% epic01_Rscldar_5 computes clear sky solar for ETL data %jdy is julian day (decimal) at the start of average interval %lat and lon are decimal latitude and longitude %iv is column water vapor in cm % if no data is available for iv, put in NaN and select a ratio of iv to % near-surface water vapor mixing ratio, qrat. Typical tropical value is % 4.5 %calls SolarRadiance display('in epic01_Rsclear_1') % qrat=4.; % p=1010; %pressure % k1=.05; %aerosol optical depth, band 1 % k2=.05; %aerosol optical depth, band 2 % oz=0.2; %column ozone watvap=iv; ii=find(isnan(iv)); watvap(ii)=qa(ii)/qrat;%total column water vapor;%total column water vapor jdx=floor(jdys+.5/60/24); %julian day in bin centers for 10-min aves tutc=(jdys+5/60/24-jdx)*24;%0:1:23;%hour of the day [n m]=size(tutc); clear sw sz saz dirs sky; [sw,sz,saz,dirs,sky] = SolarRadiancex(latd,lond,jdx,tutc,watvap,p,k1,k2,oz); Rscl=sw; %plot(jdy,Rscl,jdy,rs,'o');xlabel('Julian Day (1999)');ylabel('Downward Solar Flux (W/m^2)'); %ss=stdt;axis([ss endt 0 1200]); %sw = downward shortwave (W/m^2) %sz=zenith angle %saz = azimuth angle %dirs is direct solar %sky is diffuse solar figure plot(