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ABSTRACT

Dual-polarization radar rainfall estimation relationships have been extensively tested in continental and

subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth

occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical

oceanic drop-size distribution (DSD) variability on dual-polarization radar variables and their resulting utility

for rainfall estimation. Variables that were analyzed include differential reflectivity Zdr; specific differential

phase Kdp; reflectivity Zh; and specific attenuation Ah. When compared with continental or coastal convec-

tion, tropical oceanic Zdr and Kdp values were more often of low magnitude (,0.5 dB, ,0.38 km21) and Zdr

was lower for a given Kdp or Zh, consistent with observations of tropical oceanic DSDs being dominated by

numerous, small, less-oblate drops. New X-, C-, and S-band R estimators were derived: R(Kdp), R(Ah),

R(Kdp, zdr), R(z, zdr), and R(Ah, zdr), which use linear versions of Zdr and Zh, namely zdr and z. Except for

R(Kdp), convective/stratiform partitioning was unnecessary for these estimators. All dual-polarization

estimators outperformed updated R(z) estimators derived from the same dataset. The best-performing

estimator was R(Kdp, zdr), followed by R(Ah, zdr) and R(z, zdr). The R error was further reduced in an

updated blended algorithm choosing between R(z), R(z, zdr), R(Kdp), and R(Kdp, zdr) depending on Zdr . 0.25 dB

and Kdp . 0.38 km21 thresholds. Because of these thresholds and the lack of hail, R(Kdp) was never used. At all

wavelengths, R(z) was still needed 43% of the time during light rain (R , 5mm h21, Zdr , 0.25 dB),

composing 7% of the total rain volume. As wavelength decreased, R(Kdp, zdr) was used more often, R(z, zdr)

was used less often, and the blended algorithm became increasingly more accurate than R(z).

1. Introduction

Dual-polarization radar rain estimators have been

tested almost entirely in continental and subtropical

coastal rain regimes (Sachidananda and Zrnić 1986,

1987; Chandrasekar et al. 1990; Aydin and Giridhar

1992; Scarchilli et al. 1993; Carey and Rutledge 2000;

Zrnić et al. 2000; Bringi and Chandrasekar 2001,

hereinafter BC01; Keenan et al. 2001; Brandes et al.

2002; Ryzhkov et al. 2005b; Park et al. 2005; Matrosov

et al. 2006; Gu et al. 2011; Bringi et al. 2011), yet

the majority of rain falls over tropical oceans. To ac-

curately quantify the energy and water cycles fueling

the global circulation, tropical oceanic rainfall needs to

be understood with considerable accuracy (Hartmann

et al. 1984; Johnson et al. 1999; Schumacher et al. 2004;

Hegerl et al. 2015). Satellites quantify rain over tropical

and midlatitude oceans operationally (e.g., Tan et al.

2017; Skofronick-Jackson et al. 2017), but at a coarser

spatial and temporal resolution than individual evolv-

ing storm components (Yuter and Houze 1998). Com-

pared to satellites, higher-resolution radars can be

equipped on ocean-going research vessels (Hudlow

1979; Short et al. 1997; Xu and Rutledge 2014), which
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can now measure dual-polarization quantities [the new

CSU seafaring polarimetric (SEA-POL) 5-cm radar].

Dual-polarization radars can estimate rain rate R

more accurately than can single-polarization radars be-

cause the former can constrain environmental controls

on rain variability with multiple variables: reflectivity

Zh; specific differential phase Kdp; attenuation of the

horizontally polarized radar signal Ah; and differential

reflectivityZdr instead of one: horizontally polarized radar

reflectivity Zh (Seliga and Bringi 1976; Sachidananda and

Zrnić 1987; Carey and Rutledge 2000; Carey et al. 2000;

BC01; Schuur et al. 2001; Ryzhkov et al. 2005a,b,c;

Kumjian 2013a,b,c). The quantities Kdp, Ah, Zdr, Zh, and

R are related to raindrop-size distribution (DSD) param-

eters, which include the liquidwater content LWC;median

drop diameter D0; and proxy for number concentration

NW (BC01; Schuur et al. 2001; Brandes et al. 2002). These

DSD parameters vary with each other in systematic ways

depending on cloud microphysical processes, which are

related to atmospheric instability, aerosol contents, hu-

midity, and temperature (Pruppacher and Klett 1997;

BC01; Steiner et al. 2004; Cotton et al. 2011). These cloud

processes lead to characteristically different modes of

DSD parameter variability in stratiform and convective

rain (Tokay and Short 1996;Houze 1997; Cifelli et al. 2000;

Bringi et al. 2003, 2009; Thurai et al. 2010; Schumacher

et al. 2015; Thompson et al. 2015, hereinafter T15), as well

as differences between convective rain DSDs in tropical,

subtropical, or midlatitude air masses over the ocean,

coasts, or land (Zipser 2003; Bringi et al. 2003, 2006, 2009;

Ryzhkov et al. 2005a; Munchak et al. 2012; T15; Houze

et al. 2015; Liu and Liu 2016).

Convective rain over tropical oceans is dominated by

more numerous, smaller-diameter, and therefore less

oblate raindrops compared to stratiform rain or conti-

nental convection that contains more vigorous ice-based

processes including riming (BC01; Bringi et al. 2003,

2009; Ryzhkov et al. 2005a,b; Thurai et al. 2010; Rowe

and Houze 2014; T15). How does the unique DSD

variability of tropical oceanic rain affect the dual-

polarization radar variables? Smaller, less oblate rain-

drops should result in lower Kdp and Zdr for a given

LWC. This hypothesis is motivated by observations of

relatively low near-surface Zdr, Zh, and Kdp in the

central Indian Ocean (Zh , 55dBZ, Zdr , 3dB, and

Kdp , 38km21 at S band; Rowe and Houze 2014; T15) and

in a reforming tropical depression over Oklahoma compared

to typical continental convection (Ryzhkov et al. 2005b).

It is also important to determine how often Zdr and

Kdp are below data quality thresholds during tropical

oceanic rain, which would foil the opportunity to use

these variables for radar R estimation. In the mid-

latitudes, Zdr is used for rainfall estimation when it is

above 0.5 dB (i.e., when R . 6mmh21), and Kdp is

used if it is above 0.38km21, that is, when Zh . 38 dBZ

and R. 50mmh21 (for S band; Ryzhkov et al. 2005b,c;

Matrosov et al. 2006; Cifelli et al. 2011, hereinafter C11).

The linearized versions ofZh andZdr are z and zdr. IfZdr

exceeds the noise threshold (Zdr . 0.5 dB) and R

is greater than about 6mmh21, R(z, zdr) has been

shown to be a superior R estimator compared to R(z)

(Gorgucci et al. 1994; Ryzhkov andZrnić 1995; Ryzhkov

et al. 1997). When Kdp exceeds its noise threshold,

R(Kdp) and especially R(Kdp, zdr) relations yield even

lower R error and better goodness of fit compared to

R(z) or R(z, zdr) (Chandrasekar et al. 1990; Bringi et al.

2001; Ryzhkov and Zrnić 1995; Matrosov et al. 2006).

More recently,R(Ah) relations have been successfully

implemented at the X, C, and S bands, such that Ah can

be estimated from z in combination with the differential

propagation phase Fdp (Bringi et al. 1990; Testud et al.

2000). Since R(Ah) is less sensitive to DSD variations

than R(z) or R(Kdp), R estimators based on Ah have

produced lowerR errors thanR estimators based on z or

Kdp alone at the X, C, and S bands in several coastal and

continental rain regimes (Ryzhkov et al. 2014; Wang

et al. 2014; Giangrande et al. 2014; Boodoo et al. 2015;

Diederich et al. 2015a,b). These studies explain why

estimation ofAh fromFdp also implies that the resulting

Ah and R(Ah) fields are unaffected by radar calibration,

partial beam blockage, or wet radomes (unlike Zdr and

Zh) and that Ah and R(Ah) estimations do not rely on a

spatial filter (unlike Kdp). While temperature is known

to impact Ah, Diederich et al. (2015a) found that tem-

perature does not significantly impact R(Ah).

Optimization algorithms have been designed to au-

tomatically determine the optimal R relationship

depending on rain intensity, radar measurement un-

certainty, and raindrop-size distribution variability

(Chandrasekar et al. 1993; Ryzhkov et al. 2005b,c; C11;

Thurai et al. 2017). Herein, we develop and test new R

estimators using z, zdr, Kdp, and Ah, and we also test

several of these relationships in an updated version of an

optimization algorithm, the so-called blended algorithm

by C11.1

The R(Kdp), R(z, zdr), and R(Kdp, zdr) relationships

and their use in optimization algorithms have not been

comprehensively tested over open tropical oceans at all

three weather radar wavelengths: X, C, and S bands.

C-band R(Kdp) and R(Ah) relations were formed for

typhoon rainfall (Wang et al. 2013, 2014) and an S-band

1 The name of the blended algorithm (C11) does not imply that

radar data are actually blended as in Pepler et al. (2011) and Pepler

and May (2012).
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relation for R(z, zdr) was tested over Kwajalein Atoll

(Bringi et al. 2012). Since Kdp is inversely proportional

to radar wavelength, its utility for rainfall estimation

could increase at X- and C-band wavelengths relative to

S band (Matrosov et al. 2006). However, this potential

benefit has not been quantified over tropical oceans in

comparison to potentially degrading non-Rayleigh

scattering effects (BC01). It also remains unclear

whether any of the dual-polarization R relationships

require convective/stratiform (C/S) partitioning. Evi-

dence shows that separate R(z) equations fit to strati-

form and convective rain over tropical oceans improve

radar rainfall estimation there (T15). Dual-polarization

R relationships with Zdr, Kdp, and Ah are thought to

implicitly account for C/SDSDvariability better thanZh

alone (BC01; Ryzhkov et al. 2005b). However, an error

analysis between dual-polarization R relationships fit to

all rain or to C/S rain has not been carried out over

tropical oceans.

To quantify the impacts of tropical oceanic DSD

variability on Kdp, Zdr, Ah, and Zh, as well as their re-

sulting utility for radar rainfall estimation, a long-term

west Pacific Ocean DSD dataset is used to simulate

these dual-polarization radar variables (section 2).

Radar variables are analyzed within the context of C/S

DSD variability (section 3). New R equations are

developed, compared, and tested in an updated

blended optimization algorithm at X-, C-, and S-band

radar wavelengths. The goodness of fit, root-mean-

square error, and percent difference of total rain of

dual- and single-polarization radar estimators are com-

pared at each l to determine how, howmuch, and above

which R values dual-polarization radars may improve R

estimation over tropical oceans compared to the R(z)

methods (section 4).

2. Data and methodology

This study uses 18 months of equatorial west Pacific

(Manus Island, 28S, 1478E) two-dimensional video dis-

drometer (2DVD) data from the DOE Atmospheric

Radiation Measurement Program (http://www.archive.

arm.gov/discovery/). The 2DVD is described by

Schönhuber et al. (2007, 2008). The 2DVD dataset used

in this study was explained and used by T15, who found

similar DSD spectra and DSD variability from 2DVD at

this west Pacific site and at another central equatorial

Indian Ocean site at Gan Island. Rain events at both

isolated, open-ocean sites are dominated by the in-

tertropical convergence zone and the Madden–Julian

oscillation. As shown by T15, results herein from the

Manus Island dataset are representative of the collective

Indo-Pacific warm pool.

The data-processing and C/S rain-partitioning tech-

niques in this study are the same as in T15. Following

data quality considerations suggested by Tokay et al.

(2001, 2005, 2013), Larsen and O’Dell (2016), and Smith

(2016), the analyzed dataset had a sufficiently large

sample size (n5 27 179) of 1-minDSDs, each containing

at least 100 total drops and R . 0.05mmh21. Data ex-

tend from 2December 2011 to 21April 2013, which spans

1.5 yr. The normalized gamma DSD parameters were

computed from this dataset by T15 (see details within).

DSD parameters include the intercept parameter or proxy

for the number concentration (NW, drops per meter cubed

volume per millimeter size bin), median diameter (D0,

mm), and maximum diameter (DMAX, mm). The liquid

water content (LWC, gm23) and rain rate (R, mmh21)

were calculated directly from the 2DVD bymeasuring the

fall speed of each drop per unit catchment area. Data were

separated into convective and stratiform samples based on

the optimized log10N
SEP
W 5 3.85 separation line method

from T15, which was verified with 372 case studies of col-

located 2DVD DSD and dual-polarization radar data.

DSDs were shown to be convective (stratiform) if log10NW

was greater (less) than log10N
SEP
W .

T15 conducted electromagnetic scattering simulations

from these DSDs to estimate the radar reflectivity at

horizontal polarization (Zh), specific attenuation (Ah),

specific differential phase (Kdp), and differential re-

flectivity (Zdr) at X, C, and S bands (i.e., 3.3, 5.5, and

10.0 cm l) (see BC01 for review of dual-polarization

variables). These scattering simulations led to the cre-

ation and testing of new R(z) estimators for all, con-

vective, and stratiform rain over tropical oceans in T15.

The quantity Zh is dependent on the drop diameter D6

and the number density N(D). For spherical hydrome-

teorsZdr is zero and becomesmore positive as raindrops

becomemore oblate, which usually occurs asD. 1mm.

The quantityKdp is directly proportional to the liquid or

ice water content of the nonspherical hydrometeors and

mean particle oblateness within the radar volume, and

inversely proportional to the wavelength l such that

Kdp is about 3 times as great at X band as at S band. In

the Rayleigh-scattering regime, Ah increases with de-

creasing temperature and increasing liquid water con-

tent (Jameson 1992; BC01). To account for the complex

index of refraction, scattering simulations of these var-

iables were performed at 208C, a typical mean tropical

warm pool temperature and the same value used by

BC01 andGiangrande et al. (2014). Simulations were for

liquid drops viewed at a 18 elevation angle. Simulations

account for changing raindrop shape as a function of

diameter according to the Thurai et al. (2007) model,

assuming raindrops fell at a 08mean canting angle with a

standard deviation up to 7.58 (Huang et al. 2008). No
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sampling errors associated with actual radar measure-

ments are included in any of the statistics or error

analysis conducted in this study. Electromagnetic scat-

tering simulation assumptions constrain all simulated

radar variable ranges such that more variability or

spread is expected in real radar-based measurements

compared to simulated values, particularly in Kdp de-

pending on Fdp filtering techniques.

Orthogonal linear regression was used to fit new

power-law relationships between R and either Kdp

or Ah; this was also performed by T15 to form updated

R(z) equations. Orthogonal linear regressionminimizes

spread in both the independent and dependent variable

parameter spaces, perpendicular to the best-fit line, and

yields equivalent y(x) and x(y) equations. Multiple

linear least squares regression was used for multi-

parameter power-law equations: R(Kdp, zdr), R(z, zdr),

and R(Ah, zdr). Linear versions of reflectivity z and

differential reflectivity zdr were used in these R equa-

tions because of their larger dynamic range. The linear

variables were obtained by taking 10(0:1Zdr), and the

same function for Zh.

This study makes use of the rain version of the

blended optimization algorithm that was first presented

by C11. In the rain portion of the C11 algorithm, R was

determined throughout the near-surface radar volume

by a different R estimator at each radar gate depending

on the magnitudes of Zdr, Kdp, and Zh. In its original

implementation, which was at S band, the final R value

at each radar gate or grid point was determined by the

following estimators based on the following rules:

1) R(z) if Zdr , 0.5 dB and Kdp , 0.38km21,

2) R(z, zdr) if Zdr . 0.5 dB and Kdp , 0.38km21,

3) R(Kdp) if Zdr , 0.5 dB and Zh . 38 dBZ and

Kdp . 0.38km21, and

4) R(Kdp, zdr) if Zdr . 0.5 dB and Kdp . 0.38km21.

These Kdp and Zdr thresholds were optimized for im-

plementation of the blended algorithm at S band during

continental convection observed in Colorado. The

thresholds were designed for data quality reasons in

order to prevent application of dual-polarization esti-

mators when dual-polarization measurements do not

exceed the expected errors: 0.5 dB for Zdr and 0.38km21

for Kdp. Therefore, the thresholds were designed to be

wavelength independent.

The current study updates the C11 blended algo-

rithm thresholds and all four R estimators for appli-

cation to tropical oceanic rain. T15 produced and

tested new R(z) equations using the same DSD dataset

employed in the current study. These updated tropical

oceanic R(z) equations from T15 are used throughout

the current study.

3. Results

a. Simulated dual-polarization variables

This section investigates the impacts of measured

tropical oceanic DSD variability on dual-polarization

variables: (i) how often Zdr and Kdp could be used for

rainfall estimation in the CSU blended algorithm (C11)

and (ii) how Zh, Kdp, and Zdr relate to each other in

response to tropical oceanic DSD variability.

1) UTILITY FOR RAINFALL ESTIMATION

Since the tropical oceanic DSDs analyzed in this

study were dominated by small drops consistent with

prevalent warm rain cloud microphysical processes

(T15), 95% of simulated Zdr values were less than 1 dB

(95th percentile value); 90% of Kdp values remained

below 0.7, 0.4, and 0.28km21 at X, C, and S bands; and

Zh did not exceed 58 dBZ (Fig. 1). These simulated

ranges are in agreement with C- and S-band radar ob-

servations from TOGACOARE in the equatorial west

Pacific and DYNAMO in the central Indian Ocean

(Short et al. 1997; Rowe and Houze 2014; Xu and

Rutledge 2014; T15). In contrast, continental and

coastal convection with melted hail resulting from

strong mixed-phase processes can exhibit near-surface

Zdr. 3 dB,Kdp. 1–3 at S band with even higher values

at C and X band, and Zh up to 70 dBZ (BC01; Gatlin

et al. 2015).

The simulated tropical oceanic Zdr and Kdp values

are of interest, especially in comparison to the

thresholds of Zdr 5 0.5 dB and Kdp 5 0.38km21 com-

monly used in midlatitude precipitation estimation

algorithms (Fig. 1; Matrosov et al. 2006; C11). DSDs

in our sample that were associated with Kdp and Zdr

below these thresholds contained ample LWC up to 1–

2 gm23 (Figs. 2 and 3). At all ls, Zdr exceeded 0.25,

0.5, and 1 dB in only 57%, 32%, and 6% of the dataset.

These Zdr values were reached only when at least 5%

of the population exceeded DMAX . 1.9, 2.4, or

3.2mm; D0 . 1.0, 1.2, or 1.4mm; and R . 0.5, 0.7,

1.6mmh21. The rarity of these conditions motivates

lowering the Zdr threshold for tropical oceanic R es-

timation below 0.5 dB. For the remainder of this

study, we consider a Zdr threshold of 0.25 dB, which

would increase the utility ofZdr forR estimation while

also remaining above the quoted 0.1-dB accuracy, or

accepted noise level, of this measurement (Ryzhkov

et al. 2005a).

The specific differential phaseKdp exceeded 0.38km21

in only 17%, 11%, or 7%ofX-, C-, and S-band data. This

occurredwhen at least 5%of the data exhibitedDMAX.
2.4, 2.5, or 2.8mm; D0 . 1.2, 1.2, or 1.3mm; and R . 6,

11, or 21mmh21 at X, C, and S band, respectively. As
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restrictive as this 0.38km21 Kdp threshold appears to be

over tropical oceans, lowering the Kdp data quality

threshold below 0.38km21 is not practical formost radars

because of phase instability (BC01). Using the same

Kdp threshold and a 38-dBZ threshold over Colorado,

the C11 blended algorithm was able to use Kdp in

either the R(Kdp) or R(Kdp, zdr) simulations about

20% of the time at S band, 2.8 times more often than

expected from this tropical oceanic dataset (at S

band). The 0.38km21 Kdp level corresponds to a re-

flectivity of 34 dBZ at X band, 38 dBZ at C band, and

43 dBZ at S band in this tropical rain regime (Kdp 5
8.50 3 1025z0.93 at C band). Therefore, a 38-dBZ

threshold accompanying the 0.38km21 Kdp threshold

also appears to be duplicative and unnecessary over

tropical oceans.

The frequency of occurrence of meeting both the

Kdp . 0.38km21 and Zdr . 0.25dB thresholds was the

same as that of meeting the Kdp threshold alone at each

l because datawithKdp of thismagnitude already hadZdr

of this magnitude or higher. The Zdr . 0.25dB threshold

can apparently be met by smaller raindrops and lower

LWC than theKdp. 0.38km21 threshold. For instance, if

theKdp threshold was unrealistically lowered to 0.1, 0.07,

or 0.04 at X, C, and S band, still less than 1% of data

would meet a Kdp threshold but not a Zdr . 0.25dB

threshold. Therefore, there is no theoreticalmotivation to

lower theKdp threshold further below 0.38km21 in hopes

of using R(Kdp) more often. At any value of Kdp that is

statistically different from zero, Zdr would also be large

enough such that R(Kdp, zdr), a more accurate estimator

(BC01), could be used instead of R(Kdp).

FIG. 1. Simulated (a) Zh, (b) Zdr, and (c) Kdp ranges at X, C, and S band from the equatorial Indo-Pacific warm pool DSD of T15.

FIG. 2. Indo-Pacific warm pool DSD LWC as a function of (a) median drop diameter D0 and (b) maximum

diameter DMAX, colored by DSD-simulated Zdr at S band. The T15 C/S separation line is plotted in (a) for

reference.
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The T15 LWC(D0) separation line between C/S

samples indicates that tropical oceanic convective rain

exhibited the same ranges of Zdr as stratiform rain

(Fig. 2a) but that convection caused higher Kdp for a

givenD0 (Fig. 3). This is consistent with findings by T15

that maritime convective and stratiform drop diameter

ranges overlap substantially but that convective DSDs

contain more LWC and higher NW for a given D0. Be-

cause of their greater LWC, 77%, 86%, and 90% of the

DSD in which X-, C-, or S-band Kdp . 0.38km21 (and

therefore also Zdr . 0.25 dB) were convective. This re-

sult implies that a C/S partitioning step, in addition to

data quality thresholds, is most likely unnecessary when

using R(Kdp) or R(Kdp, zdr) in the blended algorithm.

The subset of data qualified for use in these relationships

would nearly always be convective anyway.

2) RELATIONSHIPS BETWEEN VARIABLES

While convectiveDSDs generally had greaterKdp and

C/S Zdr ranges that overlapped, convective DSDs con-

sistently exhibited higherKdp (i.e., liquid water content)

for a given Zdr (i.e., diameter) than stratiform (Fig. 4).

This behavior reflects the larger median drop sizes (i.e.,

largerZdr) but lower LWC (lowerKdp) in stratiform rain

compared to convection over tropical oceans (T15).

Since different C/S modes of Zdr(Kdp) covariance exist

(Fig. 4), different C/S R(Kdp, zdr) relationships could

technically be motivated. However, most of the weak

convection with Kdp , 0.38km21 would not meet the

Zdr. 0.25 dB threshold and most stratiform rain did not

meet theKdp. 0.38km21 threshold. Furthermore, Fig. 4

clearly illustrates that no data met theKdp threshold but

FIG. 3. Indo-Pacific warm pool DSD LWC as a function of median drop diameterD0, colored by DSD-simulatedKdp at (a) X, (b) C, and

(c) S bands. The T15 C/S separation line is plotted for reference.

FIG. 4. Indo-Pacific warm pool DSD-simulated Zdr and Kdp at (a) X, (b) C, and (c) S bands, colored by the T15 DSD-based C/S

partitioning. Data quality thresholds of Zdr 5 0.25 dB and Kdp 5 0.38 km21 are plotted for reference.
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not the Zdr threshold; that is, the surface-based dis-

drometer data do not indicate the presence of hail (C11)

and also that tropical oceanic DSDswith sufficient LWC

(0.1–1 g kg21) to produce Kdp . 0.38km21 are also al-

ways associated with Zdr . 0.25 dB at each l in this

dataset. Therefore, for optimization rain algorithms

deciding between estimators based on data quality

thresholds, R(Kdp) is not needed and R(Kdp, zdr) would

only be used during moderate-to-strong convective rain,

while stratiform rain and weaker convection would be

quantified by either R(z) or R(z, zdr).

The Zh versus Zdr distribution shows two distinct

modes of variability associated with either convective or

stratiform rain (Fig. 5). A substantial portion of both C/S

populations met the Zdr . 0.25 dB threshold, which

motivates a C/S option for R(z, zdr) (Fig. 5). The con-

toured density plot in Fig. 5a shows an overlapping,

high-frequency-of-occurrence region below 20dBZ and

below 0.2 dB, respectively. As Zh increases beyond

about 20 dBZ, two modes of Zdr variability emerge.

Tropical maritime convection exhibited higher Zh for a

given Zdr compared to stratiform rain (Fig. 5b). The C/S

D0 and DMAX ranges overlap; however, stratiform rain

has overall lower NW and lower LWC (Figs. 5c–e; T15).

While Zdr is, to first order, dependent onD0 (Fig. 2), Zh

depends onD and to a smaller extentN(D). The number

concentration NW of drops is an order of magnitude

higher in convection compared to stratiform, which can

explain the higher Zh for a given Zdr (i.e., higher Zh

for a given D0) in convection.

The tropical oceanic, combined convective and strat-

iform distribution of Zh versus Zdr in Fig. 5 is similar to

that found over Kwajalein Atoll in the central Pacific

(Bringi et al. 2011); Bonn, Germany (Borowska et al.

2011); Florida (Brandes et al. 2004), and over Oklahoma

during tropical-like rain events (Ryzhkov et al. 2005b).

In the current tropical oceanic dataset as well as in these

aforementioned studies of weak-to-moderate convec-

tion, Zdr remained below about 1 dB unless Zh .
30 dBZ.

In contrast to the tropical oceanic distribution in

Fig. 5, a case study by Ryzhkov et al. (2005a) showed

higher Zdr for a given Zh in stronger continental con-

vection, some of which contained large hail (Gatlin et al.

2015). This continental convective distribution of Zdr

versus Zh was characterized by Zdr . 1 dB beginning

FIG. 5. Indo-Pacific warm pool DSD-simulated S-band Zh and Zdr: (a) 2D histogram contoured by frequency of occurrence,

(b) DSD-based T15 C/S partitioning, and scatterplots colored by (c) normalized gamma DSD intercept parameter log10NW, (d)D0,

and (e) LWC.
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onceZh; 25dBZ. The value ofZdr reached at least 2 dB

by 45dBZ, which is higher in magnitude than the entire

tropical oceanic distribution in Fig. 5. Compared to

open-ocean convection, continental convection is sub-

ject to more evaporation below higher cloud bases,

which can deplete small drops and elevate the Zdr

(Kumjian and Ryzhkov 2010, 2012). Furthermore, con-

tinental convection contains stronger updrafts and more

vigorous ice-based microphysical processes, leading to

hail that can reach the ground and result in largermelted

raindrops (May et al. 2002; Zipser 2003; Bringi et al.

2003; May and Keenan 2005; Cotton et al. 2011; Dolan

et al. 2013; Gatlin et al. 2015; Schumacher et al. 2015;

T15). For instance, convective DSD from Colorado

hailstorms exhibited lower NW with higher D0 com-

pared to tropical maritime rain NW and D0 ranges

(Bringi et al. 2003; T15). Large raindrops, especially if

few in number and not accompanied by numerous small

drops, would produce large Zh and large Zdr. Therefore,

differences between tropical oceanic versus continental

convective cloud microphysical processes can explain

the observed differences between their Zh versus Zdr

distributions. Unlike convection, DSDs and dual-

polarization radar variables during stratiform rain ap-

pear to exhibit more similar characteristics across dif-

ferent climate regimes (BC01; Bringi et al. 2003, 2009;

Thurai et al. 2010; T15).

b. New dual-polarization rainfall relationships

Given the dependence and interdependence of dual-

polarization radar variables on tropical oceanic DSD vari-

ability discussed in section 3a, this section explores new R

relationships formed with these data [Table 1, updated

tropical oceanic R(z) estimators are repeated from T15].

The resulting C/S rain fraction estimate, the correlation

coefficient r, the percent difference of total rain accumula-

tion (i.e., the bias), and the root-mean-square error

(RMSE) for each estimator are listed for each l in Table 2.

The C/S rain fractions varied by 6(0%–2%) for each esti-

mator depending on radar wavelength. Linear versions of

Zh, z (mm6m23), and Zdr, zdr (dimensionless) were used in

regression equations because of their larger dynamic

ranges. Data quality thresholds of Kdp . 0.38km21 and

Zdr. 0.25dBwere implemented before deriving equations

using each of these variables to avoid ‘‘overfitting’’

R relationships to noise and because higher correlation

coefficients to 2DVD R were achieved by equations using

these thresholds. Similarly, R(Ah) and R(Ah, zdr) equations

performed best when formed with data in which Zh .
20dBZ. These equations are provided in Table 1. Ryzhkov

and Zrnić (1995) and Bringi et al. (2012) also avoided

overfitting R relationships by only performing regressions

with data whose R. 20 or 10mmh21.

1) R(Kdp)

The C/S R(Kdp) distributions at each l illustrate that

77%, 86%, and 90% of X-, C-, and S-band data withKdp.
0.38km21 are convective (Fig. 6), which suggests that

R(Kdp) does not requireC/S partitioning in addition to a data

quality threshold (also shown in Fig. 4). For instance, the

convective and all-data equations (Table 1) and best-fit lines

(Fig. 6) for R(Kdp) appear similar at all three ls above the

Kdp5 0.38km21 line since most samples above this level are

convective. The R(Kdp) estimator based on data withKdp .
0.38km21 produced negligibly worse r results by 0.001 and

negligibly worse RMSEs by 0.1mmh21, so only the all-data

R(Kdp) estimator was pursued further in this study.

TABLE 1. New tropical oceanic dual-polarization radar rainfall

estimation equations at X, C, and S bands derived from the equa-

torial Indo-Pacific warm pool DSD and simulated radar variables:

linearz (mm6m23), linear zdr (unitless),Kdp (8 km
21), andAh (dBm21).

New R(z) equations were derived from the same tropical oceanic

dataset (T15) and are equivalent for the X, C, and S bands.

X C S

R(Kdp, zdr) 5 aKb
dpz

c
dr

All rain a 28.13 45.70 96.57

All rain b 0.92 0.88 0.93

All rain c 21.69 21.67 22.11

R(z, zdr) 5 azzcdr
All rain a 0.0085 0.0086 0.0085

All rain b 0.93 0.91 0.92

All rain c 24.46 24.21 25.24

Convective a 0.014 0.017 0.015

Convective b 0.86 0.82 0.84

Convective c 23.45 22.90 23.90

Stratiform a 0.010 0.011 0.010

Stratiform b 0.89 0.85 0.88

Stratiform c 24.075 23.58 24.57

R(Kdp) 5 aKb
dp

All rain a 18.67 30.62 56.04

All rain b 0.77 0.78 0.80

Convective a 21.97 34.57 59.52

Convective b 0.72 0.73 0.75

Stratiform a 12.76 20.44 36.29

Stratiform b 0.71 0.72 0.74

R(Ah) 5 aAb
h

All rain a 69.54 447.37 3076.32

All rain b 0.85 0.93 0.98

R(Ah, zdr) 5 aAb
hz

c
dr

All rain a 142.35 646.56 2684.09

All rain b 0.95 0.97 0.97

All rain c 22.73 21.40 0.36

R(z)5 azb (fromT15)

All rain a 0.0207 0.0207 0.0207

All rain b 0.721 0.721 0.721

Convective a 0.0366 0.0366 0.0366

Convective b 0.684 0.684 0.684

Stratiform a 0.0258 0.0258 0.0258

Stratiform b 0.644 0.644 0.644
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Although only the convectiveR(Kdp) estimator would

be used if a Kdp data quality threshold were employed,

separate C/S R(Kdp) estimators were still formed.

Compared to the all-data R(Kdp) estimator, the X-, C-,

and S-band pair of C/S R(Kdp) estimators improved R

accuracy (r 5 0.988–0.990), yielded the same C/S rain

fraction estimate as the 2DVD at all three ls,

produced a substantially lower bias of 20.7% to 1.6%,

and had a lower RMSE of 1.9–2.0mmh21 (Table 2). The

exponents of the C/S R(Kdp) estimators (i.e., the slopes

in log–log format in Figs. 6a–c) are nearly the same.

However, of the two C/S estimators, the multiplicative

coefficient (y intercepts in Figs. 6a–c) is higher for con-

vective R(Kdp) since more LWC, higher NW, and higher

R are associated with the same Kdp in convective rain

compared to stratiform rain (Figs. 6d–f).

2) R(Kdp, zdr) AND R(Z, zdr)

While R is not very well correlated with Zdr in-

dividually (r 5 0.61), the R(z, zdr) and R(Kdp, zdr)

estimators outperformed all individual R(z) or R(Kdp)

equations at each l, including C/S formulations

(Table 2). Errors and biases were lower for these

multiparameter equations; however, their error struc-

tures were also more complicated because they are

associated with two input parameters (Pepler et al.

2011; Pepler and May 2012). The zdr coefficient in

both multiparameter equations is negative to con-

strain the positive correlation of Zh and Kdp to R

(Table 1). The estimated C/S rain fractions by both of

these multiparameter equations were within 1%–3%

of the 2DVD C/S rain fraction at all three ls. The

correlation coefficients between 2DVD R and R es-

timated from R(Kdp, zdr) and R(z, zdr) were high,

between 0.992 and 0.996 at S band and slightly lower

with decreasing l. RMSEs between 2DVD R and R es-

timated by these multiparameter equations were also

below 2mmh21 for all ls. Out of all of the Kdp-, Zdr-, and

Zh-based estimators, the R(Kdp, zdr) equation performed

best at each l (Table 2). An interpretation of this result is

TABLE 2. The X-, C-, and S-band comparisons between 2DVD rain rate and rain-rate estimators using DSD-simulated radar variables

with and without C/S partitioning.

Methodology l C/S rain fraction r Bias (%) RMSE (mmh21)

2DVD — 81/19 — — —

R(z) X 69/31 0.821 1.7 9.6

C 70/30 0.899 7.1 6.0

S 71/29 0.925 2.9 5.2

C/S R(z) X 81/19 0.911 22.9 7.1

C 81/19 0.959 0.5 4.0

S 82/18 0.967 23.4 3.9

R(Kdp) X 74/26 0.985 6.9 2.7

C 74/26 0.977 3.6 2.9

S 75/25 0.980 1.8 2.7

C/S R(Kdp) X 81/19 0.990 1.6 1.9

C 81/19 0.988 20.3 2.0

S 81/19 0.990 20.7 1.9

R(Ah) X 76/24 0.949 26.1 5.6

C 78/22 0.907 25.4 7.4

S 82/18 0.996 20.6 1.2

R(Kdp, zdr) X 79/21 0.990 5.0 1.9

C 78/22 0.993 3.4 1.6

S 80/20 0.996 7.1 1.2

R(z, zdr) X 80/20 0.987 3.5 2.1

C 79/21 0.989 4.8 2.0

S 80/20 0.992 5.0 1.8

C/S R(z, zdr) X 81/19 0.989 2.5 1.9

C 81/19 0.991 3.1 1.8

S 81/19 0.994 3.3 1.5

R(Ah, zdr) X 80/20 0.996 20.2 1.2

C 81/19 0.990 23.3 2.1

S 81/19 0.994 3.1 1.7
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that, of the Kdp-, Zh-, and Zdr-based estimators, the

R(Kdp, zdr) equation most effectively accounted for

tropical oceanic rain DSD variability.

Compared to the all-data R(z, zdr) estimator, the

pair of C/SR(z, zdr) estimators offered only a 1% better

C/S rain fraction (mirroring that of the 2DVD), 0.002

better r, 1%–1.5% lower bias, and 0.2–0.3mmh21

lower RMSE. As shown in Fig. 4, the R(Kdp, Zdr) dis-

tribution only included convective data points once

data quality thresholds were met for both variables.

Therefore, C/S partitioning does not appear necessary

or fruitful for the R(Kdp, zdr) or the R(z, zdr) estimators

during tropical oceanic rain.

3) R(Ah) AND R(Ah, zdr)

For tropical oceanic rain, the accuracy of new R(Ah)

and R(Ah, zdr) estimators depended strongly on radar

l and only exceeded the accuracy of R(Kdp, zdr) at

FIG. 6. Indo-Pacific warm pool DSD-simulated Kdp and measured R: (a) X-, (b) C-, and (c) S-band C/S distributions with

best-fit lines (Table 1) and C-band distributions colored by the (d) normalized gamma intercept parameter log10NW, (e) D0,

and (f) LWC.

FIG. 7. Frequency of occurrence of Indo-Pacific warm pool DSD-simulated Ah and measured R at X, C, and S bands with best-fit lines

from Table 1.
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X band with the use of R(Ah, zdr) (Table 2). The R(Ah)

estimator performed as well as the top-rankingR(Kdp, zdr)

estimator at S band, but was by far the lowest-ranking

estimator of all dual-polarization options at the X and C

bands in terms of r, bias, and RMSE. The underlying

distribution of tropical oceanic R(Ah) data points was

most tightly clustered around the best-fit line at S band

compared to shorter l (Fig. 7), which was also noted

by Ryzhkov et al. (2014). Unlike this theoreti-

cal analysis of tropical oceanic rain, previous stud-

ies focused on continental and coastal rain found that

X- and C-band R(Ah) estimators were actually able to

outperform other dual-polarization R estimators

based on z and Kdp once the measurement error, wet

radome effects, beam blockage, and anomalous

propagation were taken into account (Giangrande

et al. 2014; Wang et al. 2014; Boodoo et al. 2015;

Diederich et al. 2015a,b). Both R(Ah) and R(Ah, zdr)

performed even worse when separate C/S versions of

these estimators were implemented at X, C, and S

bands, meaning that C/S partitioning is neither nec-

essary nor encouraged for either of the Ah-based es-

timators. Therefore, the theoretical utility of R(Ah)

and R(Ah, zdr) estimators over tropical oceans de-

pended strongly on radar l in that these estimators

only offered significant skill at S band for R(Ah) or at

X band for R(Ah, zdr) and, even so, only the X-band

R(Ah, zdr) estimator offered improved skill compared

to X-band R(Kdp, zdr).

c. Regional differences between rain estimators and
their accuracy

The coefficients and exponents of updated polari-

metric equations for tropical oceanic rain in Table 1

were different from continental, subtropical, or

coastal equations from other sources in the appendix

(see Table A1) because the DSDs of tropical oceanic

convection differ from that arising over continental

or coastal locations (Bringi et al. 2003, 2009; Thurai

et al. 2010; Wang et al. 2013, 2014; T15). The R(Kdp)

coefficients were highest for the Wang et al. (2013)

Taiwan typhoon estimator and new tropical oceanic

all-data and convective R(Kdp) estimators, followed

by coefficients from coastal equations and, then,

the coefficients were lowest in continental estima-

tors (Tables 1 and A1). These regional differences

between R(Kdp) estimators reflect the fact that LWC

is concentrated in generally smaller drops in the

tropical oceanic rain regime (Wang et al. 2013; T15).

The new tropical oceanic R(Kdp, zdr) equation co-

efficients and exponents were also highest, except at S

band compared to estimators used by Brandes et al.

(2002) for Florida coastal convection. Exponents and

coefficients of the new tropical oceanic R(Ah),

R(Ah, zdr), and R(z, zdr) equations were within the

same range as those derived from previous studies

in other rain regimes.

The new R estimators fit to the tropical oceanic rain

regime improved R estimation accuracy on this

dataset compared to previously established conti-

nental or coastal R estimators at all ls (Tables 2, A1,

and A2). When evaluated on this study’s tropical

oceanic simulated radar dataset, most of the previous

equations from coastal and continental environments

underestimated total R accumulation by double-digit

percentages because tropical oceanic rain contains

higher LWC for a given median raindrop diameter or

drop oblateness. Equations from these coastal or

continental rain regimes typically exhibited r , 0.990

and RMSE . 3mmh21. Notable exceptions were

found for the X-, C-, and S-bandR(Kdp, zdr) andR(z, zdr)

equations formed from simulatedDSDs by BC01; S-band

R(Ah) from Oklahoma by Ryzhkov et al. (2014); as well

as R(z, zdr) formed by DSD data from the Kwajalein

Atoll (Bringi et al. 2011), the latter of which is a location

nearby that of the current dataset since both were

collected in the western Pacific Ocean. Compared

to measured 2DVD R, only these few aforemen-

tioned dual-polarization radar estimators were associ-

ated with r ; 0.992–0.995, biases of only 5%–10%, and

RMSEs # 3mmh21 (Table A1). The updated tropical

oceanic R(z) equations produced by T15 also out-

performed other R(z) methods used in other regions

(Table A2). The R(z) estimator used for tropical rain

by the National Weather Service actually over-

estimated tropical oceanic rain by 37% and produced

the lowest r 5 0.898.

d. Blended algorithm testing

Based on results from previous subsections, the

new tropical oceanic R estimators using Kdp, Zdr, and

Zh were tested using the same logic as the liquid-

only branch of the C11 CSU blended optimization

algorithm with data quality thresholds of Zdr .
0.25 dB and Kdp . 0.38km21 and without a Zh

threshold. According to this algorithm framework

(see section 2), R(z, zdr) is used to calculate R if only

the Zdr threshold is met, R(Kdp) is used if only theKdp

threshold is met, R(Kdp, zdr) is used if both the Zdr and

Kdp thresholds are met simultaneously, and R(z) is

used if neither the Kdp nor the Zdr thresholds is met.

All four R estimators were updated for tropical oce-

anic rain using the DSD dataset discussed herein

(Tables 1 and 2). T15 developed and tested the all-

data and C/S versions of the tropical oceanic R(z)

estimators (Tables 1 and 2).
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When implemented on this tropical oceanic dataset,

the updated blended algorithm used either R(z) or

R(z, zdr) most often depending on l, while the majority

of the rain volume was always quantified byR(Kdp, zdr)

(Fig. 8,2 which mimics the C11 analysis). When Zdr

and Kdp were both below data quality thresholds, the

blended algorithm defaulted to R(z), which, at all

three ls, occurred 43% of the time and for 7% of the

total rain volume. At all three ls, 47% of these oc-

currences and 81% of this rain volume treated by R(z)

were convective. In cases where Zdr $ 0.25 dB but

Kdp , 0.38km21, R(z, zdr) was used 40%, 46%, and

50% of the time at the X, C, and S bands. While 57% of

data met the Zdr threshold at all ls, only 17%, 11%,

and 7% of the data met both the Kdp and the Zdr

thresholds at the X, C, and S bands. This led the

updated blended algorithm to use R(Kdp, zdr) only

17%, 11%, and 7% of the time at X, C, and S bands,

which explains whyR(z, zdr) was used least frequently at X

band. There were no times when X-, C-, or S-band Kdp

results were greater than 0.38km21 and Zdr was less than

0.25dB in this tropical oceanic DSD dataset (Fig. 4). This

implies that no hail was observed in this tropical oceanic

surface disdrometer dataset and also that tropical oceanic

DSDs with sufficient LWC (0.1–1gkg21) to produce

Kdp . 0.38km21 are also always associated with Zdr .
0.25dB at each l in this dataset (Figs. 1 and 2). Therefore,

as expected from previous subsections,R(Kdp) was unused

in the blended algorithm at any l. SinceR(Kdp, zdr) tended

to be used during higher-R situations according to the al-

gorithm’s design, this equation quantified the most rainfall

(76%, 66%, and 53% at X, C, and S bands) even though it

was used least often (17%, 11%, and 7% of the dataset at

X, C, and S bands).

Even without C/S partitioning of any equations, the

blended algorithm produced higher r, lower percent

error, and lower RMSEs (Table 3) compared to any of the

individual equations it contained at all three ls (Table 2).

This implies that the blended algorithm is more accurate

than any of its individual parts. Blended algorithm accu-

racy was only exceeded by that of R(Ah) at X band

(Table 2).Blended algorithmaccuracy improved slightly at

all ls when C/S R(z) equations were used because the C/S

versions of the R(z) equations had a higher goodness of fit

than the R(z) fit to all data (Tables 2 and 3) and because

these R(z) equations were used 43% of the time on 7% of

the total rain at all threels. Thepopulation treated byR(z)

was made up of 47% convective rain in terms of occur-

rences and 81% convective rain in terms of volume. With

C/SR(z) equations, the blended algorithm’s bias decreased

by 1.6%, the RMSE decreased by 0.1mmh21, r remained

the same or increased by 0.001, and the C/S fraction esti-

mate improved by 1% at all three ls.

The potential benefit of using separate C/S R(z)

equations in the blended algorithmwas overshadowed

by higher-magnitude errors in a test with these

equations but with an incorrect C/S classification

(Table 3). When a continental partitioning method

between convective and stratiform rain was used

(Bringi et al. 2003, 2009), the errors and biases grew

roughly 3 times greater in magnitude compared to the

decreases in errors and biases brought about by C/S

R(z): r decreased by 0.003 atXand Sbands or by 0.016 at

C band, the total rain estimate bias increased by 7%–13%,

RMSE increased by 1.4–0.6mmh21 at C and S bands

(RMSE decreased by 0.2mmh21 at X band), and the C/S

fraction became offset by 8% at X and S bands or 2% at

C band compared to the 2DVD observations (Table 3).

Therefore, C/S R(z) equations should only be applied

FIG. 8. Updated CSU blended rainfall algorithm perfor-

mance over Indo-Pacific warm pool: (a) frequency at which

each equation was used and (b) percentage of total rain

quantified with each equation. New tropical oceanic R equa-

tions were used, including C/S R(z) from T15. Percentages

are listed above bars. In cases in which percentages differ

by ,0.5%, the same percentage is discussed for all ls within

the text; e.g., R(z) used 43% of the time on 7% of total rain at

all three ls.

2 In cases where percentages listed in Fig. 8 differ by less than

0.5%, the same percentage is discussed for all ls within the text;

e.g., R(z) is used 43% of the time on 7% of total rain at all ls.
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when the C/S partitioning method can confidently distin-

guish between radar echoes or DSD samples for a partic-

ular rain regime (Steiner et al. 1995; Yuter and Houze

1998; Schumacher andHouze 2003; Powell et al. 2016; T15;

Table 3).

Negligible further improvement to blended algorithm

performance was gained when C/S R(z, zdr) equations

were used compared to when the only C/S option was for

R(z): 0–0.001 r change, 0.0%–0.4% lower bias, no

RMSE decrease, and 1% better C/S rain fraction at all

three ls (Table 3). Based on these results, C/S R(z, zdr)

equations do not seem warranted or necessary given the

larger uncertainty involved in implementing the C/S

equations (T15; Powell et al. 2016; Table 3).

TABLE 3. The C/S rain fraction, correlation coefficient r, percentage difference of total rain (bias), and RMSE of X-, C-, and S-band

blended algorithm results updatedwith new equations compared to 2DVDR. The 2DVD-estimatedC/S fraction5 81/19; see Table 2. The

C/S partitioning is performed with T15’s log10NW method unless otherwise noted.

C/S rain fraction r Bias (%) RMSE (mmh21)

Updated X-band blended algorithm tests

No C/S equations 79/21 0.990 3.7 1.9

C/S R(z) 80/20 0.991 2.1 1.8

C/S R(z) and C/S R(z, zdr) 81/19 0.991 2.2 1.8

C/S R(z) with Bringi et al. (2009) C/S classification 73/27 0.987 9.5 1.6

Updated C-band blended algorithm tests

No C/S equations 78/22 0.993 3.8 1.6

C/S R(z) 79/21 0.993 2.2 1.5

C/S R(z) and R(z, zdr) 80/20 0.994 2.0 1.5

C/S R(z) with Bringi et al. (2009) C/S classification 79/21 0.978 14.9 2.9

Updated S-band blended algorithm tests

No C/S equations 79/21 0.997 3.4 1.1

C/S R(z) 80/20 0.997 1.8 1.0

C/S R(z) and R(z, zdr) 81/19 0.997 1.4 1.0

C/S R(z) with Bringi et al. (2009) C/S classification 73/27 0.994 9.5 1.6

FIG. 9. CSU blended rain algorithm framework updated for dual-polarization radar rainfall estimation over

tropical oceans.
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4. Discussion

a. Updated blended algorithm

The results in section 3 motivate our desire to up-

date the blended algorithm according to Fig. 9 for

dual-polarization radar rainfall estimation over trop-

ical oceans. When implemented in this way, C/S R(z)

relationships are only used when R , 7mmh21 at all

three ls (Fig. 10 for C band). These R(z) equations

account for over half of the total rain when R ,
3mmh21 and the majority of rain when R ,
0.7mmh21. For perspective, rain rates below 7, 3, and

0.7mmh21 make up only 23%, 11%, and 2% of the

total rain volume, but 82%, 67%, and 33% of rain oc-

currences. Since R(z, zdr) becomes more commonly used

between 0.7 and 7mmh21, the total percentage of rainfall

attributable to R(z) levels out to 43% at three ls in terms

of frequency, but yet just 7% of the rain volume. In terms

of both frequency and rain volume, R(Kdp, zdr) dominates

once R exceeds 8, 13, and 22mmh21 at X, C, and S

bands. Therefore, the blended algorithm sequesters errors

associated with C/S R(z) equations to the lightly raining

population, where Zdr , 0.25dB, 96% of which occurs

from R , 5mmh21 in terms of frequency and 84% of

which occurs from R , 2mmh21.

It could be considered ironic that a dual-polarization

radar would still rely on R(z) 43% of the time, which

amounts to 7% of the total rain (47% of these occur-

rences and 81% of this rain volume were convective at

all ls). In the remaining 57% of rain occurrences and

93% of rain volume where Zdr . 0.25 and/or Kdp .
0.38km21, dual-polarization R estimators improve rainfall

estimation accuracy and eliminate the need for C/S

partitioning (Fig. 9). All-data versions ofR(Kdp),R(z, zdr),

and R(Kdp, zdr), without C/S partitioning, appear in the

recommended version of the blended algorithm for tropi-

cal oceanic rain (Fig. 9). SinceR(z, zdr) andR(Kdp, zdr) are

more accurate than C/S R(z), it is therefore unsurprising

that the X-, C-, and S-band implementations of the

blended algorithm exhibited 0.03–0.08 higher r and 3–

5mmh21 lower RMSE values compared to the C/S R(z)

treatment of this dataset (Tables 2 and 3).

FIG. 10. (a) How often each equation was used and (b) howmuch total rain was quantified by

each equation in the updated blended algorithm for tropical oceanic rain at C band. The only

significant difference between each l is that, at the X, C, and S bands, R(Kdp, zdr) begins

to dominate the R estimation once R . 8, 13, and 22mmh21, respectively. Normalized his-

togram bin widths 5 0.5mmh21.
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Increasing the reliability of Zdr and Kdp measurements

could further improve tropical oceanic R estimation. Er-

rors due to R(z) and C/S partitioning could be reduced if

Zdr and Kdp could be used at lower magnitudes. These

errors are currently sequestered to lightly raining time

periods (R , 7mmh21), whereas the majority of rain ac-

cumulation is produced by higher rain rates that are

accounted for by more accurate dual-polarization R esti-

mators (Figs. 8 and 10), The usable portion of dual-

polarization radar data could also be maximized by

reducing the amount of data compromised by sea spray

scattering, sea surface clutter, attenuation, and velocity

aliasing (BC01; Nguyen et al. 2008).

b. Wavelength dependence

Dual-polarization radar rainfall estimation im-

proves upon R(z)-based methods over tropical oceans

at the X, C, and S bands (Tables 2 and 4), and updated

R estimators based on tropical oceanic DSD also

improve R estimation accuracy in this region

(Tables 2, A1, and A2). Using updated S-band equa-

tions, r improved from 0.967 for C/S R(z) equations to

0.997 for the blended algorithm, 0.996 for R(Kdp, zdr),

and 0.992 for R(z, zdr).

Dual-polarization radar R methods consistently per-

formed best at S band in terms of r, bias, and RMSE

(Tables 2–4), which is most likely due to the higher oc-

currence of non-Rayleigh scattering at shorter l. The

value of r changed by 20.003 from S to C band and by

from 20.005 to 20.006 from S to X band for R(z, zdr)

and R(Kdp, zdr). The blended algorithm r changed

by20.004 fromS toC band and changed by20.006 from

S to X band. Even so, the blended algorithm still out-

performed all of its individual component equations at

all ls. Additionally, blended algorithm accuracy degra-

dation at shorter ls was still 5–13 times smaller than the

improved accuracy gained by using dual-polarization radar

variables compared to single-polarization methods: r

changed by10.080,10.034, and10.030 for X-, C-, and S-

band dual-polarization methods compared to C/S R(z),

while r changed by only20.006 fromS- toX-band blended

algorithm differences.

From S to X band, C/S R(z) accuracy actually

degraded by an even larger margin (r changed

by 20.056) compared to that of the blended algorithm.

The Zh, Zdr, and Kdp results were all impacted by non-

Rayleigh scattering, but R(z) was apparently more vul-

nerable to these effects than a blended combination of

all four equations. Therefore, the blended algorithm

displayed a greater potential to improveR accuracy over

C/S R(z) estimators at shorter ls (Table 4): r changed

by 10.080, 10.034, and 10.030 between C/S R(z) and

the blended algorithm at X, C, and S bands.

Maximum drop diameters observed in this tropical

oceanic rain regime were usually below 5mm (Fig. 2;

T15), which is, for the most part, below the Rayleigh

drop diameter threshold found by Zrnić et al. (2000) and

Carey and Petersen (2015): 5mm at C band and 3mm at

X band. However, tropical convective DSDs contain

significant LWC even when drop diameters remain

small (Figs. 1 and 2; T15), so radar signal attenuation still

occurs at the C and X bands in this regime. Resonance

effects are also possible at C band. For instance, r for

R(Kdp) actually decreased by 0.003 from S to C band,

and then r increased again by 0.005 from C to X band

(Zrnić et al. 2000; Keenan et al. 2001).

c. Other sources of error

This study focuses on sources of error in dual-

polarization radar rainfall estimation caused by DSD

variability intrinsic to the tropical oceanic rain regime,

but does not address the practical implementation of

radar-based R estimation. We do not address other

known sources of error related to radar measurement

collection or processing, such as wet radomes, Zdr cali-

bration, Kdp filtering, Ah estimation from Fdp and z,

partial beam blockage, attenuation and differential at-

tenuation, radar-based C/S radar partitioning, or non-

meteorological echo, such as by sea spray (e.g., BC01).

These sources of error should be addressed by future

TABLE 4. Correlation coefficient r of Indo-Pacific warm pool 2DVD rainfall to rainfall estimated from new equations with andwithout C/S

partitioning at X, C, and S bands.

Equation type X-band r C-band r S-band r Dr from X to S band

R(z) 0.822 0.899 0.925 10.103

C/S R(z) 0.911 0.959 0.967 10.056

R(Kdp) 0.985 0.977 0.980 20.005

R(Ah) 0.949 0.907 0.996 10.047

R(z, zdr) 0.987 0.989 0.992 10.005

R(Kdp, zdr) 0.990 0.993 0.996 10.006

R(Ah, zdr) 0.996 0.990 0.994 20.002

Updated blended algorithm with C/S R(z) 0.991 0.993 0.997 10.006

Improvement of blended algorithm over C/S R(z) 10.080 10.034 10.030 10.05
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studies regarding dual-polarization radar R estimation

over tropical oceans, but this is beyond the scope of the

current study.

5. Conclusions

Dual-polarization radar rainfall estimation relation-

ships have been tested almost entirely in continental and

subtropical coastal rain. Prior to this study it was unclear

how dual-polarization rainfall estimation performed

over the tropical oceans, where the majority of rain oc-

curs. A 1.5-yr Indo-Pacific warm pool disdrometer

dataset was used to quantify the impacts of tropical

oceanic DSD variability on Kdp, Zdr, Ah, and Zh, as well

as their resulting utility for dual-polarization radar

rainfall (R) estimation. The linear versions of differen-

tial reflectivity z and reflectivity z were used.

Radar variables simulated from DSD accounted for

the high LWC of tropical oceanic convective rain, as

well as the propensity for Zdr to be lower for a given Zh

and Kdp in convection compared to stratiform rain in

this regime. Dual-polarization radar variables were

overall lower in tropical oceanic convection compared

to continental or subtropical coastal convection, the

latter of which tends to be characterized by larger drop

sizes and lower number concentrations. New R(z, zdr),

R(Kdp), R(Kdp, zdr), R(Ah), and R(Ah, zdr) equations

were formed to account for tropical oceanic DSD vari-

ability at the X, C, and S bands. Compared to R esti-

mators formed from other continental and coastal

regions, the new tropical oceanic R estimators always

performed best at all wavelengths (ls) tested. At each l,

R(Kdp, zdr) consistently outperformed R(z, zdr) and the

latter outperformed R(Kdp). The new R(Ah) estimator

only displayed skill at S band and, even then, did not

exceed the accuracy of R(Kdp, Zdr) at this l. The

R(Ah, zdr) estimator only exceeded the accuracy of

R(Kdp, Zdr) at X band.

The CSU blended algorithm was updated for esti-

mating rainfall over tropical oceans by incorporating

new tropical oceanic R estimators based on Zh, Zdr, and

Kdp and also by lowering the Zdr data quality threshold

compared to its original implementation by C11 over the

continental United States. The updated tropical oceanic

blended rain algorithm uses thresholds of Zdr . 0.25 dB

and Kdp . 0.38km21 to access R relationships with ei-

ther or both of those variables; otherwise it defaults

to R(z).

Tropical oceanic DSD with Kdp . 0.38km21 also ex-

hibitedZdr. 0.25 dB at all three radar ls, soR(Kdp) was

never called upon by the updated blended algorithm in

this rain regime. Lowering theKdp threshold further did

not change this behavior. In previous studies over

continents and coasts, the R(Kdp) branch of the blended

algorithm has been utilized for rain with lowZdr but high

Kdp (C11). We hypothesize that R(Kdp) is not utilized

over tropical oceans because hail does not reach the

surface in this regime and because tropical oceanic

DSDs with enough LWC to produce Kdp . 0.38km21

also always produce Zdr . 0.25 dB.

Since Kdp and Zdr were both overall lower in magni-

tude within the tropical oceanic rain regime compared

to continental rain, R(z) was still used by the blended

algorithm 43% of the time on 7% of total rain at X, C,

and S bands. Out of these occurrences, 47% were con-

vective, 96% involved R , 5mmh21, and 84% were

associated with R , 2mmh21. Since weak convection

and stratiform rain overlap at these low rain rates, par-

titioning between C/S R(z) estimators helped improve

the blended algorithm’s performance and are thus rec-

ommended where confident radar echo partitioning is

possible.

At all three ls, R(z) was used when R was between

0 and 7mmh21, R(z, zdr) became the most commonly

used estimator and quantified the most rain volume

as R increased above 0.7mmh21, and R(Kdp, zdr)

became both the most commonly used and quantified

the most rain at R . 8, 13, and 22mmh21 at the X, C,

and S bands. The C/S partitioning was unnecessary

for R(Kdp, zdr), R(z, zdr), andR(Kdp) because R(Kdp, zdr)

was used almost exclusively in convective rain, C/S

R(z, zdr) equations did not significantly improve the

blended algorithm accuracy, and R(Kdp) was never

used. Therefore, dual-polarization technology hel-

ped sequester errors associated with C/S partitioning

and R(z) to R , 7mmh21, such that C/S R(z) only

accounted for more than half the rain volume when

R , 3mmh21.

Between X-, C-, and S-band wavelengths, R(z, zdr)

quantified between 40%, 45%, and 50% of the total rain

accumulation and R(Kdp, zdr) quantified 53%, 63%, and

74% of the total rain accumulation. Since R(Kdp, zdr)

was more accurate than R(z, zdr), and both were more

accurate than C/S R(z), the blended algorithm capital-

ized on the strengths of each relationship by using more

accurate relationships more often. As a result, the

blended algorithm was more accurate than any of its

component equations.

Dual-polarization radarR estimation techniques were

increasinglymore accurate than single-polarizationR(z)

estimators at shorter ls. We found that Kdp could be

used in the blended algorithm more frequently at

shorter ls, R(Kdp, zdr) was more accurate than R(z, zdr),

and both equations were far more accurate than

R(z). All R estimators were slightly less accurate at

shorter l due to non-Rayleigh scattering, but an
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order-of-magnitude-greater degradation of accuracy

occurred due to the use of R(z). The benefit of dual-

polarization technology for rainfall estimation [r changes

of 10.080, 10.034, and 10.030 from C/S R(z) to the

blendedalgorithmatX,C, andSbands] greatly outweighed

the degradation in blended algorithm accuracy from S to

X band caused by non-Rayleigh scattering (r changed

by 20.006). For example, the X-band blended algo-

rithm still outperformed S-band C/S R(z) equations. This

comparison shows that dual-polarization radars

are worthwhile to pursue at all wavelengths over

tropical oceans.
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APPENDIX

Previously Established R Relations

Previously established relations forR estimation using

Kdp,Zdr,Zh, andAh at X, C, and S band are contained in

Tables A1 and A2. For each estimator, the correlation

coefficient r, percent difference of total rain (i.e., bias),

and RMSE were computed using tropical oceanic radar

variables simulated in the current study compared to

measured tropical oceanic 2DVD R. The tropical oce-

anicR estimators developed in the current study (Table 1)

always outperformed the previously established esti-

mators from other regions shown in TablesA1 andA2 at

each l (Table 2).
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