% epic01_Rscldar_5 computes clear sky solar for ETL data %jdy is julian day (decimal) at the start of average interval %lat and lon are decimal latitude and longitude %iv is column water vapor in cm % if no data is available for iv, put in NaN and select a ratio of iv to % near-surface water vapor mixing ratio, qrat. Typical tropical value is % 4.5 %calls SolarRadiance % qrat=4.0 ; p=1010;%pressure k1=.01;%aerosol optical depth, band 1 k2=.01;%aerosol optical depth, band 2 oz=0.2;%column ozone watvap=iv; ii=find(isnan(iv));watvap(ii)=qa(ii)/qrat;%total column water vapor jdx=floor(jdy+5/60/24);%julian day in bin centers for 10-min aves tutc=(jdy+5/60/24-jdx)*24;%0:1:23;%hour of the day [n m]=size(tutc); clear sw sz saz dirs sky; [sw,sz,saz,dirs,sky] = SolarRadiancex(lat,lon,jdx,tutc,watvap,p,k1,k2,oz); Rscl=sw; figure;plot(jdy,Rscl,'r',jdy,rs,'k.'); xlabel('Julian Day (2004)'); ylabel('Downward Solar Flux (W/m^2)'); Title('AMMA 2007 Measured (.) Model Clear (red)') ss=stdt; axis([ss endt 0 1200]); print_buffer = ['F:\AMMA_2007\RHB\flux\Processed_Images\AMMA07_FLUX_SolarFlux.jpg']; print('-djpeg90 ', print_buffer); %sw = downward shortwave (W/m^2) %sz=zenith angle %saz = azimuth angle %dirs is direct solar %sky is diffuse solar