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Motion Compensation for Shipborne Radars and
Lidars

Reginald J. Hill

ABSTRACT. Three radars and a lidar were shipborne during the RICO ex-
periment. Their data require correction of the measured Doppler velocities for
instrument motion as well as determination of the spatial position above the
Earth to which each datum pertains. This report gives a thorough analysis of
how to use the data to calculate the required quantities for the RICO experi-
ment. The analysis is general enough to apply to all ship- and aircraft-borne
sensors.

1. INTRODUCTION

The NOAA/K cloud and precipitation scanning radar, the University of Miami
(Univ. Miami) X-band and W-band cloud radars, the NOAA Mini-MOPA (Master Os-
cillator Power Amplifier) scanning Doppler lidar, and the NOAA/ETL flux instruments,
which include a sonic anemometer, were onboard the Research Vessel (R/V) Seward John-
son during the Rain in Cumulus over the Ocean (RICO) experiment. The RICO data from
those instruments were obtained from an area northwest of the island of Barbuda during
January 2005. The trade-wind swell caused substantial motion of the R/V Seward Johnson.
Data from all of those instruments need to be corrected to compensate for the ship’s motion.

In Section 2, the ship’s and the Earth’s coordinate systems are defined, as are the
angular rate of rotation of the ship and the transformation of coordinates between the ship’s
and the Earth’s coordinate systems. The most essential equation for motion compensation
is the relationship between the velocities at any two points on the ship; that relationship is
given in Section 2. Section 3 shows how to calculate the radars’ and lidar’s radial direction
in the Earth’s coordinate system and how to calculate the antenna’s radial velocity for
correction of the Doppler velocity. Each datum from radars and the lidar must be associated
with the spatial position from which the backscattering occurred. Section 4 shows how to
calculate those spatial positions in latitude, longitude, and height. Section 5 compares the
correction for motion using the ship’s versus the lidar’s motion-detection systems. The
formulation in Section 5 enables comparison of data from the two motion-detection systems.
Such a comparison can determine the accuracy of the systems. The ship’s system is called
the Position and Orientation System for Marine Vessels, abbreviated POS MV. Section
6 shows how either the ship’s or lidar’s motion-detection system can be used to correct
data from any of the radars or the lidar. Section 6 also shows how to correct the sonic
anemometer’s data using the ship’s motion-detection system. In Section 7, the equations for
motion compensation are derived in celestial, Earth, and ship’s reference frames. Section
7 thereby connects the rigid body equations to the standard meteorological equations; in
particular, the absence of Coriolis force in the ship’s reference frame is explained. The survey
of the positions of the instruments onboard the ship is essential to motion compensation.
The surveyed positions are given in the Appendix.
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Motion correction equations in this report were derived at sea without reference to
published literature. Subsequent comparison with previous publications (e.g., Edson et al.,
1998; Schulz et al., 2005) shows variations of the formulation that arise because of different
definitions of coordinate systems, angular rates, and Euler angles. Much confusion could
result unless such definitions are clearly stated. A particular distinction is made by Edson
et al. (1998) between gyro-stabilized systems and strapped-down systems. The lidar’s
motion compensation system is the strapped-down type. The POS MV system onboard the
R/V Seward Johnson is the strapped-down type. The angular rates of body motion form
a vector. For the RICO experiment, the components of the angular rate vector are given
by the lidar’s system in the lidar’s coordinate system and by the ship’s POS MV system in
the ship’s coordinate system. That is unlike the formulations stated by Edson et al. (1998)
and Schulz et al. (2005); those formulations use components of the angular rate vector in
Earth-fixed coordinates.

Airborne Doppler radars require correction for aircraft motion. There is substantial
literature on that topic: Bosart et al. (2002), Heymsfield et al (1996), Lee et al. (1994,
2003), Testud et al. (1995). Shipborne phased-array Doppler radars have used electronic
phasing of the antenna and ship-motion measurements to retrieve wind profiles (Law et al.,
2002). None of those studies considers the difference between the velocity of the phase center
of the radar antenna and the velocity at the location where it is measured by an inertial
navigation unit. That velocity difference is one essential aspect of the present report and
of the studies by Edson et al. (1998) and Schulz et al. (2005).

The POS MV system allows output of velocities, accelerations, angular rates, and
orientation angles for any three points on the ship. For the RICO experiment, those
three points were chosen to be the phase center of the NOAA/K radar antenna, the Univ.
Miami X-band radar antenna, and the red accelerometer box within the lidar’s sea container.
Details are given in the Appendix.

The description of the data recorded by the POS MV system is given in Corcoran
and Pronk (2003). The user of data must rely on that description for substitution of POS
MV data into the equations of this report. The Appendix of this report refers to data at the
reference point, and at Sensor 1 and Sensor 2. Those data are from data groups described
in Corcoran and Pronk (2003). The data Group 1 is for the reference point; data Group
102 is for Sensor 1; data Group 103 is for Sensor 2. Angular rates and accelerations for all
three data groups are given by Corcoran and Pronk (2003) as “longitudinal, transverse, and
down” components, which we assume means the ship’s coordinate system given in the next
section. Corcoran and Pronk (2003) give the velocity components of Group 1 as north, east,
and down, which is the Earth’s coordinate system described in the next section. Corcoran
and Pronk (2003) give the velocity components of Groups 102 and 103 as “along track,
across track, and down”. Those velocities are explained in Section 2.1. In particular,
Tucker (2005) shows that the “down” velocity component recorded in Group 102 is, in fact,
positive when the velocity at Sensor 1 is upward; that is also the case for Sensor 2 recorded as
Group 103. Therefore, there appears to be a mistake in the report by Corcoran and Pronk
(2003). The “down velocity” components must be multiplied by -1 to produce a right-
handed coordinate system. Tucker (2005) shows that the “down” component of velocity
recorded in Group 1 is correctly positive for downward velocity.
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2. THE SHIP’S AND EARTH’S COORDINATE SYSTEM AND MOTION
DATA

2.1 Definition of Coordinate Systems

A vector is a quantity that is independent of coordinate systems, and as such, it is
denoted without a superscript. Arbitrary vectorU is an example. The same vectorU with
its components obtained on the ship’s, or Earth’s, or lidar’s coordinate system is denoted by
US, or UE, or UL, respectively. In data Group 1, the POS MV system outputs velocities
in the Earth’s coordinate system, but outputs accelerations and angular rates in the ship’s
coordinate system. In the notation used below, the POS MV outputs include vES , a

S
S, and

ΩS
S, where the subscript S denotes a quantity measured by the ship’s system. Note that

vectors are denoted by bold type. Axes ‘forward’, ‘starboard’ (i.e., ‘right of forward’), and
‘downward’ constitute, in that order, an orthogonal right-handed coordinate system. It is
called the ship’s coordinate system. Unit vectors aligned along the axes in the positive
sense are denoted by

forward bxS
starboard byS
downward bzS (1)

The caret denotes that a vector has unit magnitude.
The angle about direction forward is ‘roll’ φ, about direction starboard is ‘pitch’ θ,

about direction downward is ‘heading’ ψ. These angles are known as Euler angles. These
angles do not constitute a vector; as such they are not components in any coordinate system.
The angular rates are dφ

dt
, dθ
dt
, dψ

dt
, which have units of radians per second. An angular rate

vector can be formed by the ordered triple

ΩS =

⎛⎝ bxS ·ΩbyS ·ΩbzS ·Ω
⎞⎠ =

⎛⎝ ΩS
x

ΩS
y

ΩS
z

⎞⎠ =

⎛⎝ dφ
dt
dθ
dt
dψ
dt

⎞⎠ . (2)

The dot product in (2) using the ships’ unit vectors
¡bxS, byS,bzS¢ produces the components

of the vector in the ship’s coordinate system; hence the superscript S, and the subscripts x,
y, and z.

Consider a position vector rS (AB) from point A on the ship to point B on the ship,
where the components of rS are in the ship’s coordinate system. Given that the ship can
be treated as a rigid body, the velocity of point B relative to point A is the cross product
ΩS × rS (AB). The cross product is defined by

Ω× r =

⎛⎝ bx ·Ω× rby ·Ω× rbz ·Ω× r
⎞⎠ =

⎛⎝ Ωyrz − Ωzry
Ωzrx − Ωxrz
Ωxry − Ωyrx

⎞⎠ , (3)

wherein the absence of a superscript denotes that (3) is independent of the coordinate
system. Note that the argument (AB) of the vector rS (AB) is omitted in (3) for clarity.
The cross product (3) is always performed in the ship’s coordinate system because rS (AB)
is a constant in that coordinate system and ΩS is measured in that coordinate system.
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The Earth’s coordinate system is north, east, down in that order; it is a right-handed
coordinate system. Thus, analogous to (1) the unit vectors of the Earth’s coordinate system
aligned along the axes in the positive sense are denoted by

northward bxE
eastward byE
downward bzE (4)

The motion-detection systems report velocities relative to the solid Earth with the com-
ponents of that velocity in the Earth’s coordinate system. Denote such velocities with
superscript E, e.g. VE. Let the velocity of point A on the ship be denoted by VE (A) and
the velocity at point B on the ship be denoted by VE (B). Given that the ship is a rigid
body, the relationship between those two velocities is

VE (A) = VE (B) +
¡
ΩS × rS (AB)

¢E
. (5)

This relationship between velocities is central to motion compensation of radar and lidar
data and can also be used to correct data from the tower-mounted sonic anemometer. As
the notation in (5) implies, the vector ΩS × rS (AB) is determined in the ship’s coordinate
system and must have its components determined in the Earth’s coordinate system before
it can be added within (5) to the velocity vector in Earth’s coordinate system. How to
calculate

¡
ΩS × rS (AB)

¢E
is the topic of Sections 2.2 and 2.3.

Tucker (2005) uses rigid-body equations (as in this report) to compare POS MV
data of Group 1 with that of Group 102. Data in Group 102 contains the along track
component of velocity, Valong, and across track component of velocity, Vacross. Tucker (2005)
demonstrates that Valong and Vacross, are related to the north and east components of velocity
of the position designated as Sensor in the Appendix by

VE · bxE = cos (Θ)qV 2
along + V 2

across (6)

VE · byE = sin (Θ)qV 2
along + V 2

across , (7)

where Θ is the track angle. Tucker (2005) defines track angle as the angle from north to
the tangent to the loci of latitude and longitude data written in Group 102. The track
angle is positive for track velocity oriented east of north. The algorithm (6)-(7) is not
what was intended for Group 102 data. Note that Tucker (2005) shows that the “down
velocity” component recorded in Group 102 is, in fact, positive when the velocity at Sensor
1 is upward; that is likely also the case for Sensor 2 recorded as Group 103. Therefore,
there is also a sign error in the report by Corcoran and Pronk (2003). Tucker (2005) shows
that the “down velocity” component recorded in Group 1 is correctly positive for downward
velocity.

2.2 The Euler-Angle Rotation Matrix

The coordinate transformation from the Earth’s coordinate system to that of the
ship is needed. The transformation matrix is obtained from the product of three rotation
matrixes. Transformation matrixes are denoted by bold type. Begin with a Cartesian
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coordinate system aligned with the Earth’s coordinate system (north, east, down). Rotate
that coordinate system until it coincides with the ship’s coordinate system as follows. First,
rotate that coordinate system about its heading axis (i.e., down axis) by ψ; denote the
rotation matrix by C.

C =

⎛⎝ cosψ sinψ 0
− sinψ cosψ 0
0 0 1

⎞⎠ .

Second, rotate about the new pitch axis by θ; denote the rotation matrix by B.

B =

⎛⎝ cos θ 0 − sin θ0 1 0
sin θ 0 cos θ

⎞⎠ .

Last, rotate about the new roll axis by φ; denote the rotation matrix by A.

A =

⎛⎝ 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

⎞⎠ .

The coordinate transformation matrix is the product ABC as follows:

Q ≡ ABC =

⎛⎝ cos θ cosψ cos θ sinψ − sin θ
− cosφ sinψ + sin θ cosψ sinφ cosφ cosψ + sin θ sinφ sinψ cos θ sinφ
sinφ sinψ + cosφ sin θ cosψ − cosψ sinφ+ cosφ sin θ sinψ cos θ cosφ

⎞⎠.
The inverse of this matrix is its transpose because it is an orthogonal transformation.

Q−1 = QT =

⎛⎝ cos θ cosψ − cosφ sinψ + sin θ cosψ sinφ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sin θ sinφ sinψ − cosψ sinφ+ cosφ sin θ sinψ
− sin θ cos θ sinφ cos θ cosφ

⎞⎠.
At each time step, new values of the angles φ, θ, ψ are determined by integration of the
angular rate vector Ω. At each time step, the above matrix Q must be computed from the
φ, θ, ψ. The definitions above apply to both the lidar’s and the ship’s coordinate systems.

2.3 How to Determine Ω× r in the Earth’s Coordinate System

The above definition of the Euler angles φ, θ, ψ gives the transformation between
components of a vector in the ship’s coordinate system to the Earth’s coordinate system.
Let UE denote any vector when its components are in the Earth’s coordinate system, and
let US be that same vector in the ship’s coordinate system. Then,

US = QUE

UE = Q−1US .

For use in (5) the required computation at each time step is to calculate the components of
ΩS × rS, then transform that vector to the Earth’s coordinate system at which point it is
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denoted by (Ω× r)E. Since (3) is ΩS × rS = (Ω× r)Sis in the ship’s coordinate system,
we obtain (Ω× r)E from

(Ω× r)E = Q−1 (Ω× r)S . (8)

The above also applies to the lidar’s coordinate system for which case superscript S is
replaced by L.

3. HOW TO DETERMINE THE RADAR’S RADIAL DIRECTION IN THE
EARTH’S COORDINATE SYSTEM AND CALCULATE THE ANTENNA’S

RADIAL VELOCITY

First, define the radar radial unit vector in the ship’s coordinate system. Assume
that the radar’s measurement of azimuth ϕ is level with the main deck, zero degrees azimuth
is forward, and the azimuth is positive if the rotation is from forward toward starboard.
Assume that the radar’s measurement of elevation ε is positive for upward tilt of the antenna
from the plane containing the main deck. Then the unit vector pointing outward from the
radar’s antenna in the ship’s coordinate system is

bpS =
⎛⎝ bxS · bpSbyS · bpSbzS · bpS

⎞⎠ =

⎛⎝ pSx
pSy
pSz

⎞⎠ =

⎛⎝ cosϕ cos εsinϕ cos ε
− sin ε

⎞⎠ . (9)

Verify that bpS is a unit vector as follows:
bpS · bpS = ¡cos2 ϕ+ sin2 ϕ¢ cos2 ε+ sin2 ε = cos2 ε+ sin2 ε = 1 .

Similar to (8), the radar radial unit vector in the Earth’s coordinate system is

bpE = Q−1bpS . (10)

Assume the convention that motion toward the radar antenna is negative and motion away
from the radar antenna is positive. The radial velocity correction in Earth coordinates is

bpE · vE , (11)

where vE is the velocity at the phase center of the radar’s antenna; of course, vE is in the
Earth’s coordinate system. This correction must be added to (not subtracted from) the
radar’s measurement of radial velocity.

To compute (11) for the Univ. Miami radars we must first determine vE from the
Group 103 or Group 1 velocity data. From Group 103 data, the along-track and across-
track velocity components are substituted into (6-7) and the track angle can be calculated
from Group 103 data, as described by Tucker (2005). That calculation gives the north and
east components of velocity vEx and vEy . Finally, the Group 103 “down velocity” is also
positive for upward motion, as described in the Introduction. Hence, the Group 103 “down
velocity” must be multiplied by -1 to produce vEz . Alternatively, to use Group 1 data we
must use (5) as described in Section 6.
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It is a good approximation that the Univ. Miami radars are pointed straight up
relative to the main deck. Therefore,

bpS =
⎛⎝ 0
0
−1

⎞⎠ . (12)

The correction to the Univ. Miami radar’s Doppler velocity is the negative of the ship’s
velocity at the location of the radar antenna; namely,bpE · vE = ¡Q−1bpS¢ · vE =

(− sinφ sinψ − cosφ sin θ cosψ) vEnorth
+ (cosψ sinφ− cosφ sin θ sinψ) vEeast
+ (− cos θ cosφ) vEdown . (13)

Here, we used the fact that the Earth’s coordinate system is north, east, down in that order.
Also used was the following matrix multiplication:bpE = Q−1bpS =⎛⎝ cos θ cosψ − cosφ sinψ + sin θ cosψ sinφ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sin θ sinφ sinψ − cosψ sinφ+ cosφ sin θ sinψ
− sin θ cos θ sinφ cos θ cosφ

⎞⎠⎛⎝ 0
0
−1

⎞⎠
=

⎛⎝ − sinφ sinψ − cosφ sin θ cosψcosψ sinφ− cosφ sin θ sinψ
− cos θ cosφ

⎞⎠ . (14)

More generally, for bpS given by (9) such thatbpE = Q−1bpS =⎛⎝ cos θ cosψ − cosφ sinψ + sin θ cosψ sinφ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sin θ sinφ sinψ − cosψ sinφ+ cosφ sin θ sinψ
− sin θ cos θ sinφ cos θ cosφ

⎞⎠⎛⎝ cosϕ cos εsinϕ cos ε
− sin ε

⎞⎠ =

⎛⎜⎜⎜⎜⎝
∙
cos θ cos ε cosψ cosϕ− (sin ε) (sinφ sinψ + cosφ sin θ cosψ)

+ (cos ε sinϕ) (− cosφ sinψ + sin θ cosψ sinφ)

¸
∙
cos θ cos ε cosϕ sinψ + (cos ε sinϕ) (cosφ cosψ + sin θ sinφ sinψ)

− (sin ε) (− cosψ sinφ+ cosφ sin θ sinψ)

¸
[− cos θ cosφ sin ε− sin θ cos ε cosϕ+ cos θ cos ε sinφ sinϕ]

⎞⎟⎟⎟⎟⎠ . (15)

Therefore,

bpE · vE =∙
cos θ cos ε cosψ cosϕ− (sin ε) (sinφ sinψ + cosφ sin θ cosψ)

+ (cos ε sinϕ) (− cosφ sinψ + sin θ cosψ sinφ)

¸
vEnorth

+

∙
cos θ cos ε cosϕ sinψ + (cos ε sinϕ) (cosφ cosψ + sin θ sinφ sinψ)

− (sin ε) (− cosψ sinφ+ cosφ sin θ sinψ)

¸
vEeast

+ [− cos θ cosφ sin ε− sin θ cos ε cosϕ+ cos θ cos ε sinφ sinϕ] vEdown . (16)
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This latter expression is needed to correct the Doppler velocity measured by the NOAA/K
radar. The required data for (16) are the angles ϕ, ε, φ, θ, ψ, and velocity vE from the
Group 1 data. Those data were recorded with the NOAA/K radar data.

There exists software to produce images of NOAA/K radar’s reflectivity, Doppler
velocity, and other measured parameters as functions of the radar’s elevation angle. Those
images are distorted by ship motion. However, if the elevation above the Earth’s horizon
is calculated and used, then the images will be corrected. Similar to (9), the unit vector
pointing outward from the radar’s antenna in the Earth’s coordinate system is

bpE =
⎛⎝ bxE · bpEbyE · bpEbzE · bpE

⎞⎠ =

⎛⎝ pEx
pEy
pEz

⎞⎠ =

⎛⎝ cosϕE cos εE

sinϕE cos εE

− sin εE

⎞⎠ . (17)

Recall that both the ship’s and the Earth’s coordinate systems have their z axes positive in
the downward direction. Therefore, εE is elevation angle that is positive upward from the
horizon. Also, ϕE is azimuth in radians eastward from north. From (15), the value of pEz
is already known to be

pEz = − cos θ cosφ sin ε− sin θ cos ε cosϕ+ cos θ cos ε sinφ sinϕ.

Consequently, from (17) an elevation angle above the Earth’s horizon is

εE = arcsin
¡
−pEz

¢
. (18)

The arcsin function outputs in the range π/2 to −π/2. Hence, the elevation angle, εE from
(18), is elevation above the horizon and does not exceed π/2 (90 degrees for pointing to
zenith); it is negative when the antenna points below the horizon. Note that εE depends
on radar azimuth ϕ and elevation ε and on the ship’s pitch θ and roll φ, but not on the
ship’s heading ψ. Unlike scans obtained with the radar on solid ground, the azimuth ϕE

varies with the ship’s motion. Consider the following special case. The radar onboard the
R/V Seward Johnson was usually pointed to starboard; thus, let the radar azimuth be 90
degrees, ϕ = π/2, then pEz = cos θ (− cosφ sin ε+ cos ε sinφ) = cos θ sin (φ− ε). The reason
for the proportionality to cos θ is clear from Section 2.1. Namely, roll is defined about the
axis of the ship in its pitched position. If the ship’s pitch is zero, θ = 0, such that cos θ = 1,
then pEz = − cosφ sin ε+cos ε sinφ sinϕ. Both cases considered together, that is, θ = 0 and
ϕ = π/2, gives pEz = sin (φ− ε) such that εE = ε− φ, as expected.

Using the ships’ angular orientation data, bpE is known from (15) and εE is known
from (18). Therefore, we can use (17) to solve for radar azimuth in Earth coordinates, i.e.,
solve for ϕE, using pEx = cosϕE cos εE and pEy = sinϕE cos εE. The algorithm is: ϕE =

ATAN2(pEy , p
E
x ) which gives ϕ

E in radians from -π to π, multiply by (180/π) to obtain
degrees from radians, and if ϕE < 0, then ϕE = ϕE +360. Now, ϕE is azimuth of the radar
beam which varies, like ship’s heading ψ, from 0 degrees at north, 90 degrees at east, 180
degrees at south, 270 degrees at west, and returning to north from west, it approaches 360
degrees. Of course, ϕE varies with time. In summary,

ϕE = (180/π)ATAN2(pEy , p
E
x )

if ϕE < 0, then ϕE = ϕE + 360 (19)

When the NOAA/K radar’s antenna sweeps (at fixed azimuth ) from the horizon
on the starboard side to beyond radar’s vertical (thereby pointing up and toward the port
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side of the ship), the NOAA/K angle encoder for elevation angle varies beyond 90 degrees.
Recall that εE from (18) does not exceed π/2 (90 degrees). Recall our objective of correcting
the images of radar data using the existing software that plots data as functions of the radar
encoder’s elevation angle. For that objective, we calculate a new elevation angle, εR, that
varies from 0 at the starboard horizon to π/2 at zenith, and to π at the port-side horizon,
and is negative below the starboard horizon. If ϕE < ψ or ϕE > ψ + 180, then the radar
beam points to port of the vertical plane that contains the ship’s forward axis and contains
the radial vector from the Earth’s center that intersects the ship’s forward axis. Therefore,
if ϕE < ψ or ϕE > ψ+180, then εR = π− εE, otherwise, εR = εE. Then εR is the elevation
angle that corrects the radar images for ship motion, although εE may be used if the radar’s
encoder elevation is less than about 80 degrees because in that case the radar is almost
certainly pointing to starboard.

4. HOW TO CALCULATE THE SPATIAL POSITION OF EACH DATUM
OF RADAR AND LIDAR MEASUREMENT

The radius of the Earth is REarth = 6378 km. Note that the GPS geoid is about
45 m above sea level in the RICO study area; that corresponds to an altitude of the water
line of the ship of z = −45 m. The NOAA/K radar and the lidar measure each datum
within their averaging volume at their recorded range range, elevation ε, and azimuth ϕ.
The Univ. Miami radars record only range because their elevation is fixed at perpendicular
to the ship’s deck. The position vector of each datum relative to the antenna in the Earth’s
coordinate system is the product

¡bpE¢ range. See (10) above for the calculation of bpE. The
ship’s POS MV system gives latitude, longitude and altitude of the center of the radars’
antennas and of the lidar’s accelerometer box as functions of time: (lat (t) , lon (t) , z (t)).
The unit of lat (t) and lon (t) is decimal degrees, and the unit of z (t) is meters. Here,
increments of latitude and longitude are calculated in the small angle approximation, e.g.,
sin (range/REarth) ' range/REarth. The increment of latitude in degrees associated with the
north component of

¡bpE¢ range is
∆lat =

180

πREarth

¡bpEnorth¢ range . (20)

The increment of longitude associated with the east component of
¡bpE¢ range is

∆lon =
180

πREarth cos (lat)

¡bpEeast¢ range . (21)

Altitude written to file by POS MV increases upward despite the fact that the POS MV
convention for vectors is (Northward, Eastward, Downward). The negative of the increment
of altitude is

∆z =
¡bpEdown¢ range . (22)

Finally, the latitude, longitude, and altitude of each datum of radars and lidar is

latdatum = lat (t) +∆lat (23)
londatum = lon (t) +∆lon (24)
zdatum = z (t)−∆z . (25)
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The height H above the sea surface for each datum can be obtained to within about
0.2 m. In Appendix A the following is given: The main deck is 1.2 m above the sea surface
adjacent to the reference point ‘ref’ marked by the X drilled into the deck, and the decks
rise by about 0.64 m to the flux tower at the bow. The NOAA/K radar and Univ. Miami
radars are close enough to point ‘ref’ to use the 1.2 m height above sea level of the main
deck. The lidar is close enough to the bow so as to estimate its height above sea level as
an additional 0.6 m. According to Appendix A, the X-band antenna is 0.11 m higher than
the W-band antenna. Although bpE, and therefore also its third component bpEdown, are the
same for the X-band and W-band radars, the X- and W-band radars record their own range,
range; hence they have different ∆z from (22), as well as different ∆lat and ∆lon from (20)
and (21). Using the surveyed heights of the radars and lidar given in Appendix A, we have

Hlidar = 1.8 + 4.84− (∆z)lidar (26)
HNOAA/K = 1.2 + 5.30− (∆z)NOAA/K (27)

HW−band = 1.2 + 2.88− (∆z)W−band (28)

HX−band = 0.11 + 1.2 + 2.88− (∆z)X−band . (29)

These heights are given in meters and are positive for positions above the sea surface; ∆z is
subtracted above because ∆z is the negative of the increment of altitude.

5. COMPARISON OF MOTION CORRECTIONS USING THE SHIP’S
DATA VERSUS THE LIDAR’S DATA

There are several reasons to compare the correction of the various instruments’ data
using the ship’s motion-detection data with the same correction using the lidar’s motion-
detection data. The manufacturer of the lidar’s system referred to the lidar’s master GPS
as the point where the velocity is reported. The accuracy of that claim can be checked
by comparison with the ship’s motion-detection data. There were dropouts of the lidar’s
motion-detection when the GPS lost signal. The ship’s POS MV data are more continuous.
It is important to assess the accuracy of the lidar’s motion-detection data as compared to
the ship’s motion-detection data. In this section, methods for quantifying such comparisons
are given. First, more specific notation is needed that includes both the coordinate system
and the measuring system for each type of data. That specific notation is described in the
next section. Subsequent sections give regression algorithms that determine quantities of
interest and examples of uses for the results.

5.1 Notation for Quantities Measured by the Motion Detection Systems

The superscript L will denote a vector’s components in the lidar’s motion-detection
coordinate system. The superscript S will denote a vector’s components in the ship’s
motion-detection coordinate system. The superscript E will denote a vector’s components
in the Earth’s coordinate system; that is, north, east, down. The phrase “in the coordinate
system” means that the vector’s components are obtained by projection of the vector along
the coordinate axes; that is, by inner product of the vector with the unit vectors that are
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aligned with the positive direction of each axis. The lidar’s and ship’s coordinate systems
have their origins spatially displaced from one another by a fixed separation vector, and they
are in fixed orientation relative to one another. The ship’s coordinate system is forward (x),
starboard (y) and down (z). Both coordinate systems are assumed to be right handed in the
order (x, y, z) , which are the names of the axes; (x, y, z) corresponds to and can be replaced
by numerical indices (1, 2, 3). For the ship’s coordinate system, rotation about the x axis in
the right-handed sense is called ‘roll’ φ; rotation about the y axis in the right-handed sense
is called ‘pitch’ θ; rotation about the z axis in the right-handed sense is called ‘heading’.

Both lidar and ship coordinate systems are translating relative to the Earth’s co-
ordinate system which is fixed relative to the Earth’s lithosphere. A given velocity v is
denoted by vS when its components are in the ship’s coordinate system and by vL when
its components are in the lidar’s coordinate system and by vE when its components are in
the Earth’s coordinate system. Both the lidar’s and ship’s coordinate systems are rotating
relative to a coordinate system that is fixed relative to the Earth’s lithosphere by angular
rate denoted by ΩS when its components are in the ship’s coordinate system and by ΩL

when its components are in the lidar’s coordinate system. ΩL and ΩS are the same vector
because the ship is a rigid body.

The subscript L denotes a quantity measured by the lidar’s motion-detection system.
The subscript S denotes a quantity measured by the ship’s motion-detection system. No
subscript appears on quantities calculated from the measured quantities. Although ΩL and
ΩS are the same vector, ΩS

S and Ω
L
L differ because of measurement errors; that difference is

a function of time because of random measurement errors. The analogous statement is not
true of vES and v

E
L because the velocity at the lidar differs from the velocity at the origin of

the coordinate system of the ship’s motion-detection system.

5.2 Measured Quantities and Units

If the data are in units other than those stated here, then the data should be changed
to the units stated here. In particular, angles and angular rates are in degrees and degrees
per second, respectively.

ΩL
L is the vector of angular rates in radians per second measured by the lidar’s motion-

detection system;
ΩS
S is the vector of angular rates in radians per second measured by the ship’s motion-

detection system;
vEL is the velocity vector in meters per second measured by the lidar’s motion-detection

system with its components in the Earth’s coordinate system (north, east, down);
vES is the velocity vector in meters per second measured by the ship’s motion-detection

system with its components in the Earth’s coordinate system (north, east, down);
(φL, θL, ψL) are the Euler angles from the lidar’s motion-detection system determined

from integration of the angular rates ΩL
L;

(φS, θS, ψS) are the Euler angles from the ship’s motion-detection system determined
from integration of the angular rates ΩS

S;
tL is the sequence of times in seconds at which ΩL

L and v
E
L are measured;

tS is the sequence of times in seconds at which ΩS
S and v

E
S are measured.
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5.3 Quantities to be Determined by Regression: rS (SL) and R

rS (SL) is the position vector in meters that points from the location on the ship
where the velocity is vES to the location at the lidar where the velocity is v

E
L . Since it

has superscript S, the components of rS (SL) are in the ship’s motion-detection coordinate
system. R is the 3 by 3 coordinate transformation matrix that transforms a vector from
the lidar’s coordinate system to the ship’s coordinate system. R is expressed in terms of
the Euler angles of that coordinate transformation by:
first column:

cos θSL cosψSL

− cosφSL sinψSL + sin θSL cosψSL sinφSL

sinφSL sinψSL + cosφSL sin θSL cosψSL

second column:
cos θSL sinψSL

cosφSL cosψSL + sin θSL sinφSL sinψSL

− cosψSL sinφSL + cosφSL sin θSL sinψSL

third column:

− sin θSL
cos θSL sinφSL

cos θSL cosφSL
(30)

The quantities to be determined by regression are the 3 components of rS (SL) and the 3
Euler angles

¡
φSL, θSL, ψSL

¢
. Of course,R is also the matrix of 9 direction cosines formed by

the inner products of the unit vectors aligned along the positive axes of the ship’s coordinate
system with the unit vectors aligned along the positive axes of the lidar’s coordinate system.

The time sequences must coincide, but the sample times are not necessarily the same,
that is, tL 6= tS. Assume that the data rates are unequal. If the lidar has the faster time
series, then linearly interpolate the values of ΩL

L and v
E
L to the slower time sequence tS. If

the ship has the faster time series, then linearly interpolate the values of ΩS
S and v

E
S to the

times tL. If the data are synchronized, then no interpolation is needed.

5.4 Equations Used for the Regression

First, consider the equations for the rotation matrix R. At every position on the
ship, the angular rates are the same because the ship is a rigid body. Therefore, by definition
of R, and neglecting the measurement errors,

ΩS
S = RΩ

L
L . (31)

This constitutes 3 nonlinear transcendental equations for the 3 unknown Euler angles. It
can be solved numerically at each time. The solution will vary with time because of random
errors in ΩS

S and Ω
L
L. It is easier to use all of the time series in a regression routine to obtain

the Euler angles and their random errors. It may be yet easier to ignore the Euler angle
formulation and obtain all 9 components of R by regression.
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At this point, we know R. Further, R should be an orthogonal transformation such
that its transpose is its inverse. Therefore, test that

RT = R−1 . (32)

Let I be the identity matrix. The test of (32) is that the 9 elements of the matrix

RRT − I (33)

should be small compared to unity.
Another way to determine R is to use the Euler angles (φL, θL, ψL) and (φS, θS, ψS)

which are functions of time. By definition, any vector U has its Earth, lidar, and ship’s
components related by

R (φL, θL, ψL)U
E = UL

R (φS, θS, ψS)U
E = US .

where R (φL, θL, ψL) is (30) with (φ, θ, ψ) replaced by (φL, θL, ψL) and R (φS, θS, ψS) is (30)
with (φ, θ, ψ) replaced by (φS, θS, ψS). Thus,

UE = RT (φL, θL, ψL)U
L

UE = RT (φS, θS, ψS)U
S .

Eliminating UE gives RT (φL, θL, ψL)U
L = RT (φS, θS, ψS)U

S, thus,

US = R (φS, θS, ψS)R
T (φL, θL, ψL)U

L

from which the definition of R in (31) gives

R = R (φS, θS, ψS)R
T (φL, θL, ψL) . (34)

R should be independent of time, whereas R (φL, θL, ψL) and R (φS, θS, ψS) vary with time.
R will vary with time because of random errors in (φL, θL, ψL) and (φS, θS, ψS).

Now, consider the velocity at a given point on the ship. Consider a position vector
rS that points from the ship’s coordinate origin where the velocity is vES , as measured by the
ship’s motion-detection system, to any other location. Let VE (r) be the velocity of that
location on the ship. SinceVE has superscript E, VE is expressed in the Earth’s coordinate
system. The velocity VE

¡
rS
¢
as determined by the ship’s motion-detection system is

VE
¡
rS
¢
= vES +

¡
ΩS

S × rS
¢E

. (35)

How to calculate
¡
ΩS × rS

¢E
is given in Section 2.2. In particular, the velocity at the lidar’s

motion-detection system, as determined by the ship’s motion-detection system, is

VE
¡
rS (SL)

¢
= vES +

¡
ΩS

S × rS (SL)
¢E

, (36)

where the argument (SL) of rS (SL) denotes ship origin to lidar origin. Recall that the
velocity of that point as measured by the lidar’s motion-detection system is vEL . Equating
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the ship’s and lidar’s measured velocities, i.e., VE
¡
rS (SL)

¢
= vEL , gives an equation for

rS (SL), namely,
vEL = v

E
S +

¡
ΩS

S × rS (SL)
¢E

. (37)

Note that we have neglected the measurement errors in vEL and v
E
S ; those errors produce

errors in rS (SL), as do errors in R and ΩS. Equation (37) constitutes 3 linear algebraic
equations for the 3 unknown components of rS (SL). However, the equations are linearly
dependent because there is no component of the vector ΩS

S × rS (SL) in the directions of
vectors ΩS

S or r
S (SL). In other words, ΩS

S × rS (SL) can be written as an antisymmetric
3-by-3 matrix multiplying rS (SL), but the determinant of any 3-by-3 antisymmetric matrix
is zero.

The algorithm to determine the components of rS (SL) = rxbxS + rybyS + rzbzS from
(37) is given in Appendix B. The quantities a (t), b (t), c (t), f (t), vx (t), vy (t), wx (t),
wy (t), wz (t), ux (t), uy (t), uz (t) that appear below are defined in terms of data at time t
in Appendix B. The algorithm is:

rx =
−b (t)±

q
[b (t)]2 − 4a (t) c (t)
2a (t)

. (38)

Then determine ry from rx as follows:

ry=
f (t)

vy (t)
− rx

vx (t)

vy (t)
.

Obviously vy (t) must not be zero. Take the solution for rx and ry to determine rz from
either

rz =
rxwx (t) + rywy (t)

−wz (t)

(obviously wz (t) must not be zero), or

rz =
f (t)− [rxux (t) + ryuy (t)]

uz (t)

(obviously uz (t) must not be zero).
We have two solutions for rS (SL) corresponding to the + or − sign in (38); the

correct solution must be chosen. Now we have equations that determine the components
of rS (SL) from data at any time t for which wz (t) 6= 0 and vz (t) 6= 0. We can remove
outliers from the set of solutions at many times t and average the remaining values over
time. Although we defined subscripts (x, y, z) to denote (forward, starboard, down), cyclic
permutation of the subscripts (x, y, z) could give any one of the components of rS (SL)
from the quadratic equation; then the other two components are subsequently determined.
One advantage of this is that if wz (t) = 0 or vz (t) = 0 then cyclic permutation of the
subscripts allows solution. As the ship moves we get information from different times on
the port-starboard and vertical components of rS (SL). However, we get information on
the forward component of rS (SL) only when the ship changes its heading.
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6. CORRECTING DATA FOR SHIP MOTION

6.1 Correct the Lidar’s Data Using the Lidar’s Motion Detection System

The lidar’s motion-correction system consists of 4 GPS antennas positioned a few
feet beyond the corners of the roof of the lidar’s sea container and an accelerometer box
attached to the inside ceiling of the sea container. That system reports the velocity in the
Earth’s coordinate system for some point. It was not clear where that point was at the
beginning of the cruise of the R/V Seward Johnson. Later, the manufacturer informed us
that the velocity was reported for the position of the master GPS antenna; the accuracy of
the manufacturer’s statement is unknown, but it can be tested with the present formulation.
It is the motion of the scanning mirror that contaminates the Doppler measurement (Hill,
2005). Unfortunately the lidar’s master GPS antenna is diagonally opposite the scanning
mirror. Therefore, consider the determination of the velocity of the scanning mirror using
the lidar’s data.

Let rL be the position vector in the lidar’s coordinate system that points from the
lidar’s master GPS antenna to the scanning mirror. Because of the rotation of the scanning
mirror’s periscope, rL is a function of time. The variant of (37) that gives the velocity of the
scanning mirror, i.e., vE (rscanning), from the velocity reported at the master GPS antenna,
i.e., vEL , is

vE (rscanning) = v
E
L +

¡
ΩL

L × rL
¢E

. (39)

Here the angular rate of rotation, if nonzero, of the lidar’s periscope is neglected; that effect
is given in Hill (2005).

6.2 Correct the Lidar’s Data Using the Ship’s Motion-Detection System

Multiply (31) by R−1 to obtain

ΩL = R−1ΩS
S . (40)

Since we now know rS (SL), we use it in (37) to give vE
¡
rS (SL)

¢
as a substitute for vEL

from
vE
¡
rS (SL)

¢
= vES +

¡
ΩS

S × rS (SL)
¢E

. (41)

We thereby obtain the quantities needed by the lidar from the ship’s motion-detection,
namely vE at the lidar from (41) and ΩL from (40).

6.3 Correct NOAA/K and Univ. Miami’s X- and W-Band Doppler Velocities
Using the Lidar’s Motion-Detection System

It is clear that the velocity of the center of the three radar antennas can be calculated
using the lidar’s motion-detection system data. The method is similar to that in Section
6.2. The equations will not be given in detail because the POS MV data are recorded for
those radar antennas. The use of the lidar’s motion-detection data is therefore unlikely.
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6.4 Correct the Sonic Anemometer Data Using the Ship’s Motion-Detection
System

The sonic anemometer’s coordinate axes might be tilted relative to the ship’s co-
ordinate system. Unlike the ship’s coordinate system, that anemometer uses a (forward,
left of forward, up) coordinate system. The coordinate transformation matrix between the
two coordinate systems, R, can be determined by the methods discussed in Section 5.4.
Those possibilities and two others are given below. The equations given here are used by
Bariteau (2005) to compare the POS MV dynamics with those of the ETL sonic anemome-
ter’s accelerometer system for the RICO data. The ETL sonic system is used to correct the
momentum and heat flux for ship motion.

POS MV data are recorded for the location of both the NOAA/K antenna and the
lidar’s accelerometer box. From the Appendix, the position vector from NOAA/K to the
sonic anemometer’s volume in meters, is rS (Ks) =

£
26. 56 −3. 34 −7. 13

¤
, and the position

vector from the lidar’s accelerometer box to the sonic anemometer’s volume in meters, is
rS (Ls) =

£
5. 35 −3. 32 −7. 59

¤
. The lower-case symbol s denotes the sonic anemometer.

Let the velocities in the Earth’s reference frame at NOAA/K as reported by the POS
MV be denoted by vES (K), and at the lidar by v

E
S (L). Recall that the subscript S means

that those velocities are measured by the ship’s POS MV system. Also, to determine vES (L)
from the POS MV’s Group 102 data, “along”, “across” and “down” velocity components
require the calculation and correction described in Section 3 for the Group 102 data. The
two determinations of the velocity at the sonic anemometer are denoted by the same symbol
vES (s) and v

E
S (s). Now, v

E
S (s) and v

E
S (s) are given by

vES (s) = v
E
S (K) +

¡
ΩS

S × rS (Ks)
¢E

(42)

vES (s) = v
E
S (L) +

¡
ΩS

S × rS (Ls)
¢E

. (43)

Recall from Section 2 that the POS MV outputs vES , a
S
S, and Ω

S
S. Henceforth, use

only the latter equation (43) because the former equation (42) is identical in form to (43).
In the ship’s coordinate system, rS (Ls) is independent of time. Of course, vSS , v

E
S , a

S
S, and

ΩS
S are time dependent. Acceleration is defined in the Earth’s coordinate system as

aES ≡
dvES
dt

.

Note that in the notation of Section 7, this derivative is denoted by aE = dEv
E

dt
. This time

derivative is taken in the coordinate system rotating with the Earth. Differentiating (43)

dvES (s)

dt
=

dvES (L)

dt
+

d

dt

h¡
ΩS

S × rS (Ls)
¢Ei

aES (s) = a
E
S (L) +

d

dt

h¡
ΩS

S × rS (Ls)
¢Ei

. (44)

Multiply (44) by Q to obtain the equation in the ship’s coordinate system

aSS (s) = a
S
S (L) +Q

d

dt

h¡
ΩS

S × rS (Ls)
¢Ei

.
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By definition of Q, for any vector UE = Q−1US; thus,

aSS (s) = a
S
S (L) +Q

d

dt

£
Q−1

¡
ΩS

S × rS (Ls)
¢¤

. (45)

Finally, (45) is the equation to be evaluated by computer. The POS MV system gives
data for the right-hand side of (45), namely for aSS (L) and Ω

S
S and the Euler angles that

determine Q and Q−1 (see Section 2.1); also, rS (Ls) is given above. The algorithm to
calculate Q d

dt

£
Q−1

¡
ΩS

S × rS (Ls)
¢¤
is to calculate ΩS

S × rS (Ls), multiply by the matrix
Q−1, perform a numerical time derivative, then multiply by matrix Q.

The second term in (45) can be evaluated by another means because

Q
d

dt

£
Q−1

¡
ΩS

S × rS (Ls)
¢¤
= Q

dQ−1

dt

¡
ΩS

S × rS (Ls)
¢
+

dΩS
S

dt
× rS (Ls) (46)

wherein QQ−1 = I was used. On the right-hand side of (46) the only numerical derivative

required is dΩS
S

dt
. The expression for Q−1 in Section 2.1 can be differentiated with respect

to time to provide the following analytic expression:
The derivative of the first column of Q−1 is

d
dt

⎛⎝ cos θ cosψcos θ sinψ
− sin θ

⎞⎠ =⎛⎝ − (sin θ cosψ) dθdt − (cos θ sinψ) dψdt(cos θ cosψ) dψ
dt
− (sin θ sinψ) dθ

dt

− (cos θ) dθ
dt

⎞⎠ .

The derivative of the second column of Q−1 is

d
dt

⎛⎝ − cosφ sinψ + sin θ cosψ sinφcosφ cosψ + sin θ sinφ sinψ
cos θ sinφ

⎞⎠ =⎛⎜⎜⎜⎜⎝
∙
− (cosφ cosψ) dψ

dt
+ (sinφ sinψ) dφ

dt
+ (cos θ cosψ sinφ) dθ

dt

+(cosφ sin θ cosψ) dφ
dt
− (sin θ sinφ sinψ) dψ

dt

¸
∙
− (cosψ sinφ) dφ

dt
− (cosφ sinψ) dψ

dt
+ (cos θ sinφ sinψ) dθ

dt

+(cosφ sin θ sinψ) dφ
dt
+ (sin θ cosψ sinφ) dψ

dt

¸
£
(cos θ cosφ) dφ

dt
− (sin θ sinφ) dθ

dt

¤

⎞⎟⎟⎟⎟⎠ .

The derivative of the third column of Q−1 is

d
dt

⎛⎝ sinφ sinψ + cosφ sin θ cosψ
− cosψ sinφ+ cosφ sin θ sinψ

cos θ cosφ

⎞⎠ =⎛⎜⎜⎜⎜⎝
∙
(cosφ sinψ) dφ

dt
+ (cosψ sinφ) dψ

dt
+ (cos θ cosφ cosψ) dθ

dt

− (sin θ cosψ sinφ) dφ
dt
− (cosφ sin θ sinψ) dψ

dt

¸
∙
− (cosφ cosψ) dφ

dt
+ (sinφ sinψ) dψ

dt
+ (cos θ cosφ sinψ) dθ

dt

+(cosφ sin θ cosψ) dψ
dt
− (sin θ sinφ sinψ) dφ

dt

¸
£
− (cosφ sin θ) dθ

dt
− (cos θ sinφ) dφ

dt

¤

⎞⎟⎟⎟⎟⎠ .

From (2)

ΩS
S =

⎛⎝ dφ
dt
dθ
dt
dψ
dt

⎞⎠ .
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Thus, the angular rates that appear in the above derivative dQ−1

dt
, namely, dφ

dt
, dθ

dt
, dψ

dt
, are

the components of ΩS
S.

The second term in (45) can be evaluated by a third, somewhat simpler, means.
Analytically perform the matrix product QdQ−1

dt
and define a new matrixM as follows:

Q
dQ−1

dt
≡M =

⎛⎝ 0 M12 M13

−M12 0 M23

−M13 −M23 0

⎞⎠ ,

where
M12 ≡ dθ

dt
sinφ− 1

2
dψ
dt
[cos (θ + φ) + cos (θ − φ)] ,

M13 ≡ dθ
dt
cosφ+ 1

2
dψ
dt
[sin (θ + φ)− sin (θ − φ)] , and

M23 ≡ dψ
dt
sin θ − dφ

dt
.

Then, the second term in (45), which is (46), becomes

Q
d

dt

£
Q−1

¡
ΩS

S × rS (Ls)
¢¤
=M

¡
ΩS

S × rS (Ls)
¢
+

dΩS
S

dt
× rS (Ls) . (47)

Let us express (45) in yet a fourth way as follows:

aSS (s) = a
S
S (L) +Q

d

dt

£
Q−1

¡
ΩS

S × rS (Ls)
¢¤

= aSS (L) +Q
d

dt

£
ΩE

S × rE (Ls)
¤

= aSS (L) +Q

∙
dΩE

S

dt
× rE (Ls) +ΩE

S ×
drE (Ls)

dt

¸
. (48)

Let xE (L) and xE (s) denote the spatial positions of the lidar and sonic anemometer, re-
spectively, in the Earth’s coordinate system. Because rE (Ls) = xE (s)− xE (L), we have

drE (Ls)

dt
=

dxE (s)

dt
− dxE (L)

dt
(49)

= vES (s)− vES (L)
=
¡
ΩS

S × rS (Ls)
¢E

, (50)

where (43) was used to obtain the last expression. Substitution of (50) in (48) gives

aSS (s) = a
S
S (L) +Q

∙
dΩE

S

dt
× rE (Ls) +ΩE

S ×
¡
ΩS

S × rS (Ls)
¢E¸

= aSS (L) +
dΩS

S

dt
× rS (Ls) +ΩS

S ×
¡
ΩS

S × rS (Ls)
¢
. (51)

To summarize, equations (45), (46), (47), (51) give us four means by which to cal-
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culate aSS (s); they are:

aSS (s) = a
S
S (L) +Q

d

dt

£
Q−1

¡
ΩS

S × rS (Ls)
¢¤

= aSS (L) +
dΩS

S

dt
× rS (Ls) +QdQ−1

dt

¡
ΩS

S × rS (Ls)
¢

= aSS (L) +
dΩS

S

dt
× rS (Ls) +M

¡
ΩS

S × rS (Ls)
¢

= aSS (L) +
dΩS

S

dt
× rS (Ls) +ΩS

S ×
¡
ΩS

S × rS (Ls)
¢
.

The coordinate transformation matrix between the sonic anemometer’s coordinate
system and the ship’s coordinate system, R, can be determined by the methods in Section
5.4. For the method of equation (34), (34) is replaced by

R = R (φS, θS, ψS)R
T (φs, θs, ψs) , (52)

where (φs, θs, ψs) are the Euler angles measured by the anemometer’s system. To evaluate
the right-hand side of (52), the Euler angles are substituted into (30). Relationship (52)
holds even though the Euler angles are defined differently for the ship’s orientation as com-
pared to the anemometer’s orientation. For the method of equation (31), (31) is replaced
by

ΩS
S = RΩ

s
s ,

where Ωs
s is the angular rate measured by the anemometer’s system, as denoted by super-

script s, with its components in the sonic anemometer’s coordinate system, as denoted by
subscript s. One could also use acceleration or velocity because, to within measurement
errors,

aSS (s) = Ra
s
s ,

and
vSS (s) = Rv

s
s ,

where ass and v
s
s are acceleration and velocity measured by the anemometer’s system with

its components in the sonic anemometer’s coordinate system.

7. METEOROLOGICAL RELATIONSHIPS

Section 5 deals with velocities and accelerations determined by the POS MV and
the lidar’s motion-detection system. As such, the Coriolis force is absent. The question
arises as to the relationship of the above analysis to the standard meteorological equations
for velocity and acceleration in a rotating reference frame. Those standard equations can
be found in Chapter IV of Fleagle and Businger (1980).
We have previously defined, in (4), the Earth’s coordinate system as being eastward,

northward, down. As such, the Earth’s coordinate system rotates once per day. Now define
an almost inertial coordinate system called the celestial reference frame. Let the celestial
reference frame be the reference frame with its origin at the Earth’s center and rotating
once per year with its rotation axis perpendicular to the plane of the Earth’s orbit around
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the sun. The centrifugal force of that yearly rotation about the sun is approximately equal
and opposite to the sun’s gravitational force on the Earth. Hence, the celestial reference
frame is an almost inertial reference frame. The centrifugal force caused by the Earth’s
yearly rotation about the sun is about 1/5 of the centrifugal force at the equator caused by
the Earth’s daily rotation. Let the rotating reference frame be any reference frame rotating
relative to the celestial reference frame. The rotating reference frame need not be rotating
with the Earth’s lithosphere. In fact, the relevant rotating reference frame for present
purposes is the ship’s coordinate system (1); the ship’s coordinate system rotates with the
Earth once per day and rotates relative to the Earth’s coordinate system because of ocean
motion and ship maneuvering. Henceforth, the rotating reference frame will be referred to
as the ship’s reference frame. The lidar’s coordinate system is at fixed angles relative to
the ship’s coordinate system, so the present discussion also applies to the lidar’s reference
frame. Let dC/dt and dS/dt denote time derivatives in the celestial and ship’s reference
frames, respectively. The standard relationship between the time derivatives is

dC
dt
=

dS
dt
+Ω× , (53)

where Ω is the angular rate of the ship’s reference frame relative to the celestial reference
frame; Ω is the sum of the Earth’s rotation-rate vector relative to the celestial reference
frame ΩE and that of the ship relative to the Earth’s coordinate system, ΩS, i.e.,

Ω = ΩE +ΩS . (54)

It is important to note that in this section the superscript does not denote the coordinate
system in which the components of a vector are expressed. The Earth’s rotation-rate vector
causes the ship to rotate once per day. On the basis of the definition of the Euler angles
for the POS MV and lidar motion-detection systems, those systems’ output of the angular
rate vector does not include the Earth’s rotation-rate vector; those systems output ΩS.

Let x be a position vector from the center of the Earth. Applying (53) twice gives

dCx

dt
=

dSx

dt
+Ω× x (55)

d2Cx

dt2
=

µ
dS
dt
+Ω×

¶
dSx

dt
+

µ
dS
dt
+Ω×

¶
(Ω× x)

=
d2Sx

dt2
+ 2Ω×dSx

dt
+

dSΩ

dt
×x+Ω× (Ω× x) . (56)

Note that (55) relates velocities, dCx/dt and dSx/dt, in the celestial and ship’s reference
frames, respectively; (56) relates accelerations, d2Cx/dt

2 and d2Sx/dt
2, in the celestial and

ship’s reference frames, respectively. Note the nomenclature:

2Ω×dSx

dt
Coriolis acceleration

Ω× (Ω× x) centrifugal acceleration

Now consider the special case in which x is a position vector from the center of
the Earth to any point fixed on the ship. Two examples of such a point are the sonic
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anemometer and the lidar’s accelerometer box. In the meteorological case, the air flows
relative to the rotating coordinate system. Unlike the meteorological case, a fixed point on
the ship is rotating with the ship’s reference frame such that

dSx

dt
= 0 and

d2Sx

dt2
= 0 .

Hence, Coriolis acceleration vanishes; (55) and (56) become

dCx

dt
= Ω× x (57)

d2Cx

dt2
=

dSΩ

dt
×x+Ω× (Ω× x) . (58)

Now apply (57) and (58) to two fixed points on the ship denoted by x1 and x2, and
define their relative position to be r ≡ x2 − x1. The velocities and accelerations in the
celestial reference frame are denoted by

vC (x1) ≡
dCx1
dt

and vC (x2) ≡
dCx2
dt

aC (x1) ≡
d2Cx1
dt2

and aC (x2) ≡
d2Cx2
dt2

.

Apply (57) to both points x1 and x2, and subtract the two equations; then

vC (x2)− vC (x1) = Ω× r . (59)

Likewise, (58) gives

aC (x2)− aC (x1) =
dSΩ

dt
×r+Ω× (Ω× r) . (60)

We now return to (55) and (56) and consider the same point x, which is a position
vector from the center of the Earth to any point fixed on the ship, but use the Earth’s
coordinate system on the right-hand side of (55) and (56). Hence, the angular rate vector
is that of the Earth’s rotation, denoted by ΩE, which has magnitude equal to once per day.
Thus, (55) and (56) give

dCx

dt
=

dEx

dt
+ΩE×x (61)

d2Cx

dt2
=

d2Ex

dt2
+ 2ΩE×dEx

dt
+

dEΩ
E

dt
×x+ΩE×

¡
ΩE×x

¢
.

The angular rate ΩE in the Earth’s reference frame is constant, i.e. dEΩ
E

dt
= 0; hence, the

above is
d2Cx

dt2
=

d2Ex

dt2
+ 2ΩE×dEx

dt
+ΩE×

¡
ΩE×x

¢
. (62)

Again considering two points on the ship, x1 and x2 and r ≡ x2 − x1, we have

vC (x2)− vC (x1) =
dEr

dt
+ΩE×r (63)

aC (x2)− aC (x1) =
d2Er

dt2
+ 2ΩE×dEr

dt
+ΩE×

¡
ΩE×r

¢
. (64)
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The velocities and accelerations in the Earth’s reference frame are denoted by

vE (x1) ≡
dEx1
dt

and vE (x2) ≡
dEx2
dt

such that vE (x2)− vE (x1) =
dEr

dt
(65)

aE (x1) ≡
d2Ex1
dt2

=
dEv

E (x1)

dt
and aE (x2) ≡

d2Ex2
dt2

such that aE (x2)− aE (x1) =
d2Er

dt2
.

(66)
Equate (59) and (63) and equate (60) to (64) to obtain

dEr

dt
+ΩE×r= Ω× r (67)

d2Er

dt2
+ 2ΩE×dEr

dt
+ΩE×

¡
ΩE×r

¢
=

dSΩ

dt
×r+Ω× (Ω× r) . (68)

Hence, from (67) and (2)

vE (x2)− vE (x1) +ΩE×r=
£
ΩE +ΩS

¤
×r ,

which is
vE (x2)− vE (x1)= ΩS×r , (69)

which has the same meaning as (42) and (43). Also, from (68) and (2)

aE (x2)− aE (x1) + 2ΩE×
£
vE (x2)− vE (x1)

¤
+ΩE×

¡
ΩE×r

¢
=

dS
£
ΩE +ΩS

¤
dt

×r+
£
ΩE +ΩS

¤
×
¡£
ΩE +ΩS

¤
×r
¢
. (70)

Apply (53) to both ship and Earth reference frames and equate the two expressions for
dC/dt; we then have

dC
dt
=

dS
dt
+Ω×

dC
dt
=

dE
dt
+ΩE × ,

so
dE
dt
+ΩE× = dS

dt
+Ω× ,

so

dS
dt
=

dE
dt
+
£
ΩE −Ω

¤
×

dS
dt
=

dE
dt
−ΩS × . (71)

Substitute (69) and (71) into (70), and recall that dEΩ
E

dt
= 0; then

aE (x2)− aE (x1) + 2ΩE×
¡
ΩS×r

¢
+ΩE×

¡
ΩE×r

¢
= −

¡
ΩS ×ΩE

¢
×r+ dEΩ

S

dt
×r−

¡
ΩS ×ΩS

¢
×r

+ΩE×
¡
ΩE×r

¢
+ΩS×

¡
ΩE×r

¢
+ΩE×

¡
ΩS×r

¢
+ΩS×

¡
ΩS×r

¢
.
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Simplify, noting that ΩS ×ΩS = 0, then

aE (x2)− aE (x1) +ΩE×
¡
ΩS×r

¢
= −

¡
ΩS ×ΩE

¢
×r+ dEΩ

S

dt
×r+ΩS×

¡
ΩE×r

¢
+ΩS×

¡
ΩS×r

¢
.

Using −
¡
ΩS ×ΩE

¢
×r = r×

¡
ΩS ×ΩE

¢
and the identity for the triple cross product, we

have

−ΩE×
¡
ΩS×r

¢
−
¡
ΩS ×ΩE

¢
×r+ΩS×

¡
ΩE×r

¢
= −

£
ΩS
¡
ΩE · r

¢
− r

¡
ΩE ·ΩS

¢¤
+
£
ΩS
¡
r ·ΩE

¢
−ΩE

¡
r ·ΩS

¢¤
+
£
ΩE

¡
ΩS · r

¢
− r

¡
ΩS ·ΩE

¢¤
= 0 . (72)

Thus,

aE (x2)− aE (x1) =
dEΩ

S

dt
×r+ΩS×

¡
ΩS×r

¢
,

which has the same meaning as (44). We can also substitute (71) and (72) into (60) to
obtain

aC (x2)− aC (x1)

=
dEΩ

dt
×r−

¡
ΩS×ΩE

¢
× r+

©
ΩE×

¡
ΩE×r

¢
+ΩS×

¡
ΩE×r

¢
+ΩE×

¡
ΩS×r

¢
+ΩS×

¡
ΩS×r

¢ª
=

dEΩ

dt
×r−ΩS×

¡
ΩE×r

¢
+ΩE×

¡
ΩS×r

¢
+ΩE×

¡
ΩE×r

¢
+ΩS×

¡
ΩE×r

¢
+ΩE×

¡
ΩS×r

¢
+ΩS×

¡
ΩS×r

¢
=

dEΩ

dt
×r+ 2ΩE×

¡
ΩS×r

¢
+ΩE×

¡
ΩE×r

¢
+ΩS×

¡
ΩS×r

¢
.

Since

dEΩ

dt
×r=dEΩ

S

dt
×r+dEΩ

E

dt
×r

=
dEΩ

S

dt
×r

and substituting (69), we have

aC (x2)− aC (x1) =
dEΩ

S

dt
×r+ 2ΩE×

£
vE (x2)− vE (x1)

¤
+ΩE×

¡
ΩE×r

¢
+ΩS×

¡
ΩS×r

¢
= aE (x2)− aE (x1) + 2ΩE×

£
vE (x2)− vE (x1)

¤
+ΩE×

¡
ΩE×r

¢
.

This last equation contains the Coriolis acceleration and the Earth’s centrifugal force.
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7.1 Summary for Meteorological Relationships

In summary, beginning with an almost inertial celestial reference frame, we have the
following:

For a position vector x from the center of the Earth to any point fixed on the ship,
(57) and (58) give

vC (x) = Ω× x

aC (x) =
dSΩ

dt
×x+Ω× (Ω× x) ,

and, from (61) and (62) we have

vC (x) = vE (x) +ΩE×x

aC (x) = aE (x) + 2ΩE×vE (x) +ΩE×
¡
ΩE×x

¢
.

For velocity and acceleration differences between two points on the ship we have:

vC (x2)− vC (x1) = Ω× r.

Likewise, (58) gives

aC (x2)− aC (x1) =
dSΩ

dt
×r+Ω× (Ω× r)

= aE (x2)− aE (x1) + 2ΩE×
£
vE (x2)− vE (x1)

¤
+ΩE×

¡
ΩE×r

¢
vE (x2)− vE (x1)= ΩS×r

aE (x2)− aE (x1) =
dEΩ

S

dt
×r+ΩS×

¡
ΩS×r

¢
.

The Coriolis acceleration appears above when time derivatives are performed in the
Earth’s reference frame, but not when time derivatives are performed in the ship’s reference
frame. The reason is that a point fixed on the ship is not moving in the ship’s reference
frame. Specifically, the coordinates of a point on the ship are at a fixed number of meters
forward of any chosen origin on the ship, a fixed number of meters starboard of the origin,
and a fixed number of meters down from the origin. The rates of change with time of those
fixed coordinate values are zeros.
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Appendix A: Surveyed Coordinates to Use in the Ship’s Inertial Measurement
Unit

The POS MV consists of an Inertial Measurement Unit (IMU), a Primary GPS unit,
and the ship’s GPS2 unit. The Primary GPS unit has its antenna above the aft 01 deck.
The ship’s GPS2 unit, also designated POS MV GPS2, has its antenna above the aft 01
deck and is connected to a GPS receiver box in the Dry Lab. The IMU is within the
accelerometer’s box on the floor of the computer lab. The POS MV allows a point on the
ship to be designated as the reference point and two other points designated as Sensor 1
and Sensor 2. For each of those three points, the POS MV unit outputs the velocities of
those three points, the angular acceleration, and the orientation (Euler angles), as well as
accuracy metrics for those quantities. Details of the POS MV data are given in Corcoran
and Pronk (2003).

Reference point X drilled into the deck outside the compressor room is referred to
as point ‘ref’. Other points on the ship are surveyed from that reference point. That
reference point is about 4 feet = 48/39 m= 1.23 m above sea level during measurements.
Recall that the ship’s coordinate system is forward (x), starboard (y) and down (z) and
that coordinates of a point are given as

£
x y z

¤
. The following are coordinates of position

vectors from ref. to other points as measured in meters:
ref. to Primary GPS antenna G =

£
0.0 −3.784 −6.144

¤
ref. to POS MV GPS2 A =

£
9.440 −6.379 −3.974

¤
ref. to IMU is I =

£
19.567 −4.128 −0.15

¤
ref. to lidar is L =

£
32.61 0.82 −4.84

¤
ref. to NOAA/K radar is K =

£
11.40 0.84 −5.30

¤
ref. to roof W-band radar is W =

£
−9.19 −2.88 −2.88

¤
ref. to compensated W-band radar is C =

£
−6.22 −1.18 −1.42

¤
ref. to roof X-band radar is R =

£
−10.26 −2.03 −2.99

¤
ref. to center of rotation of the ship (estimated) is Z =

£
0.0 −0.94 0.0

¤
The center of rotation of the ship is estimated to be at the wall that is 0.94 m toward

port side of the drilled X reference point. The position of the lidar is the red accelerometer
box on the ceiling of the lidar sea container. The position of any of the radars is an estimate
of the phase center of the radar’s antenna.

Usually, the POS MV system would report the ship’s data for point ref. For our
purposes it is more convenient to redefine the reference point as the phase center of the
NOAA/K radar antenna. Let NOAA/K radar be the new reference point entered into the
IMU. The ‘lever’ arms to be entered into the POS MV computer data base for its GPS
antennas, its new reference point ‘ref’, and Sensor 1 and Sensor 2 positions are:
NOAA/K to Primary GPS antenna: G−K =

£
−11. 4 −4. 624 −0.844

¤
NOAA/K to POS MV GPS2: A−K =

£
−1. 96 −7. 219 1. 326

¤
NOAA/K to IMU: I −K =

£
8. 167 −4. 968 5. 15

¤
NOAA/K to lidar: L−K =

£
21. 21 −0.02 0.46

¤
NOAA/K to roof W-band radar: W −K =

£
−20. 59 −3. 72 2. 42

¤
NOAA/K to compensated W-band radar C −K =

£
−17. 62 −2. 02 3. 88

¤
NOAA/K to roof X -band radar: R−K =

£
−21. 66 −2. 87 2. 31

¤
NOAA/K to center of rotation of the ship Z −K =

£
−11. 4 −1. 78 5. 3

¤
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Sensor 1 has been assigned to the lidar accelerometer box. At 13:40 UTC on January
13, Sensor 2 was changed to the roof X-band. Prior to that time, Sensor 2 was the roof W-
band radar (which ceased to function after January 13). Note that velocity data recorded
for Sensor 1 and Sensor 2 positions are in the coordinate system (along track, across track,
down) and that the “down” component has the wrong sign. Therefore, the extra analysis
steps indicated in (6) and (7) as well as multiplication of the “down” velocity component by
-1 are required to determine the velocity vector in the Earth’s coordinate system for Sensor 1
and Sensor 2 positions. The position of the lidar accelerometer box center is recorded above
for comparison with lidar motion data. The lidar’s scanning mirror changes its position
relative to the lidar accelerometer as its periscope rotates. The periscope center is displaced
about 21 inches forward, 15 inches starboard, and the mirror center is 37 + 5 inches above
the IMU box.

The instrumented tower was surveyed on January 28, 2005, which was after the above
coordinates were recorded. The base of the tower is on the 01 deck 4.20 m above the water
line. The sonic anemometer measurement volume is 10.1 m above the tower base. The
center of the tower base was 6.35 m forward from the rear edge of the lidar sea container.
The lidar’s accelerometer box is 1.00 m forward of the rear edge of the lidar sea container.
Thus, the center of the tower base is 6.35 − 1.00 m forward of the lidar’s accelerometer
box. The center of the tower base was 1.55 m to port of the ship’s center, and the lidar’s
accelerometer box is 1.77 m starboard of the ship’s center to within 2 cm. Thus, the center
of the tower base is −1.55 − 1.77 m starboard of the accelerometer box. From the top of
the lidar sea container, that accelerometer box is 0.13 m down. The top of the lidar sea
container is 2.64 m above the 01 deck. Thus, the center of the tower base is 2.64− 0.13 m
downward of the accelerometer box. The lidar’s accelerometer box is its reference point in
this appendix, although the lidar’s motion-detection system reports its velocity data at the
position of the lidar system’s master GPS antenna, according to the manufacturer. Relative
to the lidar reference point, the coordinates of the base of the tower are:
lidar to tower base T − L =

£
6.35− 1.00 −1.55− 1.77 2.64− 0.13

¤
=
£
5. 35 −3. 32 2. 51

¤
.

Hence the coordinates of NOAA/K to the tower base are
T −K = [T − L] + [L−K] =

£
5. 35 −3. 32 2. 51

¤
+
£
21. 21 −0.02 0.46

¤
.

=
£
26. 56 −3. 34 2. 97

¤
.

Thus, NOAA/K to tower base is T −K =
£
26. 56 −3. 34 2. 97

¤
.

An alternative survey method is to use the measurement that the rear of the lidar
sea container is 15.55− 0.59 + 5.25 = 20. 21 m forward of NOAA/K, and that NOAA/K is
1.80 m starboard of the ship’s center, and NOAA/K is 2.97 m above the 01 deck. Then the
tower is 1.55 + 1.80 = 3. 35 m to port of NOAA/K, and 6.35 + 20. 21 = 26. 56 m forward of
NOAA/K. The resulting coordinates of NOAA/K to tower base are

£
26. 56 −3. 35 2. 97

¤
.

The difference with the above coordinates is only 1 cm in the starboard direction. Let S −
T =

£
0 0 −10.1

¤
denote the position vector from the tower base to the sonic anemometer

measurement volume. The coordinates of NOAA/K to the sonic anemometer’s measurement
volume are
[T −K] + [S − T ] =

£
26. 56 −3. 34 2. 97

¤
+
£
0 0 −10.1

¤
=
£
26. 56 −3. 34 −7. 13

¤
.

Thus, NOAA/K to sonic anemometer is S −K =
£
26. 56 −3. 34 −7. 13

¤
.

The coordinates of lidar to the sonic anemometer’s measurement volume are
T − L =

£
5. 35 −3. 32 2. 51

¤
+
£
0 0 −10.1

¤
=
£
5. 35 −3. 32 −7. 59

¤
.

The reference point ref. to the tower base is
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[T − L] + L =
£
5. 35 −3. 32 2. 51

¤
+
£
32.61 0.82 −4.84

¤
=
£
37. 96 −2. 5 −2. 33

¤
.

The above vertical coordinate of −2.33 m agrees exactly with the surveyed height
of the 01 deck above the reference point. The reason for the agreement is that the POS
MV’s coordinate system has its axes toward bow and port parallel to the main deck. On
the other hand, the trim of the ship determines the tilt of the ship relative to sea level.
Recall from above that the reference point ‘ref.’ is 1.23 m above sea level. From the above,
one expects the tower base to be (2.33 + 1.23) m = 3.56 m above sea level if the ship was
trimmed level to sea level. The measurement of the base of the tower on the 01 deck to
the water line was 4.20 m, as noted above. We surmise that the decks rise toward the
bow by 4.20− 3.56 m = 0.64 m relative to the reference point. The corresponding angle is
approximately 0.64/37.96 = 1.6860× 10−2 radians, which is one degree.

Appendix B: Algorithm for Determining rS (SL)

As will be shown below, there are two solutions for rS (SL). Only one of the
two solutions is correct. For brevity, define the velocity difference expressed in the ship’s
coordinate system as

∆S ≡ Q
¡
vEL − vES

¢
.

Now (37) can be written as
∆S = ΩS

S × rS (SL)

so ∆S ×ΩS
S =

£
ΩS

S × rS (SL)
¤
×ΩS

S

= −ΩS
S

£
ΩS

S · rS (SL)
¤
+ rS (SL)

£
ΩS

S ·ΩS
S

¤
. (73)

The following shows that
¯̄
∆S ×ΩS

S

¯̄
is not always zero:¯̄

∆S ×ΩS
S

¯̄2
=
n
−ΩS

S

£
ΩS

S · rS (SL)
¤
+ rS (SL)

¯̄
ΩS

S

¯̄2o · n−ΩS
S

£
ΩS

S · rS (SL)
¤
+ rS (SL)

¯̄
ΩS

S

¯̄2o
=

ΩS
S

£
ΩS

S · rS (SL)
¤
·ΩS

S

£
ΩS

S · rS (SL)
¤
−ΩS

S

£
ΩS

S · rS (SL)
¤
· rS (SL)

¯̄
ΩS

S

¯̄2
−
¯̄
ΩS

S

¯̄2
rS (SL) ·ΩS

S

£
ΩS

S · rS (SL)
¤
+
¯̄
ΩS

S

¯̄2
rS (SL) · rS (SL)

¯̄
ΩS

S

¯̄2
=

¯̄
ΩS

S

¯̄2 £
ΩS

S · rS (SL)
¤2 − £ΩS

S · rS (SL)
¤2 ¯̄

ΩS
S

¯̄2
−
¯̄
ΩS

S

¯̄2 £
ΩS

S · rS (SL)
¤2
+
¯̄
ΩS

S

¯̄2 ¯̄
rS (SL)

¯̄2 ¯̄
ΩS

S

¯̄2
= −

¯̄
ΩS

S

¯̄2 £
ΩS

S · rS (SL)
¤2
+
¯̄
ΩS

S

¯̄2 ¯̄
rS (SL)

¯̄2 ¯̄
ΩS

S

¯̄2
. (74)

Hence, ¯̄
∆S ×ΩS

S

¯̄
=
¯̄
ΩS

S

¯̄q
|rS (SL)|2 |ΩS

S|
2 − [ΩS

S · rS (SL)]
2

=
¯̄
rS (SL)

¯̄ ¯̄
ΩS

S

¯̄2q
1− [cosϑ]2

=
¯̄
rS (SL)

¯̄ ¯̄
ΩS

S

¯̄2 |sinϑ| ,
where ϑ is the angle between ΩS

S and r
S (SL).

Proof that ∆S is perpendicular to rS (SL) is

rS (SL) ·∆S = rS (SL) ·
£
ΩS

S × rS (SL)
¤
= ΩS

S ·
£
rS (SL)× rS (SL)

¤
= 0 QED. (75)
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Proof that ∆S is perpendicular to ΩS
S is

ΩS
S ·∆S = ΩS

S ·
£
ΩS

S × rS (SL)
¤
= rS (SL) ·

£
ΩS

S ×ΩS
S

¤
= 0 QED.

Likewise, both ∆S and ΩS
S are perpendicular to ∆

S × ΩS
S . Therefore, ∆S and ΩS

S and
∆S ×ΩS

S make an orthogonal set of vectors. Now,¯̄
∆S
¯̄2
=∆S ·∆S =∆S ·

£
ΩS

S × rS (SL)
¤
= rS (SL) ·∆S ×ΩS

S .

Hence,
rS (SL) ·∆S ×ΩS

S

|∆S ×ΩS
S|

=

¯̄
∆S
¯̄2

|∆S ×ΩS
S|

. (76)

The equations that we use to calculate rS (SL) are (76), (75), and (74). From
(1),

¡bxS, byS,bzS¢ are the unit vectors in the (forward, starboard, down) coordinate system.
Alternatively, they can denote unit vectors in the lidar’s coordinate system for present
purposes. Let us simplify notation by denoting the

¡bxS, byS,bzS¢ components of rS (SL) (or
the components in the lidar’s coordinate system) by rx, ry, and rz, that is

rS (SL) = rxbxS + rybyS + rzbzS .

Note that the rx, ry, and rz are not functions of time. At each time we calculate the unit

vector ∆S×ΩS
S

|∆S×ΩS
S| and express it as its components in the

¡bxS, byS,bzS¢ coordinate system (or

the lidar’s coordinate system). Let us simplify by denoting those components at each time
t by ux (t) , uy (t) , and uz (t), that is

∆S ×ΩS
S

|∆S ×ΩS
S|
= ux (t) bxS + uy (t) byS + uz (t)bzS .

At each time t we calculate the scalar ∆S ·∆S

|∆S×ΩS
S| and denote it by f (t), that is

f (t) ≡ ∆S ·∆S

|∆S ×ΩS
S|

.

Our equation (76) becomes

rxux (t) + ryuy (t) + rzuz (t)=f (t) . (77)

The values of ux (t) , uy (t) , uz (t), and f (t) are known; the rx, ry, and rz are the unknowns.
If we simplify notation by defining wx (t) , wy (t) , and wz (t) by

∆S

|∆S| = wx (t) bxS + wy (t) byS + wz (t)bzS ,

then (75) becomes
rxwx (t) + rywy (t) + rzwz (t)=0 . (78)

The values of wx (t) , wy (t) , wz (t) are known; the rx, ry, and rz are the unknowns. Simplify
notation by defining qx (t) , qy (t) , and qz (t) by

ΩS

|ΩS| ≡ qx (t) bxS + qy (t) byS + qz (t)bzS .
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At each time t we calculate the scalar |∆
S×ΩS

S|2
|ΩS

S|4
and denote it by g (t), that is

g (t) ≡
¯̄
∆S ×ΩS

S

¯̄2
|ΩS

S|
4 .

Then, (74) can be written as

r2x + r2y + r2z − [qx (t) rx + qy (t) ry + qz (t) rz]
2 = g (t) . (79)

The values of qx (t) , qy (t) , qz (t) are known; the rx, ry, and rz are the unknowns. When
wz (t) 6= 0, we can substitute (78) into (77) to obtain

rxux (t) + ryuy (t) +

∙
rxwx (t) + rywy (t)

−wz (t)

¸
uz (t)=f (t) ;

rx

∙
ux (t)−

wx (t)

wz (t)
uz (t)

¸
+ ry

∙
uy (t)−

wy (t)

wz (t)
uz (t)

¸
=f (t) . (80)

Hence, to be concise we define

vx (t) ≡
∙
ux (t)−

wx (t)

wz (t)
uz (t)

¸
, and vy (t) ≡

∙
uy (t)−

wy (t)

wz (t)
uz (t)

¸
such that simplified notation for (80) is

rxvx (t) + ryvy (t)=f (t) . (81)

Similarly, when wz (t) 6= 0, we can substitute (78) into (79) to obtain"
r2x + r2y + r2x

³
wx(t)
wz(t)

´2
+ r2y

³
wy(t)
wz(t)

´2
+ 2rxry

wx(t)
wz(t)

wy(t)
wz(t)

−r2xp2x (t)− r2yp
2
y (t)− 2rxrypx (t) py (t)

#
= g (t) (82)

where

px (t) =

∙
qx (t)−

wx (t)

wz (t)
qz (t)

¸
, and py (t) =

∙
qy (t)−

wy (t)

wz (t)
qz (t)

¸
.

In (82), the coefficient of r2x is

X ≡ 1 +
µ
wx (t)

wz (t)

¶2
− p2x (t) ,

the coefficient of r2y is

Y ≡ 1 +
µ
wy (t)

wz (t)

¶2
− p2y (t) ,

and the coefficient of rxry is

Z ≡ 2wx (t)

wz (t)

wy (t)

wz (t)
− 2px (t) py (t) ;
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so (82) is
Xr2x + Y r2y + Zrxry = g (t) . (83)

Eliminating ry using (81) in (83) gives a quadratic equation to solve for rx; that equation,
namely, equation (84) in the summary below.

Let us summarize the above algorithm for calculating rS (SL). To simplify notation,
start with 5 definitions defining 11 quantities from data. They are:

f (t) ≡ ∆S ·∆S

|∆S ×ΩS
S|

.

g (t) ≡
¯̄
∆S ×ΩS

S

¯̄2
|ΩS

S|
4 .

∆S

|∆S| ≡ wx (t) bxS + wy (t) byS + wz (t)bzS .

ΩS

|ΩS| ≡ qx (t) bxS + qy (t) byS + qz (t)bzS .

∆S ×ΩS
S

|∆S ×ΩS
S|
≡ ux (t) bxS + uy (t) byS + uz (t)bzS .

Then, for conciseness, define

vx (t) =

∙
ux (t)−

wx (t)

wz (t)
uz (t)

¸
, and vy (t) =

∙
uy (t)−

wy (t)

wz (t)
uz (t)

¸
.

px (t) =

∙
qx (t)−

wx (t)

wz (t)
qz (t)

¸
, and py (t) =

∙
qy (t)−

wy (t)

wz (t)
qz (t)

¸
,

and

X (t) ≡ 1 +
µ
wx (t)

wz (t)

¶2
− p2x (t) ,

Y (t) ≡ 1 +
µ
wy (t)

wz (t)

¶2
− p2y (t) ,

Z (t) ≡ 2wx (t)

wz (t)

wy (t)

wz (t)
− 2px (t) py (t) .

Obviously, wz (t) must not be zero.
Substitution of equations (81) in (83) gives the quadratic equation

a (t) r2x + b (t) rx + c (t) = 0 , (84)

where

a (t) ≡ X (t) + Y (t)

µ
vx (t)

vy (t)

¶2
− Z (t)

vx (t)

vy (t)
,

b (t) ≡ −2
µ
f (t)

vy (t)

vx (t)

vy (t)

¶
+ Z (t)

f (t)

vy (t)
.
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c (t) ≡ Y (t)

µ
f (t)

vy (t)

¶2
− g (t) .

The solution of (84) is:

rx =
−b (t)±

q
[b (t)]2 − 4a (t) c (t)
2a (t)

. (85)

Then, determine ry from rx using (81) as follows:

ry=
f (t)

vy (t)
− rx

vx (t)

vy (t)
.

Obviously, vy (t) must not be zero. Take the solution for rx and ry to determine rz from
either (75)

rz =
rxwx (t) + rywy (t)

−wz (t)

(wz (t) must not be zero), or from (77)

rz =
f (t)− [rxux (t) + ryuy (t)]

uz (t)

(uz (t) must not be zero).
We have two solutions for rS (SL) corresponding to the + or − sign in (85); the

correct solution must be chosen. Now we have equations that determine the components
of rS (SL) from data at any time t for which wz (t) 6= 0 and vz (t) 6= 0. We can remove
outliers from the set of solutions at many times t and average the remaining values over
time. We defined subscripts (x, y, z) to denote (forward, starboard, down) or the equivalent
components in the lidar coordinate system However, cyclic permutation of the subscripts (x,
y, z) could give any one of the components of r from the quadratic equation; then the other
two components are subsequently determined. One advantage of this is that if wz (t) = 0
or vz (t) = 0 then cyclic permutation of the subscripts.
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