THE HYDROSTATIC EQUATION AND SIMPLE CALCULATION OF HEIGHT

A hydrostatic equilibrium exists when there is no vertical acceleration in the atmosphere. Basic equation of hydrostatics says then that a heigth difference $d z$ corresponding to a small vertical pressure difference $d p$ (e.g. 1 Pa) can be derived from

$$
\begin{equation*}
d p=-g \rho d z \tag{1}
\end{equation*}
$$

where g is the acceleration of gravity and ρ is the air density at this height. Negative sign results from that the height (z) increases upwards and the pressure (p) increases downwards.

When calculating the heigth difference ($h=z-z_{0}$) between two pressure surfaces (e.g. $p_{0}=1000 \mathrm{hPa}$ and $p=500 \mathrm{hPa}$) the average air density between these surfaces needs to be known. As measuring it is quite complicated and the density in the formula (1) can be replaced with temperature T derived from the ideal gas law resulting
$d z=-\frac{R T}{g p} d p$
where R is the general gas constant. By integrating both sides of the equation (2) the height difference (or thickness of the air layer) is

$$
\begin{equation*}
h=\left(\frac{R}{g}\right)\langle T\rangle \ln \left(\frac{p_{0}}{p}\right) \tag{3}
\end{equation*}
$$

where $\langle T\rangle$ is the average temperature in the layer $p_{0}-p$.

Example:

$p=995 \mathrm{hPa}, p_{0}=1000 \mathrm{hPa}, t=24^{\circ} \mathrm{C}, t_{0}=25^{\circ} \mathrm{C}=>T=297.15^{\circ} \mathrm{K}$ and $T_{0}=298.15^{\circ} \mathrm{K}$. Constants: $R=$ $287.05 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{K}$ and $g=9.80665 \mathrm{~m} / \mathrm{s}^{2}$.

From (3)
$h=\left(\frac{287.05}{9.80665}\right)\left(\frac{297.15+298.15}{2}\right) \ln \left(\frac{1000}{995}\right)=43.7 \mathrm{~m}$.

Literature:

John M. Wallace, Peter V. Hobbs: Atmospheric Science, an Introductory Survey, Academic Press (1977)

