% epic01_Rscldar_5 computes clear sky solar for ETL data %jdy is julian day (decimal) at the start of average interval %lat and lon are decimal latitude and longitude %iv is column water vapor in cm % if no data is available for iv, put in NaN and select a ratio of iv to % near-surface water vapor mixing ratio, qrat. Typical tropical value is % 4.5 %calls SolarRadiance % % sounding PWV in ICEALOT__PWV_sonde.mat c:\data\ICEALOT\data\sonde\ ss = 'c:\data\ICEALOT\data\sonde\ICEALOT_PWV_sonde.mat'; load(ss); for j = 1:length(tpw) if fix(tpw(j,1)) == str2num(jd) iv = tpw(j,2); % est of total col water vapor break end end [r,c] = size(scs); jdys = scs(:,c); %load julian day from scs into array jjx = 1; qrat=4.; latd = Lat(1,1); % ICEALOT lond = Lon(1,1); k1 = .05; %aerosol optical depth, band 1 k2 = .05; %aerosol optical depth, band 2 oz = 0.2; %column ozone %%%%%% DEW 12262007 Rh = RHi; T = Ti; p = mean(Pv); %3/21 scs(:,12) has no pressure if isnan(p) p = mean(Pi); end scssw = scs(:,13); q=Rh./100.*qsea(T); %%%% %function y=qsea(x) %es=6.112.*exp(17.502.*x./(x+241.0))*.98*(1.0007+3.46e-6*1010); %y=es*622./(1010.0-.378*es); %%%% %QA_mean=[QA_mean qvais]; %qa=QA_mean(1:jjx); watvap(1:length(jdys),1)=iv; %ii=find(isnan(iv)); %watvap(ii)=qa(ii)/qrat;%total column water vapor jdx=floor(jdys+.5/60/24); %julian day in bin centers for 10-min aves tutc=(jdys+5/60/24-jdx)*24;%0:1:23;%hour of the day [n m]=size(tutc); clear sw sz saz dirs sky; [sw,sz,saz,dirs,sky] = SolarRadiancex(latd,lond,jdx,tutc,watvap,p,k1,k2,oz); Rscl=sw; %plot(jdy,Rscl,jdy,rs,'o');xlabel('Julian Day (1999)');ylabel('Downward Solar Flux (W/m^2)'); %ss=stdt;axis([ss endt 0 1200]); %sw = downward shortwave (W/m^2) %sz=zenith angle %saz = azimuth angle %dirs is direct solar %sky is diffuse solar if 0 figure plot(jdys,Rscl) hold plot(jdys,scssw,'g') title('ICEALOT 2008') ylabel('SW (W/m2') xlabel('Year Day (UTC)') legend('Clear','SCS') mmin = min(sw(1)); mmax = max(sw); ylim([-5 max((mmax)+ 50)]); end