Understanding our atmosphere from non-CO₂ climate gases during HIPPO: Global network and aircraft profiles

James W. Elkins¹, Fred L. Moore^{1,2},

Dale F. Hurst^{1,2}, and Stephen A. Montzka¹

¹NOAA/ESRL and ²CIRES

We measure molecules with a wide range of concentration, growth rates, sources, and lifetimes.

NOAA/ESRL Halocarbon and Carbon Cycles Stations

START08 Workshop, 8-9 Jan 2008

NOAA/ESRL in situ airborne measurements

PAN and other Trace Hydrohalocarbons ExpeRiment (PANTHER)

70 seconds: N_2O SF₆ **CFC-12 CFC-11** Halon-1301 PAN H_2 CH_4 CO CH₃CI CH₃Br CH₃I COS CS_2 HCFC-22 HCFC-142a HCFC-141a HFC-134a

Unmanned aircraft system Chromatograph for Atmospheric Trace Species (UCATS)

1 second: H_2O 10 seconds: O_3 70 seconds: N_2O SF_6 140 seconds: H_2 CH_4 CO

NWAS Longer -lived gases		NWAS Shorter-lived gases	
Compound	lifetime (yr)	Compound	lifetime (yr)
CFC-115	1700	*COS	2 to 3
CFC-13	640	*HFC-152a	1.4
CFC-114	300	*methyl chloride	1.0
HFC-23	270	*methyl bromide	0.7
*CFC-12	100	*chloroform	0.41
*CFC-113	85	*dichloromethane	0.38
*H-1301	65	*dibromomethane	0.33
HFC-143a	52	*PCE	0.27
*CFC-11	45	*chloroethane	0.08
HFC-125	29	*bromoform	0.07
HFC-227ea	34	*methyl iodide	0.02
*CCl ₄	26	*carbon disulfide	short
*H-2402	20	*propane	short
*HCFC-142b	18	* <i>n</i> -butane	short
*H-1211	16	*i-pentane	short
*HFC-134a	14	* <i>n</i> -pentane	short
*HCFC-22	12	*benzene	short
HFC-134	9.6	(Italicized numbers represent a local lifetime for	
*HCFC-141b	9.3	short-lived gases)	
HFC-365mfc	8.6		
HCFC-124	5.8	* NOAA calibration scale e	xists
*CH ₃ CCI ₃	5		

NWAS-NOAA Whole Air Sampler

START08 Workshop, 8-9 Jan 2008

DI

Additional Gases Measured by Carbon Cycle Group

- CO₂
 CH₄
- H₂
- **CO**
- N₂O
- SF₆

C-13, C-12, and O-16, O-18 isotopes of CO₂

For HIPPO, not on START08

NOAA/ESRL Network Trends and Distributions of CO

From Paul Novelli, NOAA/ESRL

2006 annual means at surface sites: HFC-134A

From Steve Montzka

Spatial distributions of HFC-134a, vs season and vs altitude

START08 Workshop, 8-9 Jan 2008

8

Air Quality, Carbon Cycle, & GHG Measurements at Tall Tower

Boulder Atmospheric Observatory (BAO)

- Height = 300 m
- Movable carriage with > 1 ton capacity
- Transit time for vertical profile ≈ 9 min
- (vertical resolution = 0.6 m @ 1 Hz)
- Advantages & capabilities
- Unique facility for vertical profiling & atmospheric sampling
- Near rapidly developing suburban area
- Downwind of Denver
- Near oil and gas drilling
- Fills gap in Front Range O₃ monitoring network

Summer 2008 Measurements--local test of methods and models

NOAA ESRL/CSD: Ryerson, Holloway, ...

July-August, either surface or carriage
 NO/NO₂/NO_y/O₃
 CO

- -00
- •SO₂

NOAA ESRL/GMD: Andrews, Tans, Oltmans, Elkins, Montzka, ...
Ongoing sampling (GMD Tall Tower network)
Continuous CO, CO₂: 25, 100, 300 m
Continuous O₃: surface, 300 m
Daily flasks samples: stable isotopes, CFCs, halocarbons, COS, ...
Timing to coordinate with other measurements?

•VOCs, GHGs: location TBD

From Greg Frost

- Stratospheric Incursions and Folds (Hurst)
- Diversity in interhemispheric gradients (CO, SF₆, COS) (Moore)
- Stratospheric (O₃) and tropospheric tracers
- Transport and Age Tracers (SF₆, HCFCs, HFCs)
- Emission Studies and Source Types
- Link to NOAA/ESRL Network and Standards

Backup Slides

Ozone, Aerosols, Solar Radiation, and Meteorology

START08 Workshop, 8-9 Jan 2008

CFC Replacement Compounds

START08 Workshop, 8-9 Jan 2008

2006 annual means at surface sites: BENZENE

Benzene seasonality across the globe at surface sites

(expressed relative to annual means)

Front Range Ozone Transport & Vertical Structure

Ozone Differential Absorption Lidar: TOPAZ = Tunable Optical Profiler for Aerosol and Ozone

- NOAA ESRL/CSD: Hardesty, Senff, et al.
- TOPAZ installed on NOAA Twin Otter
- Twin Otter @ JeffCo Airport: 15 July 15 August 2008
- Science flights: 20 July 15 August 2008
- Operational area: Front Range plains & mountains
- Flight altitude: ~ 16,000 ft
- Flight hours: ~ 40 , 8 10 flights
- Additional potential instrumentation:
- nadir-looking IR radiometer (surface skin T)
- in situ O₃ sensor
- DOAS (NO₂ and other species)?
- Doppler lidar?

21 August 2007 flight over Front Range
Transport of Denver urban plume and resulting high O₃ over Rocky Mountain Park

