time series thus created were then differenced from a
moving average of width T

h
(where th = 30, 50, or 100 s). The resulting time series are used for

to remove frequencies smaller than l/Ih Hz

calculating the statistical properties of the WECS response. Doran and

Powell (1980) give algorithms for this type of digital filtering.

The rationale for bandpass filtering to simulate WECS response stems
from the assumption that fluctuations of very long and very short periods
have little, if any, effect on the performance of the system. Spatial
averaging of the wind fluctuations by the propellers diminishes WECS sen-
sitivity to small-scale eddies, and the ability of the system to adjust

to slow changes in wind speed and direction through blade pitch control

20



Analysis Sequence for High Wind Data

- No Filter
Sonic Anemometer

Data (0.1 H -

50/5 Filter
Prop-Vane i
Data (1.0 Hz) 100/10 Filter
5 Dec 1979
Ampl. Pos.
- ¢&—— Ampl. Neg.
Moments of | Ti P
Filtered Data ime Fos.
—— Time Neg.
Moments of

Distribution

Figure 4.1--Flow chart showing analysis procedure for Case A and Case B
data.

and rotation into the wind diminishes its sensitivity to the large eddies.
Doran and Powell (1980) note that the gust statistics are relatively
insensitive to highpass filtering for filter times longer than 100 s
(probably the result of the spectral gap between 1072 and 1073 Hz). For
moderately strong winds the averaging distance for a large propeller
corresponds to roughly 3 s, which also happens to be the smallest conven-
ient filter width for lowpass filtering. Our three bandpass filters are
therefore confined to a window between 3- and 100-s periods. Centered

within this window is the basic 50/5 filter of Powell and Connell (1980).

Each of the four sets of time series yields its own probability
distributions, means, standard deviations, skewness, and kurtosis. In
addition, the time series are converted to gust parameters appropriate
to three gust models: 1) the acceleration (speed and direction differ-

ence) model, 2) the GUST 0 model, and 3) the GUST 1 model. Probability
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distributions for each of the gust models are computed as well. The
result is an enormous array of plots and tables. A major challenge the
authors face is condensing the information in a way that makes it both

accessible and useful to design engineers.

The acceleration model uses five distinct differencing intervals:
At =1, 3, 5, 10, and 30 s. Although all At intervals can be analyzed,
only intervals equal to or larger than the lowpass interval IQ yield
useful information; the moving average effect;vely filters out differ-
ences across intervals of shorter duration. The differenced time series

available for analysis are listed in Table 4.1

Table 4.1--Differenced time series available for analysis

Differencing Interval (s)

Filter 1 3 5 10 30
‘none X X X X X
30/3 X X X X
50/5 X X b4
100/10 X X

The GUST 0 and GUST 1 models define gust events in terms of gust
amplitudes and characteristic times. Definitions of amplitudes and

times differ for the two models (see Fig. 4.2 ).

The GUST 0 model can be completely specified in terms of a positive
peak amplitude +AO, and the time interval +TO between zero crossings on
either side. It can also be specified in terms of a negative peak
amplitude —AO and the corresponding time interval —TO. Both definitions
are expected to yield similar statistics. Powell and Connell (1980)

combine both positive and negative values into one set for their analysis.
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GUST 0 Definition

g\ F——To———]

| N

*To | -Ag

Data sample restricted to

Tog > 3s for 30/3 filter
> 55 for 50/5 filter
> 10s for 100/10 filter

GUST 1 Definition

™

Data sample restricted to

T4 > 3s for 30/3 filter
> 5s for 50/5 filter
> 10s for 100/10 filter

Figure 4.2--Definitions of GUST O and GUST 1 parameters.

The GUST 1 model can also be specified in terms of a positive
amplitude +A1 which is the peak-to-peak amplitude between adjacent
minima and maxima, and a time interval +T1 between the minima and the
maxima; the positive sign indicates a positive rate of change in the

variable. A comparable definition can be made in terms of amplitude
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-A1 and time —Tl, where the negative sign indicates a negative rate

of change in the variable.

Thus, for each of these two discrete gust models, we have two sub-
sets of events, defined in terms of positive and negative changes to
descriBe the properties of the wind field. 1In preparing the subsets
from the bandpass-filtered data, we imposed a lower limit for the time
intervals, so that only TO'S and Tl's larger than Tys the width of the
lowpass moving average, were considered. This indirectly placed a lower
limit on the AD’S and Al's as well, since small amplitudes are more
often than not associated with small time intervals. The parameters
needed for WECS design are the root-mean-square values of the amplitudes
and times. These are calculated from the means and standard deviations

of A's and T's and listed as tables in subsequent chapters of this

report.
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5.0 EFFECT OF HEIGHT VARIATION AND CHOICE OF FILTER
ON SPEED AND DIRECTION STATISTICS

Before we investigate the statistical properties of parameters
mentioned in the previous chapter and their variation with height and
filtering, it is important to understand how the basic time series
themselves behave. Table 5.1 gives easy access to that information and

permits direct comparisons between Case A and Case B.

The biggest variation, not surprisingly, is introduced by filter-
ing. Between the unfiltered and filtered time series, the standard
deviation drops a factor of 3 in wind speed and a factor of 2 in wind
direction, the skewness drops to insignificant levels, and the kurtosis

rises above 3, reaching values as high as 8.4 in Case B.

The drop in the standard deviation is obviously a consequence of
removing contributions from large segments of the energy-containing
region of the spectra. The smaller skewness values in the filtered
data (indicative of a more symmetrical shape in the probability dis-
tribution) and the larger kurtosis values (indicative of a more peaked
distribution) result from the exclusion of long-period fluctuations in

the filtered time series.

Variations between filtered time series are not particularly signi-
ficant. (The only exception to this observation is the behavior of the
150-m direction kurtosis in Case B; we interpret this as a reflection of
the strong static stability present at the time.) On examining the
variability with height, we find a small but systematic decrease in the
standard deviations, but no such pattern can be found in the skewness or
kurtosis. The 150-m direction kurtosis in Case B is an exception to
that rule, but that level was clearly above the top of the surface
inversion where the structure of the fluctuations can be expected to

differ from the structure within the inversion.
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The frequency distribution plots presented in Figs. 5.1-5.12 offer
a detailed view of how the large skewness and kurtosis values manifest
themselves. For comparison, the true Gaussian distribution for the same
variance is superimposed on the observed distribution,' (Multiplication
factor in parenthesis (e.g., x 10) converts numbers on the abscissa to
SI units.) The asymmetry in the unfiltered time series is immediately
apparent. That the distributions for Case A and Case B are skewed in
opposite directions is not significant, being merely a consequence of
the asymmetry in the long-term trend with respect to the overall mean
value. Interestingly enough, the asymmetry in the frequency distribu-
tion is much less pronounced in the direction fluctuations than in the
speed fluctuations. The absence of such asymmetry in the filtered
distribution suggests that medium- and small-scale fluctuations are
distributed evenly across both sides of their computed running means.
Thus the assumption of a stationary Gaussian process, made in many gust

models, has validity only for the filtered data, not for the unfiltered

time series.
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6.0 ANALYSIS OF WIND ACCELERATION

All gust models define discrete gust events in terms of some aspect
of turbulence. The time rate of change of the wind speed and wind direc-
tion are éonvenient parameters for defining gust events since they are a
measure of the severity of the event. The Cliff-Fichtl (1978) and Huang-
Fichtl (1979) models use speed difference information to create discrete
gust events. Such models are sometimes referred to as gust-rise models,
but in the case of the former model that definition incorrectly implies a
preference for a positive speed change. Their main usefulness is in
calculating the probabilities of extreme events, and they have also been

found useful for fatigue calculations (Powell and Connell, 1980).

In both the Cliff-Fichtl (CF) and Huang-Fichtl (HF) models the wind
speed time series is replaced by the speed difference computed across a
time interval At. In the CF model, the discrete events are the actual
values of speed differences measured across At. In the HF model the dis-
crete events are the positive slope crossings of the speed difference
function at level x. 1In contrast with the CF model, At in this model is
made as small as possible to make the difference function appear con-

tinuous.

Another point of contrast between the models is their basic fre-
quency factor. For the CF model this factor is a constant equal to
1/(2At), which is the Nyquist frequency for the differenced time series.
For the HF model the frequency factor is calculated through an expres-
sion based on Rice's equation involving the filtered variance of the

differenced time series and its power spectrum.

The choice of At for differencing is obviously a critical factor
since an improper choice of At could result in the underestimation of
the severity of the gust environment. In this chapter we examine the ef-
fect of varying At in the unfiltered and the three filtered time series.
The plots in Figs. 6.1-6.6 show the standard deviationms, skewness, and

kurtosis for five At values: 1, 3, 5, 10, and 30 s. All three heights
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(10, 50, and 150 m) are represented. In addition, the frequency distri-
butions for At = 5, 10, and 30 are provided in Figs. 6.7-6.15. The
following comments can be made regarding the response of the statistical

parameters to the various operations performed on the time series.

6.1 STANDARD DEVIATION

The disparity between the filtered and the unfiltered standard
deviations is not as large as in the undifferenced speed and direction
time series. This is because differencing is inherently a high-pass
process; the low-frequency contributions that contribute greatly to the
high standard deviations and cause departures from Gaussian behavior in
the skewness and kurtosis in the undifferenced time series are absent in

the differenced time series.

The unfiltered standard deviations are smallest for At = 1 s, but
rise rapidly between At of 1 and 5 s and more gradually between 5 and
30 s. The 30/3 and 50/5 time series show a distinct‘maximum at 10 s,
whereas the 100/10 time series show the same rate of increase with At as
the unfiltered data. If one comnsiders the 50/5 filter the basic filter
for WECS design, the optimum choice for At is 10 s.

6.2 SKEWNESS

The skewness values are not noticeably affected by filtering.
They are small, and become even smaller for speed as At increases.
Shown on an expanded scale, the direction skewness behaves more er-
ratically, but the values are so small one may consider them zero for

all practical purposes.

6.3 KURTOSIS

The kurtosis values show a definite decrease with increasing At,
but, in contrast to the behavior of the standard deviations and the

skewness, there is little similarity between the kurtosis plots of Case

41



A and Case B. In Case A, both the filtered and unfiltered kurtoses drop
from numbers close to 5 at At = 1 s to about 3.5 at At = 30 s. In Case
B the kurtosis values are larger, especially for direction and show a

strong dependence on choice of filter.

6.4 FREQUENCY DISTRIBUTIONS

Only the 50/5 filtered distributions are shown here, but they amply
demonstrate differences between the kurtosis Case A and Case B. In the
strongly stable stratification of Case B, one can expect a higher pre-
ference for smaller fluctuations in the speed and direction signals, and

this preference to be further accentuated in the differenced signals.

6.5 VARIATIONS WITH HEIGHT

The sensitivity to height variation in the statistical properties
of these differenced time series is much more pronounced than in the
original time series. The standard deviations decrease with height for
all choices of At. The kurtosis increases sharply with height; the
kurtosis of 8.5 found in the 50/5 filtered data with At = 10 s repre-

sents a significant departure from Gaussian.

Powell and Connell (1980) note that the theoretical usefulness of
any of the gust models requires that the filtered turbulence or gust
data be approximately Gaussian. The degree to which the kurtosis de-
parts from 3 has serious implications for the theoretical model. How-
ever, large kurtosis is often the result of stationarity in the signal.
Differencing of the signal, by removal of the large low-frequency
oscillations in the signal, increases the kurtosis. We believe the
departure of the kurtosis from 3 is not an important factor in the
engineering design so long as the filter passband approximates the WECS

response.
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Departures from Gaussian behavior notwithstanding, certain con-
sistent patterns emerge as one normalizes the standard deviations of
the differenced data with the standard deviations of the correspond-
ing undifferenced filtered time series. As seen in TaBle 6.1 the ratios
stay surprisingly constant from one level to another and from one case
to the other. The only significant variations are those introduced by
filter choice and differencing interval. Denoting the standard devia-
tion of the undifferenced filtered time series by [G(X)]F, where X is
the variable and F denotes filtered data, and the standard deviation of
the differenced time series by [O(AX)]F, we can express the relationship
between the two for the 50/5 filtered data differenced across 10 s (our

optimum differencing interval) as

1.47 for Case A speed
o (AX) _
[Q(X)J = 1.52 for Case B speed (6.1)
F 1.52 For Case A cirection
1.51 for Case B direction .

Thus, the standard deviation of the differenced signal can be approxi-
mated with a high degree of confidence from the standard deviation of

the basic filtered time series.

In the CF and HF models, the rms value of the differenced data
(which is the same as the standard deviation in the absence of a mean)
is related to the rms value of the undifferenced data through a function

f involving the wind speed S, the integral length scale L, and At:

o(AS)| _ & e
[o(s) | = J2 £(S, L, At) . (6.2)

F
The form of f is different for the two models, but our results in

Table 6.1 suggest that the effect of varying speed and integral length

scale (as between Case A and Case B) is not very significant.
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Figure 6.1--Speed difference statistics at 10 m shown as a function of
differencing interval. Standard deviations are in m/s.
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Figure 6.2--Speed difference statistics at 50 m shown as a function of
differencing interval. Standard deviations are in m/s.
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Figure 6.3--Speed difference statistics at 150 m shown as a function of
Standard deviations are in m/s.

differencing interval.
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Figure 6.5--Direction difference statistics at 50 m shown as a function
Standard deviations are in degrees.

of differencing interval.
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7.0 ANALYSIS OF GUST 0 PARAMETERS

The GUST 0 definition of Powell and Connell (1980) contains the two
elements essential to the definition of a discrete gust event: an
amplitude definition and a time definition. These events, designated AO
and TO’ are the maximum amplitudes and the time intervals between zero-
crossings bracketing those peaks respectively. In studies reported so

far, positive and negative values of A_ and TO have been grouped for

analysis. Positive and negative gustsohave been treated as equivalent.
This assumption is clearly not valid for the unfiltered data because of
the degree of skewness in the original time series, but it is not an
unreasonable one for filtered data. The statistical results presented
in Figs. 7.1-7.3 are therefore confined to +AO and +TO. Figures 7.4~7.9
offer a direct comparison of the positive and negative gust distribution.
events in the 50/5 filtered data. The scatter plots of amplitudes and
time given in Figs. 7.10-7.13 provide yet another representation of
their positive and negative distributions. The symmetry in the gust

behavior is confirmed in these figures.

The GUST O statistics plotted in Figs. 7.1 and 7.2 show standard
deviations of the gust amplitudes decreasing with height, and those of
the gust times increasing with height. Sensitivity to filtering is much
more pronounced in the gust times than in the gust amplitudes. The
effect of height variation in the GUST 0 kurtosis is not as systematic
as in the standard deviations. In general, the tendency is for the
kurtosis to increase with height. The variation is somewhat less sys-
tematic in the cross correlation coefficients of Fig. 7.3, but the

tendency of the cross correlation to decrease with height is apparent.

In the theoretical development of the GUST 0 model it is assumed
that the Ao's and To’s have distributions that approach Gaussian.
Powell and Connell (1980) expect such a distribution for data subjected
to a bandpass filter approximately a decade wide. If the bandwidth is
significantly smaller or larger than a decade, they expect both the gust

amplitudes and gust times to lose their Gaussian character. These
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expectations are satisfied in their experimental results. Their data,
which include both positive and negative values, with no distinction

of sign, fit a half-Gaussian distribution reasonably well. No limiting
value is imposed on the amplitudes or the times. Inyour analysis we
treat positive and negative values separately but impose the condition
that %TOI > Ty the lowpass filter time. Even though indications of a
full Gaussian distribution are strong in our distribution plots, the ab-
sence of values close to zero (imposed partly by the limit on TO and
partly by the lowpass cutoff in the pass band) makes exact comparisons
difficult.

Another significant point of difference between our results and
those of Powell and Connell (1980) is the magnitude of the AO TQ
correlation coefficients. Our correlations are almost a factor of 2
smaller. The scatter in Fig. 7.3 confirms this point. A correlation
coefficient between 0.7 and 0.8 would have produced a tighter grouping

of the data points.

As mentioned earlier the relevant parameters for WECS design are

not the standard deviations but the rms values of the Ao’s and TO‘S,
Conversion from one to the other requires knowledge of their mean values.

For example,

Ol (hg) = 07 (kA ) + (B (7.1)

where Orms(+AO) and O(+AO) denote rms and standard deviation of +Ag,

and the overbar denotes mean value.

In Table 7.1 we present the average values of AO’S and TO’S for
Cases A and B. The corresponding rms values are given in Table 7.2.
For a Gaussian distribution the ratio of the rms to average value should

be /2 (=1.25). The numbers in the two tables almost satisfy this

condition.
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8.0 ANALYSIS OF GUST 1 PARAMETERS

In the GUST 1 model, the definitions of gust amplitude and gust
time (designated A1 and Tl) differ from those of GUST d in that the gust
amplitude is the peak-to-peak amplitude and the gust time is the time
interval between the two peaks (see Fig. 4.2). A positive sign indi-
cates positive rate of change in the variable and a negative sign a
negative rate of change. An advantage of this model is its imnsensi-
tivity to the low-frequency trends in the data. The disparity between
the filtered and unfiltered data in the statistical results is there-
fore not so great as in the GUST 0 results. The main disadvantage of
the model is the need for an arbitrary specification of a minimum speed
or time change that will qualify as a GUST 1 event. Otherwise, the
smallest scale fluctuations will be the only ones recognized. For our

definition of a GUST 1 event we impose the condition that T be equal

to or larger than the lowpass filter time used in the bandpais filter.
The sensitivity of the model to the tolerance interval is a factor that
has to be considered when interpreting the statistical results in

Figs. 8.1-8.3. Distribution plots showing positive and negative events,
similar to those presented for GUST 0, are shown in Figs. 8.4-8.9; the

scatter plots for the same events are in Figs. 8.10-8.13.

Comparing the GUST 1 statistics of Figs. 8.1 and 8.2 with those in
Figs. 7.1 and 7.2, we find in the former set a greater sensitivity to

height change. It is also apparent that the standard deviation of A1 is

roughly twice as large as the standard deviation of AO’ while the reverse

is true with the standard deviations of Tl and TO' Despite these differ-

ences, the A1 T1 cross correlations behave much like the AO TO cross

correlations in Fig. 7.3.

Here, as in the GUST 0 model, the relevant parameters for WECS
design are the rms values of the gust amplitudes and the gust times.
The time averages used for converting the standard deviations into rms
values are presented in Table 8.1. The calculated rms values are given

in Table 8.2.
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The rms values and averages in the tables confirm what the scatter
plots of Figs. 8.10-8.13 show: that gust amplitudes tend to be larger
and the corresponding gust times smaller in GUST 1 than in GUST O. The
effect of our gust time limit, IT1| > Tys in the analysis is therefore
particularly severe in the distribution plots of Figs. 8.1-8.9.
Although the +T0’s and -TO's cover the range between Ty and Ty the
+Tl’s and -Tl‘s are confined to a narrow range between tg and 2.5
IQ. Tests for Gaussian distribution will have little meaning under

those conditions.

It appears from the full set of distribution ploﬁs (only a few are
shown here) that the highpass filter has no direct effect on the upper
range of Tl‘s observed. Only the unfiltered data show a distribution
that is nearly Gaussian, but Tl's are limited to *10 s. An appropriate
combination of lowpass filtering and amplitude tolerance specification

could, conceivably, yield more realistic distribution curves.
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9.0 CHARACTERISTIC MAGNITUDE ANALYSTS

For model applications it is often necessary to characterize the
gust parameters with appropriate turbulent (or mean) proferties of the
flow. Here we follow the approach of Powell and Comnnell (1980) and
normalize the rms gust amplitudes by the standard deviation of the
original filtered time series. (For bandpass filtered data the defini-
tions of the standard deviation and the rms value become equivalent.)

The rms gust times are normalized by the appropriate gust time average.

The normalized values in Tables 9.1-9.4 show remarkable consistency.

The following approximations can be made on the basis of these results:

[ o ms(+AO)T ~ _orms(-AO) ~ 1.5 : 9.1

L o (X) 1y L o (X) 7 N (9.1)

K ms(+Al)_ - -Orms(—Al) ~ 2.3 - 9.2

L o g N_ o (X) . I +2)

(+T,) Co_ (-T.)

_ﬁ__o_.] - m__o_.] .1 0.3

L 4T, F L T, F

[———oms(ﬂl)} ~ [_Gms(_Tl)] ~ 1.1 ; (9.4)
+T, T —Tl F

The approximations are valid for both speed and direction.

As pointed out by Powell and Connell,

(+A)
rms 0 _
L———Ejij“‘}F = 1.3 (9.5)
(+T,)
and _rm_s___O_] = 1.25 | (9.6)
L +T, JF

94



for a Gaussian distribution. Our larger ratio in (9.1) can be attributed

distribution (Figs. 7.4-7.9).

to the gap centered around zero in the AO
Removal of values close to zero has the effect of raising the rms value.
Presumably, with the gap filled in, the ratio will drbp to 1.3. We have
no comparable theoretical expectation for the ratio in (9.2}, but can
assume from the same reasoning that the ratio would be slightly lower

for a Gaussian distribution. In any case we can deduce from our results

a relationship between GUST O and GUST 1 amplitudes:
~ 3
[orms(+A1)]F = 1.5{0rm8(+AO)}F . (9.8)

For the gust times we have a smaller ratic in (9.2) than the 1.25
required for a Gaussian distribution. Here we have two factors working
in tandem. The increase in the rms value (in the numerator) due to
the gap in the frequency distribution is offset by a larger increase in
the average gust time (in the denominator), causing a net reduction in
the ratio. A relationship similar to (9.7) can be offered for the gust
times
(9.8)

] ~ m
[Grms(+Tl)JF‘~ O'S[Grms(+10)]F
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10.0 CONCLUSIONS

1) The statistics computed for the two wind storms represented by
Case A and Case B exhibit a high degree of internal consistency. When
normalized, the gust parameters become insensitive to differences in

static stability, height, and choice of bandpass filter.

2) Bandpass filtering is essential for approximating Gaussian distri-
bution in the original speed and direction time series, more so for

the speed than for the direction. The basic 50/5 bandpass filter of
Powell and Connell appears to be a proper choice for the types of

analyses performed here.

3) A consistent relationship exists between the standard deviation
of the speed (and direction) differences and the standard deviation

of the original filtered speed (and direction) time series. For the
50/5 filtered data, at the optimum differencing interval of 10 s, the

ratio of the two standard deviations is 1.5.

4) Normalized gust statistics for GUST 0 and GUST 1 models show
consistent and constant relationships that are directly applicable to

WECS design.

5) Further work is needed to determine the best approach for eliminat-

ing the gaps in the GUST 0 and GUST 1 distributions.
6) Because of the internal consistency in their statistical proper-

ties, the two cases studied here constitute an ideal data set for

validation of other gust models.
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